State of the Art Robotic Grippers and Applications
Abstract
:1. Introduction
2. Applications of Robotic Grippers
2.1. Grippers for Industry
2.1.1. Grippers for Known Environments
2.1.2. Grippers for Unknown Environments
2.2. Grippers for Fragile Objects
2.3. Grippers for Medical Applications
2.4. Micro and Nano Grippers
2.5. Soft Fabric Grippers
3. Design of Robotic Grippers
3.1. Piezoelectric Grippers
3.2. Multi-Fingered Grippers
3.3. Enveloping and under Actuated Grippers
3.4. Malleable Grippers
4. Future Directions and Discussion
- Adaptive and self-adaptive grippers: these grippers have a great potential to provide flexibility in grasping objects with different shapes in industrial systems such as Festo PowerGripper, Finger Adaptive Robotiq, SARAH in international space station.
- Modular grippers: they use standard components such as finger type grippers, vacuum cups, and locating pins to construct complex grippers. These grippers have been used in applications where high performance and flexibility are required such as assembly in space. They can accommodate change in physical, geometrical, chemical, mechanical properties of the objects significantly by employing different standard gripping components.
- Reconfigurable grippers: these grippers have the ability to change into different specified configurations and pick different objects. These grippers have applications in automotive industry and space robotics.
- Smart material based grippers: These grippers use smart materials for grasping objects with different shapes such as grasping by particle jamming (e.g., granule-filled bag), electrorheological (ER) fluids, Giant ER Fluid, ER fluid with electroadhesion, pneumatic actuators, and shape memory foams. Although these grippers have been used in industry for a long time, due to their simple actuation mechanism and low weight, employing this technology for robotic grasping is still challenging because they have lower gripping forces compared to conventional grippers, they are mostly slow actuators, and there is a control problem in precision actuation of these materials. There are ongoing research to increase the gripping force and precision accuracy. Some of these include developing controllers such as repulsive force control, sliding mode control, and ANFIS controllers. It is worth mentioning that electrostatic attraction provides more dexterity since they use film like layers.
- Novel mechanism design grippers: These designs provide inherently flexibility with a minimum required supervision by incorporating smart mechanisms such as bionic handling assistant into the grippers. The main objective of these designs is to have high performance with less control effort.
- Soft grippers: Different designs of soft grippers have been developed such as electroadhesion grippers, single and multi-segment grippers, artificial muscle soft robotic grippers have been developed. These grippers have been able to mimic human’s hand. Flexible, microscopic hand-like gripper can help surgeons to remotely guide surgical procedures or perform biopsies. Most of these designs utilize soft robotics and artificial skins for simpler control and passive adaptation. Soft materials enable gripping automation beyond the capacities of current technology. One of the advantages of soft robotic grippers is partially taking care of the control part by the physical properties of soft grippers unlike rigid grippers. However, introducing softness into the design of grippers requires new set of design and control principles compared to hard grippers.
5. Conclusions
Conflicts of Interest
References
- Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Monkman, G.J.; Hesse, S.; Steinmann, R.; Schunk, H. Robot Grippers; John Wiley & Sons: Weinheim, Germany, 2007. [Google Scholar]
- Krüger, J.; Lien, T.K.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann. Manuf. Technol. 2009, 58, 628–646. [Google Scholar] [CrossRef]
- Fantoni, G.; Santochi, M.; Dini, G.; Tracht, K.; Scholz-Reiter, B.; Fleischer, J.; Lien, T.K.; Seliger, G.; Reinhart, G.; Franke, J.; et al. Grasping devices and methods in automated production processes. CIRP Ann. Manuf. Technol. 2014, 63, 679–701. [Google Scholar] [CrossRef]
- Staretu, I. Gripping Systems; Derc Publishing House: Tewksbury, MA, USA, 2011. [Google Scholar]
- Patel, Y.D.; George, P.M. Parallel Manipulators Applications—A Survey. Mod. Mech. Eng. 2012, 2, 57–64. [Google Scholar] [CrossRef]
- Bertelsen, A.; Melo, J.; Sánchez, E.; Borro, D. A review of surgical robots for spinal interventions. Int. J. Med. Robot. Comput. Assist. Surg. 2013, 9, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Karayiannidis, Y.; Nalpantidis, L.; Gratal, X.; Qi, P.; Dimarogonas, D.V.; Kragic, D. Dual arm manipulation—A survey. Robot. Auton. Syst. 2012, 60, 1340–1353. [Google Scholar] [CrossRef]
- Hirzinger, G.; Brunner, B.; Landzettel, K.; Schott, J. Preparing a new generation of space robots—A survey of research at DLR. Robot. Auton. Syst. 1998, 23, 99–106. [Google Scholar] [CrossRef]
- Naoshi, K.; Ting, K.C. Robotics for Plant Production. Artif. Intell. Rev. 1998, 12, 227–243. [Google Scholar]
- Savia, M.; Kiovo, H.N. Contact Micromanipulation—Survey of Strategies. IEEE/ASME Trans. Mechatron. 2009, 14, 504–514. [Google Scholar] [CrossRef]
- Chiaverini, S.; Siciliano, B.; Villani, L. A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans. Mechatron. 1999, 4, 273–285. [Google Scholar] [CrossRef]
- Still In Motion. Kuka Robot/Inhouse. 2015. Available online: http://www.stillinmotion.de/portfolio/kuka-roboter/ (accessed on 4 June 2015).
- OnOrbit. Canadarm2 and Dextre. 6 October 2014. Available online: http://spaceref.com/onorbit/canadarm2-and-dextre.html (accessed on 4 June 2015).
- iRobot. iRobot 510 PackBot. 2015. Available online: http://www.irobot.com/For-Defense-and-Security/Robots/510-PackBot.aspx#Hazmat (accessed on 4 June 2015).
- Sutter Health. Single-Site™ Instrumentation for the da Vinci® Si™ Surgical System. 2015. Available online: http://www.altabatessummit.org/clinical/robotic-surgery/ (accessed on 4 June 2015).
- Chelpanov, I.B.; Kolpashnikov, S.N. Problems with the mechanics of industrial robot grippers. Mech. Mach. Theory 1983, 18, 295–299. [Google Scholar] [CrossRef]
- Chen, F.Y. Force analysis and design considerations of grippers. Ind. Rob. Int. J. 1982, 9, 243–249. [Google Scholar] [CrossRef]
- Devol, G.J.C. Programmed Article Transfer. U.S. Patent 2,988,237, 13 June 1961. [Google Scholar]
- Totsuka, H. Manipulator. U.S. Patent 3,739,923, 17 February 1971. [Google Scholar]
- Burton, C. Article Forming Machine and Extractor. U.S. Patent 3,765,474, 14 June 1971. [Google Scholar]
- Victor, A.C.; Ronald, H.C. Tensor Arm Manipulator. U.S. Patent 3,497,083, 10 May 1968. [Google Scholar]
- Ellwood, R.; Raatz, A.; Hesselbach, J. Vision and Force Sensing to Decrease Assembly Uncertainty. In Precision Assembly Technologies and Systems; Springer Berlin Heidelberg: Chamonix, France, 2010; pp. 123–130. [Google Scholar]
- Schunk. 2-Finger Parallel Grippers. 2015. Available online: http://www.ca.schunk.com/schunk/schunk_websites/products/products_level_3/product_level3.html?product_level_3=289&product_level_2=250&product_level_1=244&country=CAN&lngCode=EN&lngCode2=EN# (accessed on 4 June 2015).
- Active Robots. Robotiq 2-Finger Adaptive Gripper 200. 2015. Available online: http://www.active-robots.com/robotiq-2-finger-adaptive-gripper-200 (accessed on 4 June 2015).
- Tracht, K.; Hogreve, S.; Bosse, S. Intrepretation of Multiaxial Gripper Force Sensors. In Proceedings of the 4th CIRP Conference on Assembly Technologies and Systems, Ann Arbor, MI, USA, 21–22 May 2012.
- Hogreve, S.; Tracht, K. Design and implementation of multiaxial force sensing gripper fingers. Prod. Eng. 2014, 8, 765–772. [Google Scholar] [CrossRef]
- Issa, M.; Petkovic, D.; Pavlovic, N.; Zentner, L. Sensor elements made of conductive silicone rubber for passively compliant gripper. Int. J. Adv. Manuf. Technol. 2013, 69, 1527–1536. [Google Scholar] [CrossRef]
- Bosse, S.; Hogreve, S.; Tracht, K. Design of a Mechanical Gripper with an Integrated Smart Sensor Network for Multi-Axial Force Sensing and Perception of Environment. In Proceedings of the Smart Systems Integration Conference 2012, Zürich, Switzerland, 21–22 March 2012.
- Ulmen, J.; Cutkosky, M. A Robust, Low-Cost and Low-Noise Artificial Skin for Human-Friendly Robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010.
- Wettels, N.; Parnandi, A.R.; Moon, J.-H.; Loeb, G.E.; Sukhatme, G.S. Grip Control Using Biomimetic Tactile Sensing Systems. IEEE/ASME Trans. Mechatron. 2009, 14, 718–723. [Google Scholar] [CrossRef]
- Drimus, A.; Kootstra, G.; Bilberg, A.; Kragic, D. Design of a flexible tactile sensor for classification of rigid and deformable objects. Robot. Auton. Syst. 2014, 62, 3–15. [Google Scholar] [CrossRef]
- Hujic, D.; Croft, E.A.; Zak, G.; Fenton, R.G.; Mills, J.K.; Benhabib, B. The Robotic Interception of Moving Objects in Industrial Settings: Strategy Development and Experiment. IEEE/ASME Trans. Mechatron. 1998, 3, 225–239. [Google Scholar] [CrossRef]
- Tsuji, T.; Kaneko, Y.; Abe, S. Whole-Body Force Sensation by Force Sensor With Shell-Shaped End-Effector. IEEE Trans. Ind. Electron. 2009, 56, 1375–1382. [Google Scholar] [CrossRef]
- Arisumi, H.; Yokoi, K.; Komoriya, K. Casting Manipulation—Midair Control of a Gripper by Impulsive Force. IEEE Trans. Robot. 2008, 24, 402–415. [Google Scholar] [CrossRef]
- Zahraee, A.H.; Paik, J.K.; Szewczyk, J.; Morel, G. Toward the Development of a Hand-Held Surgical Robot for Laparoscopy. IEEE/ASME Trans. Mechatron. 2010, 15, 853–861. [Google Scholar] [CrossRef]
- Dumlu, A.; Erenturk, K. Trajectory Tracking Control for a 3-DOF Parallel Manipulator Using Fractional-Order PIλDμ Control. IEEE Trans. Ind. Electron. 2014, 61, 3417–3426. [Google Scholar] [CrossRef]
- Sato, M.; Toda, M. Robust Motion Control of an Oscillatory-Base Manipulator in a Global Coordinate System. IEEE Trans. Ind. Electron. 2015, 62, 1163–1174. [Google Scholar] [CrossRef]
- Kampmann, P.; Kirchner, F. Towards a fine-manipulation system with tactile feedback for deep-sea environments. Robot. Auton. Syst. 2015, 67, 115–121. [Google Scholar] [CrossRef]
- Yang, C.; Qu, Z.; Han, J. Decoupled-Space Control and Experimental Evaluation of Spatial Electrohydraulic Robotic Manipulators Using Singular Value Decomposition Algorithms. IEEE Trans. Ind. Electron. 2014, 61, 3427–3438. [Google Scholar] [CrossRef]
- Elizarov, A.I.; Shein, N.G. The use of production robots in the production of plate heat exchangers. Chem. Pet. Eng. 1982, 18, 54–56. [Google Scholar] [CrossRef]
- Mantriota, G. Theoretical model of the grasp with vacuum gripper. Mech. Mach. Theory 2007, 42, 2–17. [Google Scholar] [CrossRef]
- Callies, R.; Fronz, S. Recursive modeling and control of multi-link manipulators with vacuum grippers. Math. Comput. Simul. 2008, 79, 906–916. [Google Scholar] [CrossRef]
- Monkman, G.J. Automated handling of packaging materials. Ind. Robot 1993, 20, 16. [Google Scholar]
- Connolly, C. Robots at the heart of Schubert packaging machinery lead to great flexibility. Ind. Robot 2007, 34, 277–280. [Google Scholar]
- Karbassi, J. Getting a grip with suction cups. Mach. Des. 2009, 81, 52–54. [Google Scholar]
- Yu, S.; Gil, M. Manipulator handling device for assembly of large-size panels. Assem. Autom. 2012, 32, 361–372. [Google Scholar] [CrossRef]
- Angelillo, D.J.; Park, J. Efficient robotic packing speeds soft drinks manufacture. Ind. Rob. 2002, 29, 272–274. [Google Scholar]
- McKeown, C.; Webb, P. A reactive reconfigurable tool for aerospace structures. Assem. Autom. 2011, 31, 334–343. [Google Scholar] [CrossRef]
- Lovell, A. Optimized vacuum system design improves productivity. Control Eng. 2006, 53, 26–28. [Google Scholar]
- Kelley, R.B.; Birk, J.R.; Martins, H.A.S.; Tella, R. A Robot System Which Acquires Cylindrical Workpieces from Bins. IEEE Trans. Syst. 1982, 12, 204–213. [Google Scholar] [CrossRef]
- Sujan, V.A.; Dubowsky, S. Robotic Manipulation of Highly Irregular Shaped Objects: Application to a Robot Crucible Packing System for Semiconductor Manufacture. J. Manuf. Process. 2002, 4, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.-L.; Lang, H.; Zuo, B.; de Silva, C.W. A modified image-based visual servo controller with hybrid camera configuration for robust robotic grasping. Robot. Auton. Syst. 2014, 62, 1398–1407. [Google Scholar] [CrossRef]
- Al-Hujazi, E.; Sood, A. Range Image Segmentation with Applications to Robot Bin-Picking Using Vacuum Gripper. IEEE Trans. Syst. Man Cybern. 1990, 20, 1313–1325. [Google Scholar] [CrossRef]
- Keshmiri, M.; Xie, W.-F.; Mohebbi, A. Augmented Image-Based Visual Servoing of a Manipulator Using Acceleration Command. IEEE Trans. Ind. Electron. 2014, 61, 5444–5452. [Google Scholar] [CrossRef]
- Du, G.; Zhang, P.; Li, D. Human-Manipulator Interface Based on Multisensory Process via Kalman Filters. IEEE Trans. Ind. Electron. 2014, 61, 5411–5418. [Google Scholar]
- Serón, J.; Martínez, J.L.; Mandow, A.; Reina, A.J.; Morales, J.; García-Cerezo, A.J. Automation of the Arm-Aided Climbing Maneuver for Tracked Mobile Manipulators. IEEE Trans. Ind. Electron. 2014, 61, 3638–3647. [Google Scholar] [CrossRef]
- Eizicovits, D.; Berman, S. Efficient sensory-grounded grasp pose quality mapping for gripper. Robot. Auton. Syst. 2014, 62, 1208–1219. [Google Scholar] [CrossRef]
- Dearden, R.; Burbridge, C. Manipulation planning using learned symbolic state abstractions. Robot. Auton. Syst. 2014, 62, 355–365. [Google Scholar] [CrossRef]
- Cho, S.I.; Chang, S.J.; Kim, Y.Y.; An, K.J. Development of a Three-degrees-of-freedom Robot for harvesting Lettuce using Machine Vision and Fuzzy logic Control. Biosyst. Eng. 2002, 82, 143–149. [Google Scholar] [CrossRef]
- Pettersson, A.; Ohlsson, T.; Davis, S.; Gray, J.O.; Dodd, T.J. A hygienically designed force gripper for flexible handling of variable and easily damaged natural food products. Innov. Food Sci. Emerg. Technol. 2011, 12, 344–351. [Google Scholar] [CrossRef]
- Sun, Q.; Zou, X.; Zou, H.; Chen, Y.; Cai, W. Intelligent Design and Kinematics Analysis of Picking Robot Manipulator. In Proceedings of the International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 1 January 2010.
- Hayashi, S.; Yamamoto, S.; Shigematsu, K.; Kobayashi, K.; Kohno, Y.; Kamata, J.; Kurita, M. Performance of movable-type harvesting robot for strawberries. In Proceedings of the International Symposium on High Technology for Greenhouse Systems: GreenSys2009, Québec City, QC, Canada, 14–19 June 2009.
- Mehta, S.S.; Burks, T.F. Vision-based control of robotic manipulator for citrus harvesting. Comput. Electron. Agric. 2014, 102, 146–158. [Google Scholar] [CrossRef]
- PnuematicTiPS. Robots Learn to Pick the Harvest. 6 March 2015. Available online: http://www.pneumatictips.com/3965/2015/03/featured/robots-learn-to-pick-the-harvest/ (accessed on 4 June 2015).
- Font, D.; Pallejà, T.; Tresanchez, M.; Runcan, D.; Moreno, J.; Martínez, D.; Teixidó, M.; Palacín, J. A Proposal for Automatic Fruit Harvesting by Combining a Low Cost Stereovision Camera and a Robotic Arm. Sensors 2014, 14, 11557–11579. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Gray, J.O.; Caldwell, D.G. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables. Robot. Comput.-Integr. Manuf. 2008, 24, 249–257. [Google Scholar] [CrossRef]
- Blanes, C.; Cortes, V.; Ortiz, C.; Mellado, M.; Talens, P. Non-Destructive Assessment of Mango Firmness and Ripeness Using a Robotic Gripper. Food Bioprocess Technol. 2015, 8, 1914–1924. [Google Scholar] [CrossRef]
- Monta, M.; Kondo, N.; Ting, K.C. End-Effectors for Tomato Harvesting Robot. Artif. Intell. Rev. 1998, 12, 11–25. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Yang, P.-Y.; Chen, S. Development of the End-Effector of a Picking Robot for Greenhouse-Grown Tomatoes. Appl. Eng. Agric. 2013, 29, 1001–1009. [Google Scholar]
- Tanigaki, K.; Fujiura, T.; Akase, A.; Imagawa, J. Cherry-harvesting robot. Comput. Electron. Agric. 2008, 63, 65–72. [Google Scholar] [CrossRef]
- Frank, B.; Stachniss, C.; Schmedding, R.; Teschner, M.; Burgard, W. Learning object deformation models for robot motion planning. Robot. Auton. Syst. 2014, 62, 1153–1174. [Google Scholar] [CrossRef]
- Rateni; Cianchetti, M.; Ciuti, G.; Menciassi, A.; Laschi, C. Design and Development of a soft robotic gripper for manipulation in minimally invasive surgery: A proof of concept. Meccanica 2015, 50, 2855–2863. [Google Scholar] [CrossRef]
- Lambercy, O.; Metzger, J.C.; Santello, M.; Gassert, R. A method to study precision grip control in viscoelastic force fields using a robotic gripper. IEEE Trans. Biomed. Eng. 2015, 62, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Gultepe, E.; Randhawa, J.S.; Kadam, S.; Yamanaka, S.; Selaru, F.M.; Shin, E.J.; Kalloo, A.N.; Gracias, D.H. Biopsy with Thermally-Responsive Untethered Microtools. Adv. Mater. 2013, 25, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Vonck, D.; Jakimowicz, J.J.; Lopuhaä, H.P.; Goossens, R.H. Grasping soft tissue by means of vacuum technique. Med. Eng. Phys. 2012, 34, 1088–1094. [Google Scholar] [CrossRef]
- Tortora, G.; Ranzani, T.; Falco, I.D.; Dario, P.; Menciassi, A. A miniature robot for retraction tasks under vision assistance in minimally invasive surgery. Robotics 2014, 3, 70–82. [Google Scholar] [CrossRef]
- Kim, U.; Lee, D.H.; Yoon, W.J.; Hannaford, B.; Choi, H.R. Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery. IEEE Trans. Robot. 2015, 31, 1214–1224. [Google Scholar] [CrossRef]
- Jin, H.L.; Delgado-Martinez, I.; Chen, H.Y. Customizable Soft Pneumatic Chamber-Gripper Devices for Delicate Surgical Manipulation. J. Med. Devices 2014, 8, 044504. [Google Scholar]
- Ullrich, F.; Dheman, K.S.; Schuerle, S.; Nelson, B.J. Magnetically actuated and guided milli-gripper for medical applications. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015.
- Dechev, N.; Cleghorn, W.L.; Mills, J.K. Microassembly of 3D microstructures using a compliant, passive microgripper. J. Microelectromech. Syst. 2004, 13, 176–189. [Google Scholar] [CrossRef]
- Fatikow, S.; Eichhorn, V.; Jasper, D.; Weigel-Jech, M.; Niewiera, F.; Krohs, F. Automated Nanorobotic Handling of Bio- and Nano-Materials. In Proceedings of the 6th Annual IEEE Conference on Automation Science and Engineering, Toronto, ON, Canada, 21–24 August 2010.
- Chen, L.; Liu, B.; Chen, T.; Shao, B. Design of Hybrid-type MEMS Microgripper. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009.
- Wang, X.; Vincent, L.; Yu, M.; Huang, Y.; Liu, C. Architecture of a Three-Probe MEMS Nanomanipulator with Nanoscale End-Effectors. In Proceedings of the International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, 20–24 July 2003.
- Millet, O.; Bernardoni, P.; Régnier, S.; Bidaud, P.; Tsitsiris, E.; Collard, D.; Buchaillot, L. Electrostatic actuated micro gripper using an amplification mechanism. Sens. Actuators A Phys. 2004, 114, 371–378. [Google Scholar] [CrossRef]
- Chen, B.K.; Zhang, Y.; Perovic, D.D.; Sun, Y. MEMS microgrippers with thin gripping tips. J. Micromech. Microeng. 2011, 21, 1–5. [Google Scholar] [CrossRef]
- Demaghsi, H.; Mirzajani, H.; Ghavifekr, H.B. A novel electrostatic based microgripper (cellgripper) integrated with contact sensor and equipped with vibrating system to release particles actively. Microsyst. Technol. 2014, 20, 2191–2202. [Google Scholar] [CrossRef]
- Mackay, R.E.; Le, H.R.; Clark, S.; Williams, J.A. Polymer micro-grippers with an integrated force sensor for biological manipulation. J. Micromech. Microeng. 2013, 23, 1–7. [Google Scholar] [CrossRef]
- Avci, E.; Ohara, K.; Nguyen, C.-N.; Theeravithayangkura, C.; Kojima, M.; Tanikawa, T.; Mae, Y.; Arai, T. High-Speed Automated Manipulation of Microobjects Using a Two-Fingered Microhand. IEEE Trans. Ind. Electron. 2015, 62, 1070–1079. [Google Scholar] [CrossRef]
- Fontana, G.; Ruggeri, S.; Fassi, I. A mini work-cell for handling and assembling microcomponents. Assem. Autom. 2014, 34, 27–33. [Google Scholar] [CrossRef]
- Hazra, S.S.; Beuth, J.L.; Myers, G.A.; DelRio, F.W.; de Boer, M.P. Design and test of reliable high strength ingressive polycrystalline silicon microgripper arrays. J. Micromech. Microeng. 2015, 25, 1–12. [Google Scholar] [CrossRef]
- Myers, G.A.; Hazra, S.S.; de Boer, M.P.; Michaels, C.A.; Stranick, S.J.; Koseski, R.P.; Cook, R.F.; DelRio, F.W. Stress mapping of micromachined polycrystalline silicon devices via confocal Raman microscopy. Appl. Phys. Lett. 2014, 104, 191908. [Google Scholar] [CrossRef]
- Biganzoli, F.; Fantoni, G. A self-centering electrostatic microgripper. J. Manuf. Syst. 2008, 27, 136–144. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, M.; Cao, Y. Research, design and experimznt of end effector for wafer transfer robot. Ind. Robot 2012, 39, 79–91. [Google Scholar] [CrossRef]
- Gauthier, M.; Réginer, S.; Lopez-Walle, B.; Gibeau, E.; Rougeot, P.; Hériban, D.; Chaillet, N. Micro-assembly and modeling of the liquid microworld: The PRONOMIA project. In Proceedings of the IEEE Workshop on Robotic Assembly of 3D MEMS IROS 2007, San Diego, CA, USA, 29 October–2 November 2007.
- Walle, B.L.; Gauthier, M.; Chaillet, N. Submerged Freeze Gripper to Manipulate Micro-objects. In Proceedings of the International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006.
- Walle, B.L.; Gauthier, M.; Chaillet, N. Principle of a Submerged Freeze Gripper for Microassembly. IEEE Trans. Robot. 2008, 24, 897–902. [Google Scholar] [CrossRef] [Green Version]
- Walle, B.L.; Gauthier, M.; Chaillet, N. Dynamic modelling for a submerged freeze microgripper using thermal networks. J. Micromech. Microeng. 2010, 20, 1–10. [Google Scholar]
- Sarhadi, M. A novel manpulator for automated handling of flexible materials. In Proceedings of the 2nd Duisburger Kolloquium Automation and Robotik, Duisberg, Geramny, 15–17 July 1987.
- Schulz, G. Grippers for flexible textiles. In Proceedings of the 5th International Conference on Advanced Robotics, Pisa, Italy, 20–22 June 1991.
- Sarhadi, M. Robotic handling and lay-up advanced composite materials: An overview. In Sensory Robotics for the Handling of Limp Materials; Springer-Verlag: New York, NY, USA, 1990; pp. 33–50. [Google Scholar]
- Monkman, G.J. Robot Grippers for Use With Fibrous Materials. Int. J. Robot. Res. 1995, 14, 144–151. [Google Scholar] [CrossRef]
- Jarvis, S.D.H.; Wilcox, K.; Chen, X.Q.; McCarthy, R.; Sarhadi, M. Design of a handling device for composite ply lay-up automation. In Proceedings of the IEEE 5th International Conference on Advanced Robotics, Pisa, Italy, 20–22 June 1991.
- Fleischer, J.; Ochs, A.; Dosch, S. The Future of Lightweight Manufacturing—Production-related Challenges When Hybridizing Metals and Continuous Fiber-reinforced Plastics. In Proceedings of the International Conference on New Developments in Sheet Metal Forming, Stuttgart, Germany, 22–23 May 2012.
- Kolluru, R.; Valavanis, K.P.; Steward, A.; Sonnier, M.J. A Flat-Surface Robotic Gripper for Handling Limp Material. IEEE Robot. Autom. Mag. 1995, 2, 19–26. [Google Scholar] [CrossRef]
- Kolluru, R.; Valavanis, K.P.; Hebert, T.M. Modeling, Analysis, and Performance Evaluation of A Robotic Gripper System for Limp Material Handling. IEEE Trans. Syst. Man Cybern. B 1998, 28, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, G.; Straßer, G.; Ehinger, C. Highly Flexible Automated Manufacturing of Composite Structures Consisting of Limp Carbon Fibre Textiles. SAE Int. J. Aerosp. 2010, 2, 181–187. [Google Scholar] [CrossRef]
- Reinhart, G.; Ehinger, C. Novel Robot-Based End-Effector Design for an Automated Preforming of Limb Carbon Fiber Textiles. In Future Trends in Production Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 131–142. [Google Scholar]
- Dini, G.; Failli, F.; Sebastiani, F. Development of Automated Systems for Manipulation and Quality Control of Natural Leather Plies. 10 February 2005. Available online: http://www2.ing.unipi.it/leather_project/vacuum_cup.htm (accessed on 29 March 2015).
- Monkman, G.J.; Shimmin, C. Robot grippers using Permatack adhesives. Assem. Autom. 1991, 11, 17–19. [Google Scholar] [CrossRef]
- Ruth, D.E.; Mulgaonkar, P. Robotic lay-up of prepeg composite plies. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990.
- Raatz, A.; Rathmann, S.; Hesselbach, J. Process development for the assembly of microsystems with hot melt adhesives. CIRP Ann. Manuf. Technol. 2012, 61, 5–8. [Google Scholar] [CrossRef]
- Monkman, G. Precise piezoelectric prehension. Ind. Robot 2000, 27, 189–194. [Google Scholar] [CrossRef]
- Tzou, H.S. Development of a light-weight robot end-effector using polymeric piezoelectric bimorph. In Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989.
- Kurita, Y.; Sugihara, F.; Ueda, J.; Ogasawara, T. Piezoelectric Tweezer-Type End Effector With Force- and Displacement-Sensing Capability. IEEE/ASME Trans. Mechatron. 2012, 17, 1039–1048. [Google Scholar] [CrossRef]
- McPherson, T.; Ueda, J. A Force and Displacement Self-Sensing Piezoelectric MRI-Compatible Tweezer End Effector with an On-Site Calibration Procedure. IEEE/ASME Trans. Mechatron. 2014, 19, 755–764. [Google Scholar] [CrossRef]
- Jain, R.K.; Majumder, S.; Ghosh, B. Design and analysis of piezoelectric actuator for micro gripper. Int. J. Mech. Mater. Des. 2014, 11, 253–276. [Google Scholar] [CrossRef]
- Jain, R.K.; Majumder, S.; Ghosh, B.; Saha, S. Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. J. Manuf. Syst. 2015, 35, 76–91. [Google Scholar] [CrossRef]
- Li, J.; Yang, L. Adaptive PI-Based Sliding Mode Control for Nanopositioning of Piezoelectric Actuators. Math. Probl. Eng. 2014, 2014, 257864. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Abo-Ismail, A.; El-Melegy, M.T.; Hamzaid, N.A.; Osman, N.A.A. Development of a Micro-Gripper Using Piezoelectric Bimorphs. Sensors 2013, 13, 5826–5840. [Google Scholar] [CrossRef] [PubMed]
- Crossley, F.R.E.; Umholtz, F.G. Design for a Three-fingered Hand. Mech. Mach. Theory 1977, 12, 85–93. [Google Scholar] [CrossRef]
- Konno, A.; Tada, M.; Nagashima, K.; Inaba, M.; Inoue, H. Development of a 3-Fingered Hand and Grasping Unknown Objects by Groping. In Proceedings of the IEEE International Symposium on Assembly and Task Planning, Marina del Rey, CA, USA, 7–9 August 1997.
- Robotiq. Adaptive Robot Gripper 3-Finger. 2015. Available online: http://robotiq.com/products/industrial-robot-hand/ (accessed on 4 June 2015).
- Prensilia s.r.l. Robotic Hands (Self-Contained). 2014. Available online: http://www.prensilia.com/index.php?q=en/node/40 (accessed on 4 June 2015).
- Shadow Robot Company. Shadow Dexterous Hand™—Now Available for Purchase! 2015. Available online: http://www.shadowrobot.com/products/dexterous-hand/ (accessed on 4 June 2015).
- Wakimoto, S.; Ogura, K.; Suzumori, K.; Nishioka, Y. Miniature Soft Hand with Curling Rubber Pneumatic Actuators. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009.
- Cianchetti, M.; Laschi, C. An Under-Actuated and Adaptable Soft Robotic Gripper. In Proceedings of the 4th International Conference on Living Machines, Barcelona, Spain, 28–31 July 2015.
- Hu, L.; Wang, Y.; Zhang, J.; Cui, Y.; Ma, L.; Jiang, J.; Fang, L.; Zhang, B. A massage robot based on Chinese massage therapy. Ind. Robot 2013, 40, 158–172. [Google Scholar] [CrossRef]
- Hoffmann, H.; Chen, Z.; Earl, D.; Mitchell, D.; Salemi, B.; Sinapov, J. Adaptive robotic tool use under variable grasps. Robot. Auton. Syst. 2014, 62, 833–846. [Google Scholar] [CrossRef]
- Odhner, L.U.; Dollar, A.M. Dexterous Manipulation with Underactuated Elastic Hands. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–11 May 2011.
- Kragten, G.A.; Baril, M.; Gosselin, C.; Herder, J.L. Stable Precision Grasps by Underactuated Grippers. IEEE Trans. Robot. 2011, 27, 1056–1066. [Google Scholar] [CrossRef]
- Fu, Z.; Zhou, H.; Liu, Z.; Fei, J.; Yan, W.; Zhao, Y. Design of a Robot End-Effector Grabbing Mechanism Based on a Bionic Snake Mouth. Int. J. Adv. Robot. Syst. 2012, 10. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Mochiyama, H. Shooting Manipulation Inspired by Chameleon. IEEE/ASME Trans. Mechatron. 2013, 18, 527–535. [Google Scholar] [CrossRef]
- Ciocarlie, M.; Hicks, F.M.; Holmberg, R.; Hawke, J.; Schlicht, M.; Gee, J.; Stanford, S.; Bahadur, R. The Velo gripper: A versatile single-actuator design for enveloping, parallel and fingertip grasps. Int. J. Robot. Res. 2014, 33, 753–767. [Google Scholar] [CrossRef]
- Shapiro, Y.; Wolf, A.; Gabor, K. Bi-bellows: Pneumatic bending actuator. Sens. Actuators A Phys. 2011, 167, 484–494. [Google Scholar] [CrossRef]
- Barber, J.; Volz, R.A.; Desai, R.; Rubinfeld, R.; Schipper, B.D.; Wolter, J. Automatic Evaluation of Two-Fingered Grips. IEEE J. Robot. Autom. 1987, 3, 356–361. [Google Scholar] [CrossRef]
- Doulgeri, Z.; Fasoulas, J. Grasping control of rolling maniplations with deformable fingertips. IEEE/ASME Trans. Mechatron. 2003, 8, 283–286. [Google Scholar] [CrossRef]
- Kenaley, G.L.; Cutkosky, M.R. Electrorheological fluid-based robotic fingers with tactile sensing. In Proceedings of the IEEE Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989.
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Lipson, H.; Jaeger, H.M. Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef]
- Amend, J.R.; Brown, E.; Rodenberg, N.; Jaeger, H.M.; Lipson, H. A Positive Pressure Universal Gripper Based on the Jamming of Granular Material. IEEE Trans. Robot. 2012, 28, 341–350. [Google Scholar] [CrossRef]
- Empire Robotics. Versaball Advantage. 2015. Available online: http://empirerobotics.com/products.html (accessed on 4 June 2015).
- Pettersson, A.; Davis, S.; Gray, J.O.; Dodd, T.J.; Ohlsson, T. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 2010, 98, 332–338. [Google Scholar] [CrossRef]
- Madhani, J.; Salisbury, J.K. Articulated Surgical Instrument for Performing Minimally Invasive Surgery with Enhanced Dexterity and Sensitivity. U.S. Patent 5,792,135, 11 August 1998. [Google Scholar]
Design | Advantages | Drawbacks | Significant Application | Example of Used Material and Actuators |
---|---|---|---|---|
Piezo-electric Grippers [113,114,115,116,117,118,119,120] | Simplicity, Ease of use, Gripping small objects (down to 50 μm) | Low gripping accuracy | Micro and nano gripping | polymeric polyvinylidene fluoride (PVDF) |
Multi-Fingered Grippers [121,122,123,124,125,126,127,128,129] | Flexible gripping for different object shapes, Gripping with force feedback | Control complexity | Grapping all shaped objects with force control | Soft materials, flexible micro actuators (FMA), wire loop actuation systems |
Enveloping Grippers [130,131,132,133,134,135,136,137] | Adaptability to mold around the object | Low force control capability | Grapping oddly shaped and unknown objects | Pneumatic actuators, cable-driven under-actuated mechanisms |
Malleable Grippers [138,139,140,141,142] | Adaptable to different shapes, reliable gripping | Low gripping dexterity | Grasping unknown and specially deforming objects | MR fluid, ER fluid, granular material |
Type of Grippers | ||||
---|---|---|---|---|
Types of Objects | Impactive | Ingressive | Astrictive | Contigutive |
Solid Flat Objects | ||||
Solid Curved Objects | ||||
Solid Irregular Shapes | ||||
Flexible Sheets | ||||
Rigid Sheets | ||||
Fragile Objects | ||||
MEMS Assemblies | ||||
Commonly Used | ||||
Sometimes Used | ||||
Not Used |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, K.; El-Sayed, A.-R.; Shahriari, M.; Biglarbegian, M.; Mahmud, S. State of the Art Robotic Grippers and Applications. Robotics 2016, 5, 11. https://doi.org/10.3390/robotics5020011
Tai K, El-Sayed A-R, Shahriari M, Biglarbegian M, Mahmud S. State of the Art Robotic Grippers and Applications. Robotics. 2016; 5(2):11. https://doi.org/10.3390/robotics5020011
Chicago/Turabian StyleTai, Kevin, Abdul-Rahman El-Sayed, Mohammadali Shahriari, Mohammad Biglarbegian, and Shohel Mahmud. 2016. "State of the Art Robotic Grippers and Applications" Robotics 5, no. 2: 11. https://doi.org/10.3390/robotics5020011
APA StyleTai, K., El-Sayed, A. -R., Shahriari, M., Biglarbegian, M., & Mahmud, S. (2016). State of the Art Robotic Grippers and Applications. Robotics, 5(2), 11. https://doi.org/10.3390/robotics5020011