A Pinching Strategy for Fabrics Using Wiping Deformation
Abstract
:1. Introduction
2. Wiping Motion
2.1. Classification of Fabric Handling
- (a)
- Wiping motion: a human hand in contact with a fabric displaces and deforms a fabric on a floor (Figure 1a). No slippage between the hand and the fabric occurs during displacement.
- (b)
- Pinching motion: a human hand pinches the fabric to move it (Figure 1b).
- (c)
- Unfolding motion: while pinching a fabric, humans often slide their fingertips along the fabric surface (Figure 1c). Humans also handle fabric hems dextrously during unfolding.
- (d)
- Placing motion: humans place the unfolded fabric on a floor (Figure 1d).
2.2. Description of Wiping Motion
3. Pinching of Fabrics Using Wiping Deformation
3.1. Strategy
- (a)
- Using a gripper, a robotic hand presses on an edge of the fabric,
- (b)
- The hand moves the gripper to wrinkle the fabric,
- (c)
- The hand moves up the fabric,
- (d)
- The gripper pinches the edge of the fabric.
3.2. Mechanical Analyses of the Wiping Deformation
3.3. Making a Pinching Area Using Residual Deformation
4. Experiments
4.1. Robotic Hand
- (a)
- Using the bottoms of the grippers, the robotic hand pressed the fabric,
- (b)
- The hand wrinkled the fabric by moving the two grippers horizontally,
- (c)
- The hand moved up,
- (d)
- The system finished the sequence.
4.2. Investigation of Buckling
4.3. Fabric Pinching by a Single-Armed Robotic Hand
- (a)
- The system visually detects a candidate area for pinching,
- (b)
- Using its fingertips, the robotic hand presses the fabric,
- (c)
- The hand wrinkles the fabric by shutting two grippers horizontally,
- (d)
- The hand opens the grippers,
- (e)
- The hand moves up,
- (f)
- The hand inserts grippers under the fabric,
- (g)
- The hand shuts the grippers vertically to pinch the fabric,
- (h)
- The system finishes the sequence.
5. Discussion
5.1. Minimum Entire Length of a Manipulated Fabric
5.2. Applicability to Other Thin Deformable Objects
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Taylor, P.M. Sensory Robotics for the Handling of Limp Materials; Springer: Berlin, Germany, 1990. [Google Scholar]
- Parker, J.K.; Dubey, R.; Paul, F.W.; Becker, R.J. Robotic Fabric Handling for Automation Garment Manufacturing. J. Eng. Ind. 1983, 105, 21–26. [Google Scholar] [CrossRef]
- Torgerson, E.; Paul, F.W. Vision Guided Robotic Fabric Manipulation for Apparel Manufacturing. In Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March–3 April 1987.
- Ono, E.; Kita, N.; Sakane, S. Strategy for unfolding a fabric piece by cooperative sensing of touch and vision. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, 5–9 August 1995.
- Ono, E.; Takase, K. On Better Pushing for Picking a Piece of Fabric from Layers. In Proceedings of the IEEE/RSJ International Conference on Robotics and Biomimetics, Sanya, China, 15–18 December 2007.
- Kabaya, T.; Kakikura, M. Service Robot for Housekeeping Clothing Handling. J. Robot. Mechatron. 1998, 10, 252–257. [Google Scholar]
- Hamajima, K.; Kakikura, M. Planning Strategy for Task Untangling Laundry Isolating Clothes from a Washed Mass. J. Robot. Mechatron. 1998, 10, 244–251. [Google Scholar]
- Fahantidis, N.; Doulgeri, Z. A Gripper for Grasping Non-Rigid Material Pieces out of a Bundle. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, 30 October–5 November 2000.
- Hirai, S.; Wada, T. Indirect Simultaneous Positioning of Deformable Objects with Multi Pinching Fingers Based on Uncertain Model. Robotica 2000, 18, 3–11. [Google Scholar] [CrossRef]
- Kita, Y.; Saito, F.; Kita, N. A deformable model driven visual method for handling clothes. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004.
- Yamazaki, K. A Method of Grasp Point Selection from an Item of Clothing Using Hem Element Relations. Adv. Robot. 2014, 29, 13–24. [Google Scholar] [CrossRef]
- Tamei, T.; Matsubara, T.; Rai, A.; Shibata, T. Reinforcement Learning of Clothing Assistance with a Dual-Arm Robot. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 26–28 October 2011.
- Miller, S.; Berg, J.; Fritz, M.; Darrell, T.; Goldberg, K.; Abbeel, P. A Geometric Approach to Robotic Laundry Folding. Int. J. Robot. Res. 2012, 31, 249–267. [Google Scholar] [CrossRef]
- Maitin-Shepard, J.; Cusumano-Towner, M.; Lei, J.; Abbeel, P. Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010.
- Le, T.; Jilich, M.; Landini, A.; Zoppi, M.; Zlatanov, D.; Molfino, R. On the Development of a Specialized Flexible Gripper for Garment Handling. J. Autom. Control Eng. 2013, 1, 255–259. [Google Scholar] [CrossRef]
- Denei, S.; Maiolino, P.; Baglini, E.; Cannata, G. On the development of a tactile sensor for fabric manipulation and classification for industrial applications. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015.
- Paraschidis, K.; Fahantidis, N.; Vassiliadis, V.; Petridis, V.; Doulgeri, Z.; Petrou, L.; Hasapis, G. A Robotic System for Handling Textile Materials. In Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995.
- Shibata, M.; Hirai, S. Soft Object Manipulation by Simultaneous Control of Motion and Deformation. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006.
- Shibata, M.; Ota, T.; Hirai, S. Wiping Motion for Deformable Object Handling. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009.
- Shibata, M.; Ota, T.; Endo, Y.; Hirai, S. Handling of Hemmed Fabrics by a Single-Armed Robot. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Washington, DC, USA, 23–26 August 2008.
- Maeda, Y.; Kijimoto, H.; Aiyama, Y.; Arai, T. Planning of graspless manipulation by multiple robot fingers. In Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea, 21–26 May 2001.
- Lynch, K.; Mason, M. Stable Pusing: Mechanics, Controllability, and Planning. Int. J. Robot. Res. 1996, 17, 485–503. [Google Scholar]
- Terasaki, O.; Hasegawa, T. Intelligent manipulation of sliding operations with parallel two-fingered grippers. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 26–30 July 1993.
- Taylor, P.M.; Pollet, D.M.; Abbott, P.J.W. The Influence of Environmental Conditions on Automated Fabric Handling. J. Robot. Mechatron. 1998, 10, 258–263. [Google Scholar]
- Nishimura, K.; Nakagawa, M.; Kawasaki, H. Mechanism and Control of a Page-Turning Robot. ASME Robot. Manuf. Autom. 1985, PED-15, 269–276. [Google Scholar]
- Dourmashkin, P. Classical Mechanics MIT 8.01 Course Notes; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kawabata, S.; Niwa, M. Fabric Performance in Clothing Manufacture. J. Text. Inst. 1989, 80, 19–50. [Google Scholar] [CrossRef]
- Harwood, R.J.; Weedall, P.J.; Carr, C. The use of the Kawabata Evaluation System for product development and quality control. J. Soc. Dyers Colour. 1990, 106, 64–68. [Google Scholar] [CrossRef]
- Eberhardt, B.; Weber, A.; Strasser, W. A Fast, Flexible, Particle-System Model for Cloth Draping. IEEE Comput. Graph. Appl. 1996, 16, 52–59. [Google Scholar] [CrossRef]
- Eischen, J.W.; Deng, S.; Clapp, T.G. Finite-Element Modeling and Control of Flexible Fabric Parts. IEEE Comput. Graph. Appl. 1996, 16, 71–80. [Google Scholar] [CrossRef]
Weight/Unit area ρ [g/cm] | 0.010 |
Friction coefficient | 2.07 |
Friction coefficient | 1.07 |
Friction coefficient * | 0.22 |
Bending rigidity [gf·cm/cm] * | 0.043 |
[cm] | ||||
---|---|---|---|---|
L [cm] | l [cm] | 10 | 15 | 20 |
6.0 | 3.0 | 0 | 80 | 100 |
6.0 | 4.0 | 0 | 0 | 100 |
6.0 | 5.0 | 0 | 0 | 100 |
Cotton A | Cotton B | Polyester | |
---|---|---|---|
Weight / Unit area ρ [g/cm] | 2.11 × 10−2 | 1.44 × 10−2 | 1.00 × 10−2 |
Friction coefficient | 1.23 | 1.42 | 0.55 |
Bending rigidity [gf·cm/cm] * | 5.67 × 10−2 | 6.75 × 10−2 | 3.96 × 10−2 |
Estimated entire length [cm] for 6 [cm] | 10.8 | 13.2 | 21.8 |
[cm] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L [cm] | l [cm] | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | |
Cotton A | 6.0 | 4.0 | 0 | 100 | 100 | 100 | 100 | 100 | — | — | — | — | — |
Cotton B | 6.0 | 4.0 | 0 | 20 | 100 | 100 | 100 | 100 | — | — | — | — | — |
Polyester | 6.0 | 4.0 | — | — | 0 | 30 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Cotton | Paper | Film | |
---|---|---|---|
Weight / Unit area ρ [g/cm] | 2.11 × 10 | 6.91 × 10 | 7.79 × 10 |
Friction coefficient * | 0.19 | 0.17 | 0.15 |
Bending rigidity [gf·cm/cm] * | 1.73 × 10 | 1.72 | 3.14 × 10 |
Minimum entire length [cm] | 28.7 | 91.8 | 52.9 |
Length of pinching area [cm] | 19.1 | 61.2 | 35.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibata, M.; Hirai, S. A Pinching Strategy for Fabrics Using Wiping Deformation. Robotics 2016, 5, 10. https://doi.org/10.3390/robotics5020010
Shibata M, Hirai S. A Pinching Strategy for Fabrics Using Wiping Deformation. Robotics. 2016; 5(2):10. https://doi.org/10.3390/robotics5020010
Chicago/Turabian StyleShibata, Mizuho, and Shinichi Hirai. 2016. "A Pinching Strategy for Fabrics Using Wiping Deformation" Robotics 5, no. 2: 10. https://doi.org/10.3390/robotics5020010
APA StyleShibata, M., & Hirai, S. (2016). A Pinching Strategy for Fabrics Using Wiping Deformation. Robotics, 5(2), 10. https://doi.org/10.3390/robotics5020010