Prescribed Time Interception of Moving Objects’ Trajectories Using Robot Manipulators
Abstract
:1. Introduction
1.1. Related Work
1.2. Contributions, Outline and Notations
- A prescribed time interception algorithm that ensures accurate interception of the trajectories of moving objects.
- A time base generator (TBG) design that permits the control of the path followed by the robot for the interception.
- A second-order sliding mode control that forces the closed-loop trajectories to stay in the sliding surface manifold in the prescribed time given by the TBG.
2. Methodology
2.1. Robot Dynamic Preliminaries
2.2. Time Base Generator (TBG)
2.3. Sliding Mode Control (SMC) Design
2.4. Stability Analysis
3. Results
3.1. RV-M1 Robot
3.2. Curve Trajectory
3.2.1.
3.2.2.
3.2.3.
3.2.4. = 1.2 s
3.2.5. s
3.3. Multiple Interception in Robotic Assembly Tasks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | Computer-Aided Design |
CHOMP | Covariant Hamiltonian optimization for motion planning |
DDPG | Deep Deterministic Policy Gradient |
DOF | Degree of Freedom |
RL | Reinforcement Learning |
SAC | Soft Actor Critic |
SMC | Sliding Mode Control |
STOMP | Stochastic trajectory optimization for motion planning |
TBG | Time Base Generator |
References
- Lobbezoo, A.; Qian, Y.; Kwon, H.J. Reinforcement learning for pick and place operations in robotics: A survey. Robotics 2021, 10, 105. [Google Scholar] [CrossRef]
- Wang, L.; Hu, J.; Xu, Z.; Zhao, C. Autonomous maneuver strategy of swarm air combat based on DDPG. Auton. Intell. Syst. 2021, 1, 15. [Google Scholar] [CrossRef]
- Meng, X.; Sun, B.; Zhu, D. Harbour protection: Moving invasion target interception for multi-AUV based on prediction planning interception method. Ocean. Eng. 2021, 219, 108268. [Google Scholar] [CrossRef]
- Flores-Campos, J.A.; Perrusquía, A.; Hernández-Gómez, L.H.; González, N.; Armenta-Molina, A. Constant speed control of slider-crank mechanisms: A joint-task space hybrid control approach. IEEE Access 2021, 9, 65676–65687. [Google Scholar] [CrossRef]
- Guo, W.; Wei, Z.; Gonzalez, O.; Perrusquía, A.; Tsourdos, A. Control layer security: A new security paradigm for cooperative autonomous systems. IEEE Veh. Technol. Mag. 2023, 99, 2–11. [Google Scholar] [CrossRef]
- Ye, H.; Song, Y. Prescribed-time control for linear systems in canonical form via nonlinear feedback. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 1126–1135. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Z.; Michiels, W. Functional and dual observer based prescribed-time control of linear systems by periodic delayed feedback. Automatica 2024, 159, 111406. [Google Scholar] [CrossRef]
- Friedman, A.; Friedman, A. Dynamic Inversion and Control of Nonlinear Systems. In Mathematics in Industrial Problems; Springer: New York, NY, USA, 1988; pp. 114–120. [Google Scholar]
- Hou, Z.S.; Wang, Z. From model-based control to data-driven control: Survey, classification and perspective. Inf. Sci. 2013, 235, 3–35. [Google Scholar] [CrossRef]
- Moreira, M.; Papp, E.; Ventura, R. Interception of non-cooperative UAVs. In Proceedings of the 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Wurzburg, Germany, 2–4 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 120–125. [Google Scholar]
- Wenjie, Z.; Shengnan, F.; Wei, L.; Qunli, X. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception. J. Syst. Eng. Electron. 2020, 31, 168–184. [Google Scholar]
- Li, Y.; Yan, L.; Zhao, J.g.; Liu, F.; Wang, T. Combined proportional navigation law for interception of high-speed targets. Def. Technol. 2014, 10, 298–303. [Google Scholar] [CrossRef]
- Sinha, A.; Kumar, S.R.; Mukherjee, D. Cooperative integrated guidance and control design for simultaneous interception. Aerosp. Sci. Technol. 2022, 120, 107262. [Google Scholar] [CrossRef]
- Tsuji, T.; Tanaka, Y.; Morasso, P.G.; Sanguineti, V.; Kaneko, M. Bio-mimetic trajectory generation of robots via artificial potential field with time base generator. IEEE Trans. Syst. Man, Cybern. Part (Appl. Rev.) 2002, 32, 426–439. [Google Scholar] [CrossRef]
- Duhé, J.F.; Victor, S.; Melchior, P. Contributions on artificial potential field method for effective obstacle avoidance. Fract. Calc. Appl. Anal. 2021, 24, 421–446. [Google Scholar] [CrossRef]
- Ratliff, N.; Zucker, M.; Bagnell, J.A.; Srinivasa, S. CHOMP: Gradient optimization techniques for efficient motion planning. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 489–494. [Google Scholar]
- Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning. In Proceedings of the 2011 IEEE iNternational Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 4569–4574. [Google Scholar]
- Kumar, S.R.; Mukherjee, D. Terminal time-constrained nonlinear interception strategies against maneuvering targets. J. Guid. Control. Dyn. 2021, 44, 200–209. [Google Scholar] [CrossRef]
- Zhaoying, L.; Ruoling, S.; Zhao, Z. A new path planning method based on sparse A* algorithm with map segmentation. Trans. Inst. Meas. Control. 2022, 44, 916–925. [Google Scholar] [CrossRef]
- Li, Z.; Li, H. Study of the interception scheme based on A* path finding algorithm in computer game. J. Comput. Commun. 2020, 8, 32–49. [Google Scholar] [CrossRef]
- Khachiyan, L.; Gurvich, V.; Zhao, J. Extending dijkstra’s algorithm to maximize the shortest path by node-wise limited arc interdiction. In Proceedings of the Computer Science–Theory and Applications: First International Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, 8–12 June 2006; Proceedings 1. Springer: Berlin/Heidelberg, Germany, 2006; pp. 221–234. [Google Scholar]
- Luo, M.; Hou, X.; Yang, J. Surface optimal path planning using an extended Dijkstra algorithm. IEEE Access 2020, 8, 147827–147838. [Google Scholar] [CrossRef]
- Candra, A.; Budiman, M.A.; Hartanto, K. Dijkstra’s and a-star in finding the shortest path: A tutorial. In Proceedings of the 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), Medan, Indonesia, 16–17 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 28–32. [Google Scholar]
- Bian, T.; Xing, Y.; Zolotas, A. End-to-End One-Shot Path-Planning Algorithm for an Autonomous Vehicle Based on a Convolutional Neural Network Considering Traversability Cost. Sensors 2022, 22, 9682. [Google Scholar] [CrossRef]
- Kulvicius, T.; Herzog, S.; Lüddecke, T.; Tamosiunaite, M.; Wörgötter, F. One-shot multi-path planning for robotic applications using fully convolutional networks. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1460–1466. [Google Scholar]
- Ha, J.S.; Park, Y.J.; Chae, H.J.; Park, S.S.; Choi, H.L. Adaptive path-integral autoencoders: Representation learning and planning for dynamical systems. Adv. Neural Inf. Process. Syst. 2018, 31, 124008. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Cao, Z.; Wang, S.; Liang, J.; Zhang, F.; Tang, J. An optimized path planning method for coastal ships based on improved DDPG and DP. J. Adv. Transp. 2021, 2021, 7765130. [Google Scholar] [CrossRef]
- Nasonov, I.; Galyaev, A.; Medvedev, A. Neural Network Algorithm for Intercepting Targets moving along known trajectories by a Dubins’ car. arXiv 2023, arXiv:230406169v1. [Google Scholar]
- Azar, A.T.; Serrano, F.E. Stabilization of port Hamiltonian chaotic systems with hidden attractors by adaptive terminal sliding mode control. Entropy 2020, 22, 122. [Google Scholar] [CrossRef] [PubMed]
- Domínguez Ramírez, O.A.; Parra Vega, V.; Díaz Montiel, M.G.; Pozas Cárdenas, M.J.; Hernández Gómez, R.A. Cartesian Sliding PD Control of Robot Manipulator for Tracking in Finite Time: Theory and Experiments; DAAAM International: Viena, Austria, 2008; pp. 257–272. [Google Scholar]
- de Wit, C.C.; Siciliano, B.; Bastin, G. Theory of robot control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Perrusquía, A.; Flores-Campos, J.A.; Torres-San-Miguel, C.R. A novel tuning method of PD with gravity compensation controller for robot manipulators. IEEE Access 2020, 8, 114773–114783. [Google Scholar] [CrossRef]
- Spong, M.W.; Thorp, J.S.; Kleinwaks, J.M. Robust microprocessor control of robot manipulators. Automatica 1987, 23, 373–379. [Google Scholar] [CrossRef]
- Abdallah, C.; Dawson, D.M.; Dorato, P.; Jamshidi, M. Survey of robust control for rigid robots. IEEE Control. Syst. Mag. 1991, 11, 24–30. [Google Scholar]
- Kumar, R.; Kalra, P.; Prakash, N.R. A virtual RV-M1 robot system. Robot.-Comput.-Integr. Manuf. 2011, 27, 994–1000. [Google Scholar] [CrossRef]
Conveyor 1 | Conveyor 2 | Conveyor 3 |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Campos, J.A.; Torres-San-Miguel, C.R.; Paredes-Rojas, J.C.; Perrusquía, A. Prescribed Time Interception of Moving Objects’ Trajectories Using Robot Manipulators. Robotics 2024, 13, 145. https://doi.org/10.3390/robotics13100145
Flores-Campos JA, Torres-San-Miguel CR, Paredes-Rojas JC, Perrusquía A. Prescribed Time Interception of Moving Objects’ Trajectories Using Robot Manipulators. Robotics. 2024; 13(10):145. https://doi.org/10.3390/robotics13100145
Chicago/Turabian StyleFlores-Campos, Juan Alejandro, Christopher René Torres-San-Miguel, Juan Carlos Paredes-Rojas, and Adolfo Perrusquía. 2024. "Prescribed Time Interception of Moving Objects’ Trajectories Using Robot Manipulators" Robotics 13, no. 10: 145. https://doi.org/10.3390/robotics13100145
APA StyleFlores-Campos, J. A., Torres-San-Miguel, C. R., Paredes-Rojas, J. C., & Perrusquía, A. (2024). Prescribed Time Interception of Moving Objects’ Trajectories Using Robot Manipulators. Robotics, 13(10), 145. https://doi.org/10.3390/robotics13100145