A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics †
Abstract
:1. Introduction
2. Mapping and Exploration
2.1. Mapping of an Unknown Environment
2.2. Exploration and Navigation
2.3. Need for a Multistage Approach
3. Autonomous Robotic Data Collection
3.1. Step 1: Globally Accurate Coarse Mapping
3.2. Step 2: Offline 3D Path Planning for Complete Surface Coverage
3.3. Step 3: Online Path Optimization for Targeted Metrics
4. Numerical/Experimental Validation
4.1. Planning Performance of Step 2
4.2. Local Metric Evaluation of Structure from Step 3
4.3. Autonomous Map Creation of a Practical Environment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Step 2 Data for a Practical Office Environment
Appendix A.1. Globally Accurate Coarse Map
Appendix A.2. Parameters and Calculated Values
Parameter | Value |
---|---|
(mm) | 1 |
(pixel/mm) | 1 |
Coarse map SLAM package | RTAB-Map [42] |
3D LiDAR | Ouster OS1-16 |
Depth camera | Intel L515 |
H (deg) | 70 |
V (deg) | 43 |
(%) | 0.155 |
m by n (pixels) | 1080 × 1920 |
, | 1, 1 |
Parameter | Value |
---|---|
(m) | 1.46 |
(m) | −1.68 |
(m) | 1.44 |
, (m) | −0.222, −0.0253 |
(m) | 0.814 |
(layers) | 4 |
(m) | −1.29, −0.514, 0.266, 1.04 |
Appendix A.3. Occupancy Grid Maps (OGMs)
Appendix A.4. Unoccupancy Distance Maps (UDMs)
Appendix A.5. Pixels Selected for Path Planning
Appendix A.6. Connected Paths for Each Layer
Appendix B. Results from Other Practical Environments
Appendix B.1. Machine Room
Appendix B.2. Robotics Laboratory
Appendix B.3. Nuclear Reactor Silo
References
- Santagati, C.; Lo Turco, M. From structure from motion to historical building information modeling: Populating a semantic-aware library of architectural elements. J. Electron. Imaging 2017, 26, 011007. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, M.; Lin, Y.; Huang, X.; Huang, K.; He, Y.; Li, L. Vision-Based Three-Dimensional Reconstruction and Monitoring of Large-Scale Steel Tubular Structures. Adv. Civ. Eng. 2020, 2020, 1236021. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.; Li, W.; Jiang, B.; Xiao, J. Semantic Metric 3D Reconstruction for Concrete Inspection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1624–16248. [Google Scholar] [CrossRef]
- Prewett, M.S.; Johnson, R.C.; Saboe, K.N.; Elliott, L.R.; Coovert, M.D. Managing workload in human–robot interaction: A review of empirical studies. Comput. Hum. Behav. 2010, 26, 840–856. [Google Scholar] [CrossRef]
- Chen, Y.J.; Lai, Y.S.; Lin, Y.H. BIM-based augmented reality inspection and maintenance of fire safety equipment. Autom. Constr. 2020, 110, 103041. [Google Scholar] [CrossRef]
- Tan, Y.; Li, S.; Wang, Q. Automated Geometric Quality Inspection of Prefabricated Housing Units Using BIM and LiDAR. Remote Sens. 2020, 12, 2492. [Google Scholar] [CrossRef]
- Suyatinov, S.I. Conceptual Approach to Building a Digital Twin of the Production System. In Cyber-Physical Systems: Advances in Design & Modelling; Studies in Systems, Decision and Control; Kravets, A.G., Bolshakov, A.A., Shcherbakov, M.V., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 279–290. [Google Scholar] [CrossRef]
- Asadi, K.; Haritsa, V.R.; Han, K.; Ore, J.P. Automated Object Manipulation Using Vision-Based Mobile Robotic System for Construction Applications. J. Comput. Civ. Eng. 2021, 35, 04020058. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, P.; Zhao, S. Robust Localization of Occluded Targets in Aerial Manipulation Via Range-Only Mapping. IEEE Robot. Autom. Lett. 2022, 7, 2921–2928. [Google Scholar] [CrossRef]
- Smith, W.; Qin, Y.; Furukawa, T.; Dissanayake, G. Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy. In Proceedings of the 2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Sevilla, Spain, 8–10 November 2022; pp. 130–137. [Google Scholar] [CrossRef]
- Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2, 31–43. [Google Scholar] [CrossRef]
- Konolige, K.; Grisetti, G.; Kümmerle, R.; Burgard, W.; Limketkai, B.; Vincent, R. Efficient Sparse Pose Adjustment for 2D mapping. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 22–29. [Google Scholar] [CrossRef] [Green Version]
- Servières, M.; Renaudin, V.; Dupuis, A.; Antigny, N. Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking. J. Sens. 2021, 2021, 2054828. [Google Scholar] [CrossRef]
- Dissanayake, M.; Newman, P.; Clark, S.; Durrant-Whyte, H.; Csorba, M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 2001, 17, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, J.A.; Neira, J.; Tardós, J.D. Limits to the consistency of EKF-based SLAM. IFAC Proc. Vol. 2004, 37, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136. [Google Scholar] [CrossRef] [Green Version]
- Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense SLAM and light source estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [Google Scholar] [CrossRef] [Green Version]
- Yoder, L.; Scherer, S. Autonomous Exploration for Infrastructure Modeling with a Micro Aerial Vehicle. In Field and Service Robotics: Results of the 10th International Conference; Springer Tracts in Advanced Robotics; Wettergreen, D.S., Barfoot, T.D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 427–440. [Google Scholar] [CrossRef]
- Song, S.; Jo, S. Online inspection path planning for autonomous 3D modeling using a micro-aerial vehicle. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6217–6224. [Google Scholar] [CrossRef]
- Song, S.; Jo, S. Surface-Based Exploration for Autonomous 3D Modeling. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 4319–4326. [Google Scholar] [CrossRef]
- Wang, Y.; James, S.; Stathopoulou, E.K.; Beltran-Gonzalez, C.; Konishi, Y.; Del Bue, A. Autonomous 3-D Reconstruction, Mapping, and Exploration of Indoor Environments With a Robotic Arm. IEEE Robot. Autom. Lett. 2019, 4, 3340–3347. [Google Scholar] [CrossRef]
- Wang, Y.; Del Bue, A. Where to Explore Next? ExHistCNN for History-Aware Autonomous 3D Exploration. In Computer Vision—ECCV 2020; Lecture Notes in Computer Science; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 125–140. [Google Scholar] [CrossRef]
- Lauri, M.; Pajarinen, J.; Peters, J.; Frintrop, S. Multi-Sensor Next-Best-View Planning as Matroid-Constrained Submodular Maximization. IEEE Robot. Autom. Lett. 2020, 5, 5323–5330. [Google Scholar] [CrossRef]
- Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1979, 203, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Häming, K.; Peters, G. The structure-from-motion reconstruction pipeline—A survey with focus on short image sequences. Kybernetika 2010, 46, 926–937. [Google Scholar]
- Nurutdinova, I.; Fitzgibbon, A. Towards Pointless Structure from Motion: 3D Reconstruction and Camera Parameters from General 3D Curves. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2363–2371. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Liu, S.; Efros, A.A.; Wang, X. Video Autoencoder: Self-supervised disentanglement of static 3D structure and motion. arXiv 2021, arXiv:2110.02951. [Google Scholar] [CrossRef]
- Yu, A.; Li, R.; Tancik, M.; Li, H.; Ng, R.; Kanazawa, A. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 5752–5761. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. arXiv 2020, arXiv:2003.08934. [Google Scholar] [CrossRef]
- Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Las Vegas, NV, USA, 2016; pp. 4104–4113. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Xie, W.; Chen, M.; Prisacariu, V.A. NeRF–: Neural Radiance Fields Without Known Camera Parameters. arXiv 2021, arXiv:2102.07064. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, A.; Luo, H.; Wu, M.; Su, H.; Xu, L.; He, X.; Yu, J. GNeRF: GAN-based Neural Radiance Field without Posed Camera. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 6331–6341. [Google Scholar] [CrossRef]
- Besl, P.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 698–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, R.; Vidal, H.; Vieira, P.; Ribeiro, M. Complete coverage path planning and guidance for cleaning robots. In Proceedings of the ISIE ’97 IEEE International Symposium on Industrial Electronics, Guimaraes, Portugal, 7–11 July 1997; Volume 2, pp. 677–682. [Google Scholar] [CrossRef]
- Bircher, A.; Kamel, M.; Alexis, K.; Oleynikova, H.; Siegwart, R. Receding horizon path planning for 3D exploration and surface inspection. Auton. Robot. 2018, 42, 291–306. [Google Scholar] [CrossRef]
- Tan, Y.; Li, S.; Liu, H.; Chen, P.; Zhou, Z. Automatic inspection data collection of building surface based on BIM and UAV. Autom. Constr. 2021, 131, 103881. [Google Scholar] [CrossRef]
- Logothetis, S.; Delinasiou, A.; Stylianidis, E. Building Information Modelling for Cultural Heritage: A review. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II5, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ’Towards New Computational Principles for Robotics and Automation’, Monterey, CA, USA, 10–11 July 1997; pp. 146–151. [Google Scholar] [CrossRef] [Green Version]
- Visser, A.; Xingrui-Ji; van Ittersum, M.; González Jaime, L.A.; Stancu, L.A. Beyond Frontier Exploration. In RoboCup 2007: Robot Soccer World Cup XI; Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 113–123. [Google Scholar]
- Labbé, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar] [CrossRef]
- Choset, H.; Pignon, P. Coverage Path Planning: The Boustrophedon Cellular Decomposition. In Field and Service Robotics; Zelinsky, A., Ed.; Springer: London, UK, 1998; pp. 203–209. [Google Scholar]
- Velednitsky, M. Short combinatorial proof that the DFJ polytope is contained in the MTZ polytope for the Asymmetric Traveling Salesman Problem. Oper. Res. Lett. 2017, 45, 323–324. [Google Scholar] [CrossRef] [Green Version]
- Woeginger, G.J. Exact Algorithms for NP-Hard Problems: A Survey. In Combinatorial Optimization—Eureka, You Shrink!: Papers Dedicated to Jack Edmonds 5th International Workshop Aussois, France, March 5–9, 2001 Revised Papers; Jünger, M., Reinelt, G., Rinaldi, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 185–207. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.S.; McGeoch, L.A. The Traveling Salesman Problem: A Case Study in Local Optimization. Local Search Comb. Optim. 1997, 1, 215–310. [Google Scholar]
- LaValle, S.M. Planning Algorithms, 1st ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef] [Green Version]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Dissanayake, M.W.M.G.; Goh, C.J.; Phan-Thien, N. Time-optimal Trajectories for Robot Manipulators. Robotica 1991, 9, 131–138. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Map resolution (m/grid) | 0.2 |
Map size (square, m) | 6, 8, 10, 12, 14 |
Object type | Square, circle, triangle |
Object size (m) | 0.5, 1, 1.5, 2, 2.5 |
Number of synthetic maps | 200 |
TSP solver | Greedy-based |
Linking of unconnected points | D-star motion planning |
Distance to objects (m) | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, W.; Qin, Y.; Singh, S.; Burke, H.; Furukawa, T.; Dissanayake, G. A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics. Robotics 2023, 12, 39. https://doi.org/10.3390/robotics12020039
Smith W, Qin Y, Singh S, Burke H, Furukawa T, Dissanayake G. A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics. Robotics. 2023; 12(2):39. https://doi.org/10.3390/robotics12020039
Chicago/Turabian StyleSmith, William, Yongming Qin, Siddharth Singh, Hudson Burke, Tomonari Furukawa, and Gamini Dissanayake. 2023. "A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics" Robotics 12, no. 2: 39. https://doi.org/10.3390/robotics12020039
APA StyleSmith, W., Qin, Y., Singh, S., Burke, H., Furukawa, T., & Dissanayake, G. (2023). A Multistage Framework for Autonomous Robotic Mapping with Targeted Metrics. Robotics, 12(2), 39. https://doi.org/10.3390/robotics12020039