An Introduction to Patterns for the Internet of Robotic Things in the Ambient Assisted Living Scenario
Abstract
:1. Introduction
2. Related Work
3. A Pattern for Obstacle Avoidance
3.1. Related Work
3.2. Pattern Definition
- The possibility to consider any type of obstacle (both static and dynamic obstacles).
- The definition of a proper control strategy.
- The adoption of suitable sensors.
- The guidance of the mobile robot in such a way to keep it safely away from known or sudden obstacles.
- The avoidance of potentially destructive impacts.
- Extended time of exploration of the environment.
- Sensors’ and actuators’ integration on the platform.
- Increased weight and, possibly, size of the platform.
- Potential presence of blind spots, depending on the adopted solution.
4. A Pattern for Indoor Localization
4.1. Related Work
- AoA (Angle of Arrival): This technique, through the measurement of the angle of arrival of a signal sent from the user to a BS (Base Station), is able to define a portion of the area in which the user is located. The error in the position estimation is strongly affected by errors in the estimation of the arrival angle;
- RSS (Received Signal Strength): This approach mainly uses two classes of methods. Trilateration methods work by evaluating at least three distances between the user and base station; then, the user’s position is calculated through classical trigonometric techniques. Fingerprinting methods, on the other hand, are based on the definition of a database of “fingerprints” of the signal as the position of the receiving nodes changes in the space. Distance estimation is carried out by checking the intensity of the received signal (on-line phase) with the previously defined database (off-line phase);
- ToA (Time of Arrival): This approach measures the time taken by the signal to propagate from the user to the receiving node. In this case as well, with the measurements coming from at least three different receiving nodes, it is possible to localize the user through trilateration algorithms.
4.2. Pattern Definition
- The possibility to intervene in the environment, e.g., place tags, lights, beacons, and base stations (in case they are not already present).
- Setup time and costs: localization could be necessary for temporary events or to monitor a single person, as may happen in AAL scenarios.
- Required accuracy level.
- Monitor the position of objects and people.
- Enable services based on position (LBS).
- Find people in cases of emergency.
- Help people move inside buildings, airports, and malls.
- Need to calibrate the system over time.
- Effort to map/set up an environment (e.g., to build a database of “fingerprints” or to place beacons and tags).
5. A Pattern for Inertial Monitoring
5.1. Related Work
5.2. Pattern Definition
- The definition of a suitable classification strategy.
- The definition of the required inertial sensor type and quantity for the task accomplishment.
- The available computing power.
- Readily activate proper control actions according to the inertial event.
- Enhanced comprehension of your system/device.
- The development of the classification methodologies.
- For custom applications, the need to develop custom devices.
- Feature selection is usually application dependent.
6. Case Study
- localize itself through a multi-sensor system, combining trilateration data acquired by a network of ultrasound sensors and odometry data acquired by an inertial measurement unit [81];
- avoid obstacles by means of time of flight laser sensors, a map of known obstacles, and actuators in the brakes of the rear wheels [50].
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kellmereit, D.; Obodovski, D. The Silent Intelligence: The Internet of Things; DnD Ventures: Grove City, MN, USA, 2013. [Google Scholar]
- Ashton, K. That ‘Internet of Things’ thing. RFID J. 2009, 22, 97–114. [Google Scholar]
- Alexander, C. A Pattern Language: Towns, Buildings, Construction; Oxford University Press: Oxford, UK, 1977. [Google Scholar]
- Snowden, D. Narrative patterns: Uses of story in the third age of knowledge management. J. Inf. Knowl. Manag. 2002, 1, 1–6. [Google Scholar] [CrossRef]
- Rolland, P.Y.; Ganascia, J.G. Musical Pattern Extraction and Similarity Assessment. In Readings in Music and Artificial Intelligence; Routledge: London, UK, 2013; pp. 125–154. [Google Scholar]
- Kinateder, M.; Warren, W.H. Social Influence on Evacuation Behavior in Real and Virtual Environments. Front. Robot. AI 2016, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Pitonakova, L.; Crowder, R.; Bullock, S. Information Exchange Design Patterns for Robot Swarm Foraging and Their Application in Robot Control Algorithms. Front. Robot. AI 2018, 5, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1995. [Google Scholar]
- Reinfurt, L.; Breitenbücher, U.; Falkenthal, M.; Leymann, F.; Riegg, A. Internet of Things Patterns. In Proceedings of the 21st European Conference on Pattern Languages of Programs (EuroPLoP), Kaufbeuren, Germany, 6–10 July 2016; ACM: New York, NY, USA, 2016; p. 5. [Google Scholar] [CrossRef]
- Kara, D.; Carlaw, S. The Internet of Robotic Things; Technical Report; ABI Research: New York, NY, USA, 2014. [Google Scholar]
- Ray, P.P. Internet of Robotic Things: Concept, technologies, and challenges. IEEE Access 2016, 4, 9489–9500. [Google Scholar] [CrossRef]
- Vermesan, O.; Bahr, R.; Ottella, M.; Serrano, M.; Karlsen, T.; Wahlstrøm, T.; Sand, H.E.; Ashwathnarayan, M.; Gamba, M.T. Internet of Robotic Things Intelligent Connectivity and Platforms. Front. Robot. AI 2020, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Plauska, I.; Damaševičius, R. Educational Robots for Internet-of-Things Supported Collaborative Learning. In Information and Software Technologies; Dregvaite, G., Damasevicius, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 346–358. [Google Scholar]
- Romeo, L.; Petitti, A.; Marani, R.; Milella, A. Internet of Robotic Things in Smart Domains: Applications and Challenges. Sensors 2020, 20, 3355. [Google Scholar] [CrossRef]
- Gomez, M.A.; Chibani, A.; Amirat, Y.; Matson, E.T. IoRT cloud survivability framework for robotic AALs using HARMS. Robot. Auton. Syst. 2018, 106, 192–206. [Google Scholar] [CrossRef]
- Maskeliūnas, R.; Damaševičius, R.; Segal, S. A review of internet of things technologies for ambient assisted living environments. Future Internet 2019, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Abtoy, A.; Touhafi, A.; Tahiri, A. Ambient Assisted living system’s models and architectures: A survey of the state of the art. J. King Saud-Univ.-Comput. Inf. Sci. 2020, 32, 1–10. [Google Scholar]
- Marques, G. Ambient Assisted Living and Internet of Things. In Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities; IGI Global: Hershey, PA, USA, 2019; pp. 100–115. [Google Scholar] [CrossRef] [Green Version]
- Dohr, A.; Modre-Opsrian, R.; Drobics, M.; Hayn, D.; Schreier, G. The Internet of Things for Ambient Assisted Living. In Proceedings of the 2010 Seventh International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 12–14 April 2010; pp. 804–809. [Google Scholar] [CrossRef]
- Qanbari, S.; Pezeshki, S.; Raisi, R.; Mahdizadeh, S.; Rahimzadeh, R.; Behinaein, N.; Mahmoudi, F.; Ayoubzadeh, S.; Fazlali, P.; Roshani, K.; et al. IoT Design Patterns: Computational Constructs to Design, Build and Engineer Edge Applications. In Proceedings of the 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), Berlin, Germany, 4–8 April 2016; pp. 277–282. [Google Scholar] [CrossRef]
- Tkaczyk, R.; Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Pawlowski, W.; Szmeja, P.; Fortino, G. Cataloging design patterns for Internet of Things artifact integration. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Washizaki, H.; Ogata, S.; Hazeyama, A.; Okubo, T.; Fernandez, E.B.; Yoshioka, N. Landscape of Architecture and Design Patterns for IoT Systems. IEEE Internet Things J. 2020, 7, 10091–10101. [Google Scholar] [CrossRef]
- Bloom, G.; Alsulami, B.; Nwafor, E.; Bertolotti, I.C. Design patterns for the Industrial Internet of Things. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018; pp. 1–10. [Google Scholar]
- Ghosh, A.; Edwards, D.J.; Hosseini, M.R. Patterns and trends in Internet of Things (IoT) research: Future applications in the construction industry. Eng. Constr. Archit. Manag. 2020, 28, 457–481. [Google Scholar] [CrossRef]
- Virk, G.S.; Park, H.S.; Yang, S.; Wang, J. ISO modularity for service robots. In Advances in Cooperative Robotics; World Scientific: Singapore, 2017; pp. 663–671. [Google Scholar]
- Damasevicius, R.; Majauskas, G.; Stuikys, V. Application of design patterns for hardware design. In Proceedings of the Design Automation Conference (IEEE Cat. No.03CH37451), Anaheim, CA, USA, 2–6 June 2003; pp. 48–53. [Google Scholar] [CrossRef]
- Malcher, V. Design Patterns in Cloud Computing. In Proceedings of the 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, 4–6 November 2015; pp. 32–35. [Google Scholar] [CrossRef]
- Bartoletti, M.; Pompianu, L. An Empirical Analysis of Smart Contracts: Platforms, Applications, and Design Patterns. In Financial Cryptography and Data Security; Springer International Publishing: Cham, Switzerland, 2017; pp. 494–509. [Google Scholar]
- Reinfurt, L.; Breitenbücher, U.; Falkenthal, M.; Leymann, F.; Riegg, A. Internet of Things Patterns for Devices: Powering, Operating, and Sensing. Int. J. Adv. Internet Technol. IARIA 2017, 10, 106–123. [Google Scholar]
- Reinfurt, L.; Breitenbücher, U.; Falkenthal, M.; Leymann, F.; Riegg, A. Internet of Things patterns for communication and management. In Transactions on Pattern Languages of Programming IV; Lecture Notes in Computer Science (LNCS); Springer: Berlin/Heidelberg, Germany, 2019; Volume 10600, pp. 139–182. [Google Scholar] [CrossRef]
- Meszaros, G.; Doble, J. Metapatterns: A pattern language for pattern writing. In Proceedings of the 3rd Pattern Languages of Programming Conference, Monticello, Monticello, IL, USA, 6–8 September 1996; pp. 1–39. [Google Scholar]
- Harrison, N. Advanced Pattern Writing. Pattern Lang. Program Des. 2006, 5, 433. [Google Scholar]
- Wellhausen, T.; Fiesser, A. How to write a pattern? A rough guide for first-time pattern authors. In Proceedings of the 16th European Conference on Pattern Languages of Programs, Irsee, Germany, 13–17 July 2012; p. 5. [Google Scholar]
- Fehling, C.; Barzen, J.; Breitenbücher, U.; Leymann, F. A process for pattern identification, authoring, and application. In Proceedings of the 19th European Conference on Pattern Languages of Programs, Irsee, Germany, 9–13 July 2014; p. 4. [Google Scholar]
- Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous Robot Vehicles; Springer: Berlin/Heidelberg, Germany, 1986; pp. 396–404. [Google Scholar]
- Krogh, B.; Thorpe, C. Integrated path planning and dynamic steering control for autonomous vehicles. In Proceedings of the 1986 IEEE International Conference on Robotics and Automation, Francisco, CA, USA, 7–10 April 1986; Volume 3, pp. 1664–1669. [Google Scholar]
- Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991, 7, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Minguez, J. The obstacle-restriction method for robot obstacle avoidance in difficult environments. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2284–2290. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating System. In ICRA Workshop on Open Source Software; ICRA: Kobe, Japan, 2009; Volume 3, p. 5. [Google Scholar]
- Filotheou, A.; Tsardoulias, E.; Dimitriou, A.; Symeonidis, A.; Petrou, L. Quantitative and qualitative evaluation of ROS-enabled local and global planners in 2D static environments. J. Intell. Robot. Syst. 2019, 98, 567–601. [Google Scholar] [CrossRef]
- Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [Google Scholar] [CrossRef]
- Morris, A.; Donamukkala, R.; Kapuria, A.; Steinfeld, A.; Matthews, J.T.; Dunbar-Jacob, J.; Thrun, S. A robotic walker that provides guidance. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 25–30. [Google Scholar]
- Roy, N.; Thrun, S. Motion planning through policy search. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; Volume 3, pp. 2419–2424. [Google Scholar]
- Hirata, Y.; Hara, A.; Kosuge, K. Motion control of passive intelligent walker using servo brakes. IEEE Trans. Robot. 2007, 23, 981–990. [Google Scholar] [CrossRef]
- Rentschler, A.J.; Simpson, R.; Cooper, R.A.; Boninger, M.L. Clinical evaluation of Guido robotic walker. J. Rehabil. Res. Dev. 2008, 45, 1281–1293. [Google Scholar] [CrossRef]
- Rodriguez-Losada, D.; Matia, F.; Jimenez, A.; Galan, R.; Lacey, G. Implementing map based navigation in Guido, the robotic smartwalker. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 3390–3395. [Google Scholar]
- Huang, Y.C.; Yang, H.P.; Ko, C.H.; Young, K.Y. Human intention recognition for robot walking helper using ANFIS. In Proceedings of the 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, 15–18 May 2011; pp. 311–316. [Google Scholar]
- Cantelli, L.; Guastella, D.; Mangiameli, L.; Melita, C.D.; Muscato, G.; Longo, D. A walking assistant using brakes and low cost sensors. In Proceedings of the 21th International Conference on Climbing and Walking Robots (CLAWAR) 2018, Panama City, Panama, 10–12 September 2018; pp. 53–60. [Google Scholar]
- Zhao, H.; Zhang, L.; Qiu, S.; Wang, Z.; Yang, N.; Xu, J. Pedestrian dead reckoning using pocket-worn smartphone. IEEE Access 2019, 7, 91063–91073. [Google Scholar] [CrossRef]
- Martinelli, A.; Gao, H.; Groves, P.D.; Morosi, S. Probabilistic context-aware step length estimation for pedestrian dead reckoning. IEEE Sens. J. 2017, 18, 1600–1611. [Google Scholar] [CrossRef]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent advances in indoor localization: A survey on theoretical approaches and applications. IEEE Commun. Surv. Tutor. 2016, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, I.; Kang, M.; Hur, S.; Park, Y. MINLOC: Magnetic field patterns-based indoor localization using convolutional neural networks. IEEE Access 2020, 8, 66213–66227. [Google Scholar] [CrossRef]
- Galván-Tejada, C.E.; Zanella-Calzada, L.A.; García-Domínguez, A.; Magallanes-Quintanar, R.; Luna-García, H.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Vélez-Rodríguez, A.; Gamboa-Rosales, H. Estimation of Indoor Location Through Magnetic Field Data: An Approach Based On Convolutional Neural Networks. ISPRS Int. J. Geo-Inf. 2020, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Haverinen, J. Utilizing Magnetic Field Based Navigation. U.S. Patent 8,798,924, 5 August 2014. [Google Scholar]
- Chen, H.; Li, F.; Wang, Y. SoundMark: Accurate indoor localization via peer-assisted dead reckoning. IEEE Internet Things J. 2018, 5, 4803–4815. [Google Scholar] [CrossRef]
- Leonardo, R.; Barandas, M.; Gamboa, H. A framework for infrastructure-free indoor localization based on pervasive sound analysis. IEEE Sens. J. 2018, 18, 4136–4144. [Google Scholar] [CrossRef]
- Carter, S.A.; Avrahami, D.; Tokunaga, N. Using Inaudible Audio to Improve Indoor-Localization-and Proximity-Aware Intelligent Applications. arXiv 2020, arXiv:2002.00091. [Google Scholar]
- Lindo, A.; Garcia, E.; Urena, J.; del Carmen Perez, M.; Hernandez, A. Multiband waveform design for an ultrasonic indoor positioning system. IEEE Sens. J. 2015, 15, 7190–7199. [Google Scholar] [CrossRef]
- Murata, S.; Yara, C.; Kaneta, K.; Ioroi, S.; Tanaka, H. Accurate indoor positioning system using near-ultrasonic sound from a smartphone. In Proceedings of the 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, UK, 10–12 September 2014; pp. 13–18. [Google Scholar]
- Zeng, Y.; Chen, X.; Li, R.; Tan, H.Z. UHF RFID indoor positioning system with phase interference model based on double tag array. IEEE Access 2019, 7, 76768–76778. [Google Scholar] [CrossRef]
- Xu, H.; Wu, M.; Li, P.; Zhu, F.; Wang, R. An RFID indoor positioning algorithm based on support vector regression. Sensors 2018, 18, 1504. [Google Scholar] [CrossRef] [Green Version]
- Jovicic, A.; Li, J.; Richardson, T. Visible light communication: Opportunities, challenges and the path to market. IEEE Commun. Mag. 2013, 51, 26–32. [Google Scholar] [CrossRef]
- Li, Y.; Ghassemlooy, Z.; Tang, X.; Lin, B.; Zhang, Y. A VLC smartphone camera based indoor positioning system. IEEE Photonics Technol. Lett. 2018, 30, 1171–1174. [Google Scholar] [CrossRef]
- Yang, S.; Ma, L.; Jia, S.; Qin, D. An Improved Vision-Based Indoor Positioning Method. IEEE Access 2020, 8, 26941–26949. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Kang, X.; Zhao, Q. Camera localization for augmented reality and indoor positioning: A vision-based 3D feature database approach. Int. J. Digit. Earth 2019, 727–741. [Google Scholar] [CrossRef]
- La Delfa, G.C.; Monteleone, S.; Catania, V.; De Paz, J.F.; Bajo, J. Performance analysis of visualmarkers for indoor navigation systems. Front. Inf. Technol. Electron. Eng. 2016, 17, 730–740. [Google Scholar] [CrossRef]
- Dong, J.; Noreikis, M.; Xiao, Y.; Ylä-Jääski, A. Vinav: A vision-based indoor navigation system for smartphones. IEEE Trans. Mob. Comput. 2018, 18, 1461–1475. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Chen, R.; Chen, L.; Guo, G.; Ye, F.; Liu, Z. A robust dead reckoning algorithm based on WiFi FTM and multiple sensors. Remote Sens. 2019, 11, 504. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Wang, Z.; Zhao, H.; Qin, K.; Li, Z.; Hu, H. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Inf. Fusion 2018, 39, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, Z.; Mao, S. DeepML: Deep LSTM for indoor localization with smartphone magnetic and light sensors. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Jalal, A.; Batool, M.; Kim, K. Stochastic Recognition of Physical Activity and Healthcare Using Tri-Axial Inertial Wearable Sensors. Appl. Sci. 2020, 10, 7122. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Crispino, R.; L’Episcopo, L.; Marletta, V.; Branciforte, M.; Virzì, M.C. A Smart Inertial Pattern for the SUMMIT IoT Multi-platform. In Ambient Assisted Living; Leone, A., Caroppo, A., Rescio, G., Diraco, G., Siciliano, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 311–319. [Google Scholar]
- Guastella, D.C.; Muscato, G. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environments: A Review. Sensors 2021, 21, 73. [Google Scholar] [CrossRef]
- Oliveira, F.G.; Santos, E.R.S.; Neto, A.A.; Campos, M.F.M.; Macharet, D.G. Speed-invariant terrain roughness classification and control based on inertial sensors. In Proceedings of the 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, Brazil, 8–11 November 2017; pp. 1–6. [Google Scholar]
- Moschetti, A.; Cavallo, F.; Esposito, D.; Penders, J.; Di Nuovo, A. Wearable Sensors for Human–Robot Walking Together. Robotics 2019, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lv, H.; Zhou, H.; Cao, Q.; Li, Z.; Yang, G. A Sensor Glove Based on Inertial Measurement Unit for Robot Teleoperetion. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 3397–3402. [Google Scholar] [CrossRef]
- Coronado, E.; Villalobos, J.; Bruno, B.; Mastrogiovanni, F. Gesture-based robot control: Design challenges and evaluation with humans. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2761–2767. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Z.; Wang, Z.; Wang, X. Fault Detection and Identification Method for Quadcopter Based on Airframe Vibration Signals. Sensors 2021, 21, 581. [Google Scholar] [CrossRef] [PubMed]
- Andò, B.; Baglio, S.; Lombardo, C.O. RESIMA: An Assistive Paradigm to Support Weak People in Indoor Environments. IEEE Trans. Instrum. Meas. 2014, 63, 2522–2528. [Google Scholar] [CrossRef]
- Simoens, P.; Dragone, M.; Saffiotti, A. The Internet of Robotic Things: A review of concept, added value and applications. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418759424. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andò, B.; Cantelli, L.; Catania, V.; Crispino, R.; Guastella, D.C.; Monteleone, S.; Muscato, G. An Introduction to Patterns for the Internet of Robotic Things in the Ambient Assisted Living Scenario. Robotics 2021, 10, 56. https://doi.org/10.3390/robotics10020056
Andò B, Cantelli L, Catania V, Crispino R, Guastella DC, Monteleone S, Muscato G. An Introduction to Patterns for the Internet of Robotic Things in the Ambient Assisted Living Scenario. Robotics. 2021; 10(2):56. https://doi.org/10.3390/robotics10020056
Chicago/Turabian StyleAndò, Bruno, Luciano Cantelli, Vincenzo Catania, Ruben Crispino, Dario Calogero Guastella, Salvatore Monteleone, and Giovanni Muscato. 2021. "An Introduction to Patterns for the Internet of Robotic Things in the Ambient Assisted Living Scenario" Robotics 10, no. 2: 56. https://doi.org/10.3390/robotics10020056
APA StyleAndò, B., Cantelli, L., Catania, V., Crispino, R., Guastella, D. C., Monteleone, S., & Muscato, G. (2021). An Introduction to Patterns for the Internet of Robotic Things in the Ambient Assisted Living Scenario. Robotics, 10(2), 56. https://doi.org/10.3390/robotics10020056