De Novo Assembly of Eight Commercial Crossbred Pig Genomes Provides Insights into the Potential Functional Impact of Structural Variation Hotspots
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Data Generation
2.3. De Novo Genome Assembly
2.4. Genome Annotation
2.5. Structural Variant Calling
2.6. Functional Annotation of SVs
2.7. SVs Hotspot Identification
2.8. Functional Enrichment Analysis
3. Results
3.1. High-Quality De Novo Assemblies for the DLY Pigs
3.2. Genome Annotation of the DLY Pigs
3.3. Generating and Characterizing a Catalog of SVs in DLY Pigs
3.4. Identification and Enrichment Analysis of SV Hotspots
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DLY | Duroc × (Landrace × Yorkshire) |
| SV | Structural variant |
| LD | Linkage disequilibrium |
| QTL | Quantitative trait locus |
| ONT | Oxford Nanopore Technologies |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| GO | Gene Ontology |
References
- Groenen, M.A.M.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.-J.; et al. Analyses of Pig Genomes Provide Insight into Porcine Demography and Evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Kuhlers, D.L.; Jungst, S.B.; Little, J.A. An Experimental Comparison of Equivalent Terminal and Rotational Crossbreeding Systems in Swine: Pig Performance. J. Anim. Sci. 1994, 72, 2578–2584. [Google Scholar] [CrossRef]
- Christensen, O.F.; Legarra, A.; Lund, M.S.; Su, G. Genetic Evaluation for Three-Way Crossbreeding. Genet. Sel. Evol. 2015, 47, 98. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef]
- Veroneze, R.; Bastiaansen, J.W.; Knol, E.F.; Guimarães, S.E.; Silva, F.F.; Harlizius, B.; Lopes, M.S.; Lopes, P.S. Linkage Disequilibrium Patterns and Persistence of Phase in Purebred and Crossbred Pig (Sus scrofa) Populations. BMC Genet. 2014, 15, 126. [Google Scholar] [CrossRef]
- Li, J.; Peng, S.; Zhong, L.; Zhou, L.; Yan, G.; Xiao, S.; Ma, J.; Huang, L. Identification and Validation of a Regulatory Mutation Upstream of the BMP2 Gene Associated with Carcass Length in Pigs. Genet. Sel. Evol. 2021, 53, 94. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Bruce, H.; Kemp, R.A.; Charagu, P.; Miar, Y.; Yang, T.; Plastow, G. Genome-Wide Association Studies (GWAS) Identify a QTL Close to PRKAG3 Affecting Meat pH and Colour in Crossbred Commercial Pigs. BMC Genet. 2015, 16, 33. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wu, J.; Qiu, Y.; Ruan, D.; Ding, R.; Xu, C.; Zhou, S.; Zhang, Y.; Liu, Y.; Ma, F.; et al. Improving the Accuracy of Genomic Prediction for Meat Quality Traits Using Whole Genome Sequence Data in Pigs. J. Anim. Sci. Biotechnol. 2023, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhuang, Z.; Meng, F.; Ruan, D.; Xu, C.; Ma, F.; Peng, L.; Ding, R.; Cai, G.; Yang, M.; et al. Identification of Candidate Genes Associated with Carcass Component Weights in Commercial Crossbred Pigs through a Combined GWAS Approach. J. Anim. Sci. 2023, 101, skad121. [Google Scholar] [CrossRef] [PubMed]
- Warr, A.; Affara, N.; Aken, B.; Beiki, H.; Bickhart, D.M.; Billis, K.; Chow, W.; Eory, L.; Finlayson, H.A.; Flicek, P.; et al. An Improved Pig Reference Genome Sequence to Enable Pig Genetics and Genomics Research. GigaScience 2020, 9, giaa051. [Google Scholar] [CrossRef]
- Dan, Z.; Chen, Y.; Huang, W. Structural Variations Contribute to Subspeciation and Yield Heterosis in Rice. Plant Biotechnol. J. 2025. [Google Scholar] [CrossRef]
- Liu, S.; Yao, T.; Chen, D.; Xiao, S.; Chen, L.; Zhang, Z. Genomic Prediction in Pigs Using Data from a Commercial Crossbred Population: Insights from the Duroc x (Landrace x Yorkshire) Three-Way Crossbreeding System. Genet. Sel. Evol. 2023, 55, 21. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, L.; Huang, M.; Ruan, D.; Ding, R.; Zhang, Z.; Zheng, E.; Wang, S.; Deng, S.; Meng, X.; et al. Origins, Dispersal, and Impact: Bidirectional Introgression between Chinese and European Pig Populations. Adv. Sci. 2025, 12, e2416573. [Google Scholar] [CrossRef]
- Du, H.; Zhuo, Y.; Lu, S.; Li, W.; Zhou, L.; Sun, F.; Liu, G.; Liu, J.-F. Pangenome Reveals Gene Content Variations and Structural Variants Contributing to Pig Characteristics. Genom. Proteom. Bioinform. 2024, 22, qzae081. [Google Scholar] [CrossRef]
- Jiang, Y.-F.; Wang, S.; Wang, C.-L.; Xu, R.-H.; Wang, W.-W.; Jiang, Y.; Wang, M.-S.; Jiang, L.; Dai, L.-H.; Wang, J.-R.; et al. Pangenome Obtained by Long-Read Sequencing of 11 Genomes Reveal Hidden Functional Structural Variants in Pigs. iScience 2023, 26, 106119. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, X.; Wang, C.; Li, Z.; Jiang, B.; Zhang, R.; Tong, L.; Qu, Y.; He, S.; Chen, H.; et al. The Pig Pangenome Provides Insights into the Roles of Coding Structural Variations in Genetic Diversity and Adaptation. Genome Res. 2023, 33, 1833–1847. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yi, G.; Yao, Y.; Liu, Y.; Li, J.; Yang, Y.; Liu, M.; Fang, L.; Mo, D.; Zhang, L.; et al. Multiomics Analysis Reveals Signatures of Selection and Loci Associated with Complex Traits in Pigs. iMeta 2024, 3, e250. [Google Scholar] [CrossRef]
- Miao, J.; Wei, X.; Cao, C.; Sun, J.; Xu, Y.; Zhang, Z.; Wang, Q.; Pan, Y.; Wang, Z. Pig Pangenome Graph Reveals Functional Features of Non-Reference Sequences. J. Anim. Sci. Biotechnol. 2024, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.; Park, N.; Wy, S.; Lee, D.; Chai, H.-H.; Cho, I.-C.; Lee, J.; Kwon, K.; Kim, H.; Moon, Y.; et al. A Chromosome-Level Genome Assembly of the Korean Crossbred Pig Nanchukmacdon (Sus scrofa). Sci. Data 2023, 10, 761. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Holley, G.; Beyter, D.; Ingimundardottir, H.; Møller, P.L.; Kristmundsdottir, S.; Eggertsson, H.P.; Halldorsson, B.V. Ratatosk: Hybrid Error Correction of Long Reads Enables Accurate Variant Calling and Assembly. Genome Biol. 2021, 22, 28. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Darian, J.C.; Kundu, R.; Rajaby, R.; Sung, W.-K. Constructing Telomere-to-Telomere Diploid Genome by Polishing Haploid Nanopore-Based Assembly. Nat. Methods 2024, 21, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Alonge, M.; Lebeigle, L.; Kirsche, M.; Jenike, K.; Ou, S.; Aganezov, S.; Wang, X.; Lippman, Z.B.; Schatz, M.C.; Soyk, S. Automated Assembly Scaffolding Using RagTag Elevates a New Tomato System for High-Throughput Genome Editing. Genome Biol. 2022, 23, 258. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive Visualization of de Novo Genome Assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Rhie, A.; Walenz, B.P.; Koren, S.; Phillippy, A.M. Merqury: Reference-Free Quality, Completeness, and Phasing Assessment for Genome Assemblies. Genome Biol. 2020, 21, 245. [Google Scholar] [CrossRef]
- Tegenfeldt, F.; Kuznetsov, D.; Manni, M.; Berkeley, M.; Zdobnov, E.M.; Kriventseva, E.V. OrthoDB and BUSCO Update: Annotation of Orthologs with Wider Sampling of Genomes. Nucleic Acids Res. 2025, 53, D516–D522. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Chao, K.-H.; Heinz, J.M.; Hoh, C.; Mao, A.; Shumate, A.; Pertea, M.; Salzberg, S.L. Combining DNA and Protein Alignments to Improve Genome Annotation with LiftOn. Genome Res. 2025, 35, 311–325. [Google Scholar] [CrossRef]
- Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Research 2020, 9, 304. [Google Scholar] [CrossRef]
- Tang, H.; Krishnakumar, V.; Zeng, X.; Xu, Z.; Taranto, A.; Lomas, J.S.; Zhang, Y.; Huang, Y.; Wang, Y.; Yim, W.C.; et al. JCVI: A Versatile Toolkit for Comparative Genomics Analysis. iMeta 2024, 3, e211. [Google Scholar] [CrossRef]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a Database of Repetitive Elements in Eukaryotic Genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Goel, M.; Sun, H.; Jiao, W.-B.; Schneeberger, K. SyRI: Finding Genomic Rearrangements and Local Sequence Differences from Whole-Genome Assemblies. Genome Biol. 2019, 20, 277. [Google Scholar] [CrossRef] [PubMed]
- English, A.C.; Menon, V.K.; Gibbs, R.A.; Metcalf, G.A.; Sedlazeck, F.J. Truvari: Refined Structural Variant Comparison Preserves Allelic Diversity. Genome Biol. 2022, 23, 271. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Yuan, T.; Cao, M.; He, Y.; Zhang, L.; Li, X.; Jiang, Y.; Li, K.; Sun, J.; et al. Pangenome and Genome Variation Analyses of Pigs Unveil Genomic Facets for Their Adaptation and Agronomic Characteristics. iMeta 2024, 3, e257. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Pan, Z.; Yao, Y.; Yin, H.; Cai, Z.; Wang, Y.; Bai, L.; Kern, C.; Halstead, M.; Chanthavixay, G.; Trakooljul, N.; et al. Pig Genome Functional Annotation Enhances the Biological Interpretation of Complex Traits and Human Disease. Nat. Commun. 2021, 12, 5848. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent Prioritization and Exploratory Visualization of Biological Functions for Gene Enrichment Analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef]
- Fonseca, P.A.S.; Suárez-Vega, A.; Marras, G.; Cánovas, Á. GALLO: An R Package for Genomic Annotation and Integration of Multiple Data Sources in Livestock for Positional Candidate Loci. GigaScience 2020, 9, giaa149. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Du, H.; Hu, J.; Zhang, Z.; Wu, Z. Chromosome-Level Genome Assembly of the Meishan Pig and Insights into Its Domestication Mechanisms. Animals 2025, 15, 603. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Jiang, J.; He, J.; Liu, H.; Han, L.; Gong, Y.; Li, B.; Yu, Z.; Tang, S.; Zhang, Y.; et al. Long-Read Assembly of the Chinese Indigenous Ningxiang Pig Genome and Identification of Genetic Variations in Fat Metabolism among Different Breeds. Mol. Ecol. Resour. 2022, 22, 1508–1520. [Google Scholar] [CrossRef]
- Kosugi, S.; Momozawa, Y.; Liu, X.; Terao, C.; Kubo, M.; Kamatani, Y. Comprehensive Evaluation of Structural Variation Detection Algorithms for Whole Genome Sequencing. Genome Biol. 2019, 20, 117. [Google Scholar] [CrossRef]
- Dai, X.; Bian, P.; Hu, D.; Luo, F.; Huang, Y.; Jiao, S.; Wang, X.; Gong, M.; Li, R.; Cai, Y.; et al. A Chinese Indicine Pangenome Reveals a Wealth of Novel Structural Variants Introgressed from Other Bos Species. Genome Res. 2023, 33, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Ebert, P.; Audano, P.A.; Zhu, Q.; Rodriguez-Martin, B.; Porubsky, D.; Bonder, M.J.; Sulovari, A.; Ebler, J.; Zhou, W.; Serra Mari, R.; et al. Haplotype-Resolved Diverse Human Genomes and Integrated Analysis of Structural Variation. Science 2021, 372, eabf7117. [Google Scholar] [CrossRef] [PubMed]
- Alonge, M.; Wang, X.; Benoit, M.; Soyk, S.; Pereira, L.; Zhang, L.; Suresh, H.; Ramakrishnan, S.; Maumus, F.; Ciren, D.; et al. Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell 2020, 182, 145–161.e23. [Google Scholar] [CrossRef]
- Sato, S.; Uemoto, Y.; Kikuchi, T.; Egawa, S.; Kohira, K.; Saito, T.; Sakuma, H.; Miyashita, S.; Arata, S.; Kojima, T.; et al. SNP- and Haplotype-Based Genome-Wide Association Studies for Growth, Carcass, and Meat Quality Traits in a Duroc Multigenerational Population. BMC Genet. 2016, 17, 60. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, F.; Hou, L.; Chen, H.; Guo, Y.; Zhang, Z. Multi-Breed Genome-Wide Association Study Reveals Heterogeneous Loci Associated with Loin Eye Area in Pigs. J. Appl. Genet. 2016, 57, 511–518. [Google Scholar] [CrossRef]
- Ma, G.; Tan, X.; Yan, Y.; Zhang, T.; Wang, J.; Chen, X.; Xu, J. A Genome-Wide Association Study Identified Candidate Regions and Genes for Commercial Traits in a Landrace Population. Front. Genet. 2024, 15, 1505197. [Google Scholar] [CrossRef]
- Falker-Gieske, C.; Blaj, I.; Preuß, S.; Bennewitz, J.; Thaller, G.; Tetens, J. GWAS for Meat and Carcass Traits Using Imputed Sequence Level Genotypes in Pooled F2-Designs in Pigs. G3 2019, 9, 2823–2834. [Google Scholar] [CrossRef]
- He, D.; Liu, H.; Wei, W.; Zhao, Y.; Cai, Q.; Shi, S.; Chu, X.; Qin, X.; Zhang, N.; Xu, P.; et al. A Longitudinal Genome-Wide Association Study of Bone Mineral Density Mean and Variability in the UK Biobank. Osteoporos. Int. 2023, 34, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yengo, L.; Ferreira, T.; Marouli, E.; Ji, Y.; et al. Meta-Analysis of Genome-Wide Association Studies for Body Fat Distribution in 694 649 Individuals of European Ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, J.; Wang, K.; Han, X.; Yan, T.; Su, Y.; Li, Y.; Lin, Z.; Qin, P.; Fu, C.; et al. The Telomere-to-Telomere Gap-Free Genome of Four Rice Parents Reveals SV and PAV Patterns in Hybrid Rice Breeding. Plant Biotechnol. J. 2022, 20, 1642–1644. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, H.; Teng, J.; Wang, Z.; Qu, X.; Chen, Z.; Cai, X.; Zeng, H.; Bai, Z.; Li, J.; et al. Construction of a Multitissue Cell Atlas Reveals Cell-Type-Specific Regulation of Molecular and Complex Phenotypes in Pigs. Adv. Sci. 2025, e04961. [Google Scholar] [CrossRef]
- Han, B.; Li, H.; Zheng, W.; Zhang, Q.; Chen, A.; Zhu, S.; Shi, T.; Wang, F.; Zou, D.; Song, Y.; et al. A Multi-Tissue Single-Cell Expression Atlas in Cattle. Nat. Genet. 2025, 57, 2546–2561. [Google Scholar] [CrossRef]



| ID | Assembly | Assembly Length (Gb) | Contig Number | Contig N50 (Mb) | Scaffold N50 (Mb) | Largest Scaffold Length (Mb) | Quality Values (QV) |
|---|---|---|---|---|---|---|---|
| DLY1 | Hap1/Hap2 | 2.44/2.44 | 858/873 | 21.95/21.96 | 139/138.78 | 274.13/274.18 | 43.08/40.76 |
| DLY2 | Hap1/Hap2 | 2.43/2.43 | 796/791 | 29.54/29.54 | 138.76/138.79 | 274.14/274.10 | 45.87/42.89 |
| DLY3 | Hap1/Hap2 | 2.44/2.44 | 1359/1355 | 18.18/18.17 | 138.79/138.81 | 274.02/273.93 | 43.76/42.47 |
| DLY4 | Hap1/Hap2 | 2.44/2.44 | 810/805 | 28.14/28.15 | 138.89/138.92 | 273.19/273.21 | 46.09/43.03 |
| DLY5 | Hap1/Hap2 | 2.43/2.43 | 802/816 | 24.28/24.29 | 139.68/139.89 | 273.33/273.36 | 42.53/40.79 |
| DLY6 | Hap1/Hap2 | 2.43/2.43 | 855/857 | 25.12/25.12 | 138.85/138.87 | 273.26/273.35 | 46.56/43.12 |
| DLY7 | Hap1/Hap2 | 2.43/2.43 | 754/757 | 24.22/24.23 | 139.26/139.15 | 273.84/273.84 | 43.32/41.79 |
| DLY8 | Hap1/Hap2 | 2.43/2.43 | 690/687 | 22.67/22.68 | 139.14/139.16 | 273.85/273.89 | 42.27/40.04 |
| Sscrofa11.1 | Primary | 2.5 | 1157 | 41.89 | 138.97 | 274.33 | 36.48 |
| ID | Assembly | Number of Putative Coding Genes | Number of mRNA | Average mRNA Length (bp) | Average CDS Length (bp) | Average Exons per mRNA | Average Exon Length (bp) |
|---|---|---|---|---|---|---|---|
| DLY1 | Hap1/Hap2 | 21,930/21,910 | 45,688/45,652 | 59,961/59,833 | 1712/1695 | 11.7/11.7 | 269/269 |
| DLY2 | Hap1/Hap2 | 21,976/21,909 | 45,732/45,664 | 59,829/59,966 | 1705/1687 | 11.7/11.7 | 270/269 |
| DLY3 | Hap1/Hap2 | 21,923/21,867 | 45,663/45,607 | 59,832/60,018 | 1714/1711 | 11.7/11.7 | 269/269 |
| DLY4 | Hap1/Hap2 | 21,948/21,973 | 45,718/45,738 | 59,903/59,876 | 1715/1704 | 11.7/11.7 | 270/269 |
| DLY5 | Hap1/Hap2 | 22,001/21,970 | 45,740/45,709 | 59,872/59,925 | 1711/1699 | 11.7/11.7 | 270/270 |
| DLY6 | Hap1/Hap2 | 21,898/21,846 | 45,636/45,578 | 60,012/60,021 | 1713/1702 | 11.7/11.7 | 269/269 |
| DLY7 | Hap1/Hap2 | 21,934/21,887 | 45,692/45,641 | 59,940/60,036 | 1711/1700 | 11.7/11.7 | 270/269 |
| DLY8 | Hap1/Hap2 | 21,924/21,862 | 45,634/45,564 | 59,963/60,052 | 1692/1654 | 11.7/11.7 | 269/269 |
| Sscrofa11.1 | Primary | 22,018 | 45,958 | 60,112 | 1732 | 11.8 | 268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wen, J.; Qiu, H.; Deng, S.; Wang, S.; Liu, Y.; Lin, M.; Yang, J.; Wu, Z.; Liu, L.; Qiu, Y. De Novo Assembly of Eight Commercial Crossbred Pig Genomes Provides Insights into the Potential Functional Impact of Structural Variation Hotspots. Biomolecules 2026, 16, 214. https://doi.org/10.3390/biom16020214
Wen J, Qiu H, Deng S, Wang S, Liu Y, Lin M, Yang J, Wu Z, Liu L, Qiu Y. De Novo Assembly of Eight Commercial Crossbred Pig Genomes Provides Insights into the Potential Functional Impact of Structural Variation Hotspots. Biomolecules. 2026; 16(2):214. https://doi.org/10.3390/biom16020214
Chicago/Turabian StyleWen, Jiaolong, Haiqi Qiu, Shaoxiong Deng, Shiyuan Wang, Yiyi Liu, Meng Lin, Jie Yang, Zhenfang Wu, Langqing Liu, and Yibin Qiu. 2026. "De Novo Assembly of Eight Commercial Crossbred Pig Genomes Provides Insights into the Potential Functional Impact of Structural Variation Hotspots" Biomolecules 16, no. 2: 214. https://doi.org/10.3390/biom16020214
APA StyleWen, J., Qiu, H., Deng, S., Wang, S., Liu, Y., Lin, M., Yang, J., Wu, Z., Liu, L., & Qiu, Y. (2026). De Novo Assembly of Eight Commercial Crossbred Pig Genomes Provides Insights into the Potential Functional Impact of Structural Variation Hotspots. Biomolecules, 16(2), 214. https://doi.org/10.3390/biom16020214

