A Highly Active Triterpene Derivative Capable of Biofilm Damage to Control Cryptococcus spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Screening of a Semisynthetic Compounds Collection for Biofilm-Damaging Molecules
2.3. Analysis of Antifungal Activity
2.4. Evaluation of the Main Virulence Determinants of C. neoformans Treated with the BA Active Derivative N-{3-[4-(3-Aminopropyl)piperazinyl]propyl}-3-O-acetylbetulinamide (LAFIS13)
2.5. Analysis of Synergistic Effects
2.6. Scanning Electron Microscopy
2.7. Cell Viability Assay
2.8. Toxicity in Galleria mellonella
2.9. In Silico Predictions of the Pharmacokinects Profile of the BA Active Derivative
2.10. Statistical Analyses
3. Results
3.1. Selection of the BA Active Derivative LAFIS13 as a Potential Agent against Cryptococcal Biofilm
3.2. Minimal Biofilm Damage Concentration of LAFIS13
3.3. LAFIS13 is Fungicidal against Cryptococcus spp.
3.4. Evaluation of Potential Synergism between LAFIS13 and Standard Antifungals
3.5. Effects on Capsule Size, Urease Production, and Melanization of Cryptococcus Neoformans
3.6. LAFIS13 is Non-Toxic at MIC
3.7. In Silico Predictions of LAFIS13 Pharmacokinects Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Denning, D.W.; Bromley, M.J. Infectious Disease. How to bolster the antifungal pipeline. Science 2015, 347, 1414–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- Chapman, N.; Doubell, A.; Oversteegen, L.; Chowdhary, V.; Rugarabamu, G. G-FINDER 2017. Neglected disease research and development: Reflecting on a decade of global investment. Available online: https://www.policycuresresearch.org/g-finder-2017/ (accessed on 5 December 2019).
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Kwon-Chung, K.J.; Fraser, J.A.; Doering, T.L.; Wang, Z.; Janbon, G.; Idnurm, A.; Bahn, Y.S. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb. Perspect. Med. 2014, 4, a019760. [Google Scholar] [CrossRef] [PubMed]
- Lopes, W.; Vainstein, M.H.; De Sousa Araujo, G.R.; Frases, S.; Staats, C.C.; de Almeida, R.M.C.; Schrank, A.; Kmetzsch, L. Geometrical Distribution of Cryptococcus neoformans Mediates Flower-Like Biofilm Development. Front. Microbiol. 2017, 8, 2534. [Google Scholar] [CrossRef] [Green Version]
- Martinez, L.; Casadevall, A. Biofilm Formation by Cryptococcus neoformans. Microbiol. Spectrum. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Krysan, D.J. Toward improved anti-cryptococcal drugs: Novel molecules and repurposed drugs. Fungal Genet. Biol. 2015, 78, 93–98. [Google Scholar] [CrossRef]
- Rodrigues, M.L. Funding and Innovation in Diseases of Neglected Populations: The Paradox of Cryptococcal Meningitis. PLoS Negl. Trop. Dis. 2016, 10, e0004429. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, H.; Solano, C.; Jarque, I.; Garcia-Vidal, C.; Gao, X.; Barrueta, J.A.; De Salas-Cansado, M.; Stephens, J.; Xue, M.; Weber, B.; et al. Cost analysis of voriconazole versus liposomal amphotericin B for primary therapy of invasive aspergillosis among patients with haematological disorders in Germany and Spain. BMC Pharmacol. Toxicol. 2014, 15, 52. [Google Scholar] [CrossRef] [Green Version]
- Sloan, D.J.; Dedicoat, M.J.; Lalloo, D.G. Treatment of cryptococcal meningitis in resource limited settings. Curr. Opin. Infect. Dis. 2009, 22, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Berkow, E.L.; Lockhart, S.R. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mpoza, E.; Rhein, J.; Abassi, M. Emerging fluconazole resistance: Implications for the management of cryptococcal meningitis. Med. Mycol. Case Rep. 2018, 19, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W. Echinocandin antifungal drugs. Lancet 2003, 362, 1142–1151. [Google Scholar] [CrossRef]
- Cargnin, S.T.; Staudt, A.F.; Medeiros, P.; de Medeiros Sol Sol, D.; de Azevedo Dos Santos, A.P.; Zanchi, F.B.; Gosmann, G.; Puyet, A.; Garcia Teles, C.B.; Gnoatto, S.B. Semisynthesis, cytotoxicity, antimalarial evaluation and structure-activity relationship of two series of triterpene derivatives. Bioorg. Med. Chem. Lett. 2017, 28, 265–272. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs 2012, 21, 1801–1818. [Google Scholar] [CrossRef] [PubMed]
- Guesmi, F.; Prasad, S.; Tyagi, A.K.; Landoulsi, A. Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IkappaBalpha kinase, through downregulation of NF-kappaB activation, potentiation of apoptosis and suppression of NF-kappaB-regulated gene expression. Biomed. Pharmacother. 2017, 95, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.N.S.D.; Primon-Barros, M.; Macedo, A.J.; Gnoatto, S.C.B. Triterpene Derivatives as Relevant Scaffold for New Antibiofilm Drugs. Biomolecules 2019, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Martinez, L.R.; Casadevall, A. Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob. Agents Chemother. 2006, 50, 1021–1033. [Google Scholar] [CrossRef] [Green Version]
- Joffe, L.S.; Schneider, R.; Lopes, W.; Azevedo, R.; Staats, C.C.; Kmetzsch, L.; Schrank, A.; Del Poeta, M.; Vainstein, M.H.; Rodrigues, M.L. The Anti-helminthic Compound Mebendazole Has Multiple Antifungal Effects against. Front. Microbiol. 2017, 8, 535. [Google Scholar] [CrossRef]
- Martinez, L.R.; Ntiamoah, P.; Gácser, A.; Casadevall, A.; Nosanchuk, J.D. Voriconazole inhibits melanization in Cryptococcus neoformans. Antimicrob. Agents Chemother. 2007, 51, 4396–4400. [Google Scholar] [CrossRef] [Green Version]
- Kwon-Chung, K.J.; Wickes, B.L.; Booth, J.L.; Vishniac, H.S.; Bennett, J.E. Urease inhibition by EDTA in the two varieties of Cryptococcus neoformans. Infect. Immun. 1987, 55, 1751–1754. [Google Scholar] [PubMed]
- Abdulkareem, A.F.; Lee, H.H.; Ahmadi, M.; Martinez, L.R. Fungal serotype-specific differences in bacterial-yeast interactions. Virulence 2015, 6, 652–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Y.W.; Campbell, L.T.; Wilkins, M.R.; Pang, C.N.; Chen, S.; Carter, D.A. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus. Int. J. Antimicrob. Agents 2016, 48, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Stoddart, M.J. Mammalian Cell Viability: Methods and Protocols; Humana Press/Springer: Totowa, NJ, USA, 2011. [Google Scholar]
- Gilbert, D.F.; Friedrich, O. Cell Viability Assays: Methods and Protocols. Humana Press: Totowa, NJ, USA, 2018. [Google Scholar]
- Lim, W.; Melse, Y.; Konings, M.; Phat Duong, H.; Eadie, K.; Laleu, B.; Perry, B.; Todd, M.H.; Ioset, J.R.; van de Sande, W.W.J. Addressing the most neglected diseases through an open research model: The discovery of fenarimols as novel drug candidates for eumycetoma. PLoS Negl. Trop. Dis. 2018, 12, e0006437. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, J.; Rudolph, C.; Sadowski, J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput. Methodol. 1990, 3, 537–547. [Google Scholar] [CrossRef]
- Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of automatic three-dimensional model builders using 639 X-Ray structures. J. Chem. Inf. Model. 1994, 34, 1000–1008. [Google Scholar] [CrossRef]
- Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: A new general-purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909. [Google Scholar] [CrossRef]
- Cruciani, G.; Meniconi, M.; Carosati, E.; Zamora, I.; Mannhold, R. Drug bioavailability: Estimation of solubility, permeability, absorption and bioavailability; Waterbeemd, H., Testa, B., Mannhold, R., Kubinyi, H., Folkers, G., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 406–419. [Google Scholar]
- Marchant, A.C.; Briggs, K.A.; Long, L. In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for windows, meteor, and vitic. Toxicol. Mech. Methods 2008, 18, 177–187. [Google Scholar] [CrossRef]
- Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006, 14, 3592–3598. [Google Scholar] [CrossRef]
- Orhan, D.D.; Ozçelik, B.; Ozgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010, 165, 496–504. [Google Scholar] [CrossRef]
- Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J.M.; Imbert, C. In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents 2008, 31, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Diedrich, D.; Wildner, A.C.; Silveira, T.F.; Silva, G.N.S.; Santos, F.D.; da Silva, E.F.; do Canto, V.P.; Visioli, F.; Gosmann, G.; Bergold, A.M.; et al. SERCA plays a crucial role in the toxicity of a betulinic acid derivative with potential antimalarial activity. Chem. Biol. Interact. 2018, 287, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Innocente, A.M.; Silva, G.N.; Cruz, L.N.; Moraes, M.S.; Nakabashi, M.; Sonnet, P.; Gosmann, G.; Garcia, C.R.; Gnoatto, S.C. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules 2012, 17, 12003–12014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, C.; Casadevall, A. Cryptococcal therapies and drug targets: The old, the new and the promising. Cell Microbiol. 2016, 18, 792–799. [Google Scholar] [CrossRef] [Green Version]
- Kiggundu, R.; Morawski, B.M.; Bahr, N.C.; Rhein, J.; Musubire, A.K.; Williams, D.A.; Abassi, M.; Nabeta, H.W.; Hullsiek, K.H.; Meya, D.B.; et al. Effects of tenofovir and amphotericin B deoxycholate co-administration on kidney function in patients treated for cryptococcal meningitis. J. Acquir. Immune. Defic. Syndr. 2016, 71, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Harvey, A.L. Natural products in drug discovery. Drug Discov. Today 2008, 13, 894–901. [Google Scholar] [CrossRef]
- Carter, G.T. Natural products and Pharma 2011: Strategic changes spur new opportunities. Nat. Prod. Rep. 2011, 28, 1783–1789. [Google Scholar] [CrossRef]
- Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807. [Google Scholar] [CrossRef]
- Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. 2013, 66, 571–591. [Google Scholar] [CrossRef] [Green Version]
- Camacho, E.; Casadevall, A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J. Fungi 2018, 4, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, J.N.; Chau, T.T.; Lalloo, D.G. Combination antifungal therapy for cryptococcal meningitis. N. Engl. J. Med. 2013, 368, 2522–2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, W.G.; Daroff, R.B.; Fenischel, G.M.; Jankovic, J. Neurology in clinical practice: The neurological disorders; Butterworth Heinemann: Oxford, UK, 2004; Volume 2, p. 2545. [Google Scholar]
- Nokhodchi, A.; Martin, G.P. Pulmonary drug delivery: Advances and challenges; John Wiley & Sons: Hoboken, NJ, USA, 2015; Volume 1, p. 408. [Google Scholar]
- Kerns, E.H.; Di, L. Drug-like properties: Concepts, structure design and methods; Academic Press: San Diego, CA, USA, 2008; p. 526. [Google Scholar]
- Piscitelli, S.C.; Rodvold, K. Drug interactions in infectious diseases; Humana Press: Totowa, NJ, USA, 2005; p. 533. [Google Scholar]
- Bekersky, I.; Fielding, R.M.; Dressler, D.E.; Lee, J.W.; Buell, D.; Walsh, T.J. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob. Agents Chemother. 2002, 46, 828–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, G.L., Jr. Review of the toxicology of three alkyl diamines. Drug Chem. Toxicol. 2007, 30, 145–157. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. NIOSH Pocket Guide to Chemical Hazards: Piperazine hydrochloride; CDC: Atlanta, NJ, USA, 2007. [Google Scholar]
- Wright, S.; Harman, R.R.M. Ethylenediamine and piperazine sensitivity. BMJ 1983, 287, 463–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomhard, E.; Marsmann, M.; Rühl-Fehlert, C.; Zywietz, A. Relationships between structure and induction of hyaline droplet accumulation in the renal cortex of male rats by aliphatic and alicyclic hydrocarbons. Arch. Toxicol. 1990, 64, 530–538. [Google Scholar] [CrossRef]
- Guha, M.; Nguyen, L.; Poitout-Belissent, F.; Bedard, A.; Raman, K. Salt Selection Matters: Differential Renal Toxicity With MDV1634.Maleate Versus MDV1634.2HCl. Int. J. Toxicol. 2017, 36, 207–219. [Google Scholar] [CrossRef]
- Jarvis, J.N.; Bicanic, T.; Loyse, A.; Namarika, D.; Jackson, A.; Nussbaum, J.C.; Longley, N.; Muzoora, C.; Phulusa, J.; Taseera, K.; et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: Implications for improving outcomes. Clin. Infect. Dis. 2014, 58, 736–745. [Google Scholar] [CrossRef]
- Cronin, M.D.T.; Madden, J.C. In Silico Toxicology: Principles and Applications; RSC Publishing: Cambridge, UK, 2010; p. 669. [Google Scholar]
(Drug A) | (Drug B) | |||||
---|---|---|---|---|---|---|
MIC alone (µg/mL) | MIC combined (µg/mL) | MIC alone (µg/mL) | MIC combined (µg/mL) | FIC 1 | ||
LAFIS13 | 7.76 | 0.648 | AmB | 0.41 | 0.33 | 0.89 |
LAFIS13 | 7.76 | 0.648 | Flu | 7.00 | 1.58 | 0.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krummenauer, M.E.; Lopes, W.; Garcia, A.W.A.; Schrank, A.; Gnoatto, S.C.B.; Kawano, D.F.; Vainstein, M.H. A Highly Active Triterpene Derivative Capable of Biofilm Damage to Control Cryptococcus spp. Biomolecules 2019, 9, 831. https://doi.org/10.3390/biom9120831
Krummenauer ME, Lopes W, Garcia AWA, Schrank A, Gnoatto SCB, Kawano DF, Vainstein MH. A Highly Active Triterpene Derivative Capable of Biofilm Damage to Control Cryptococcus spp. Biomolecules. 2019; 9(12):831. https://doi.org/10.3390/biom9120831
Chicago/Turabian StyleKrummenauer, Maria E., William Lopes, Ane W. A. Garcia, Augusto Schrank, Simone C. B. Gnoatto, Daniel F. Kawano, and Marilene H. Vainstein. 2019. "A Highly Active Triterpene Derivative Capable of Biofilm Damage to Control Cryptococcus spp." Biomolecules 9, no. 12: 831. https://doi.org/10.3390/biom9120831
APA StyleKrummenauer, M. E., Lopes, W., Garcia, A. W. A., Schrank, A., Gnoatto, S. C. B., Kawano, D. F., & Vainstein, M. H. (2019). A Highly Active Triterpene Derivative Capable of Biofilm Damage to Control Cryptococcus spp. Biomolecules, 9(12), 831. https://doi.org/10.3390/biom9120831