Intrinsic Iron Release Is Associated with Lower Mortality in Patients with Stable Coronary Artery Disease—First Report on the Prospective Relevance of Intrinsic Iron Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Laboratory Methods
2.4. Statistical Methods
3. Results
4. Discussion
4.1. Pathophysiological Implications and Clinical Impact
4.2. Strength and Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beard, J.L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 2001, 131, 568S–579S. [Google Scholar] [CrossRef] [PubMed]
- Galy, B.; Ferring-Appel, D.; Sauer, S.W.; Kaden, S.; Lyoumi, S.; Puy, H.; Kölker, S.; Gröne, H.J.; Hentze, M.W. Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell. Metab. 2010, 12, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gónzalez-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [PubMed]
- Von Haehling, S.; Jankowska, E.A.; van Veldhuisen, D.J.; Ponikowski, P.; Anker, S.D. Iron deficiency and cardiovascular disease. Nat. Rev. Cardiol. 2015, 12, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Wish, J.B. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol. 2006, 1, S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Goodnough, L.T.; Nemeth, E.; Ganz, T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood 2010, 116, 4754–6471. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, A.S.; Enns, C.A. Iron regulation by hepcidin. J. Clin. Investig. 2013, 123, 2337–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speeckaert, M.M.; Speeckaert, R.; Delanghe, J.R. Biological and clinical aspects of soluble transferrin receptor. Crit. Rev. Clin. Lab. Sci. 2010, 47, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Skikne, B.S. Serum transferrin receptor. Am. J. Hematol. 2008, 83, 872–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankenberg, S.; Rupprecht, H.J.; Bickel, C.; Torzewski, M.; Hafner, G.; Tiret, L.; Smieja, M.; Cambien, F.; Meyer, J.; Lackner, K.J.; et al. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 2003, 349, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Karakas, M.; Schulte, C.; Appelbaum, S.; Ojeda, F.; Lackner, K.J.; Münzel, T.; Schnabel, R.B.; Blankenberg, S.; Zeller, T. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur. Heart J. 2017, 38, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Calvin, J.E.; Klein, L.W.; VandenBerg, B.J.; Meyer, P.; Condon, J.V.; Snell, R.J.; Ramirez, Morgen, L.M.; Parrillo, J.E. Risk stratification in unstable angina. Prospective validation of the Braunwald classification. JAMA 1995, 273, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, E.A.; Kasztura, M.; Sokolski, M.; Bronisz, M.; Nawrocka, S.; Oleśkowska-Florek, W.; Zymliński, R.; Biegus, J.; Siwołowski, P.; Banasiak, W.; et al. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur. Heart J. 2014, 35, 2468–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, Q.A.; Siegel, E.; Karakas, M.; Januzzi, J.L.; Bamberg, F.; Mahabadi, A.A.; Dasdemir, S.; Brady, T.J.; Bergmann, A.; Kunde, J.; et al. Relation of natriuretic peptides and midregional proadrenomedullin to cardiac chamber volumes by computed tomography in patients without heart failure: From the ROMICAT Trial. Clin. Chem. 2010, 56, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Karakas, M.; Baumert, J.; Kleber, M.E.; Thorand, B.; Dallmeier, D.; Silbernagel, G.; Grammer, T.G.; Rottbauer, W.; Meisinger, C.; Illig, T.; et al. A variant in the Abo gene explains the variation in soluble E-selectin levels—results from dense genotyping in two independent populations. PLoS ONE 2012, 7, e5144. [Google Scholar] [CrossRef] [PubMed]
- Karakas, M.; Hoffmann, M.M.; Vollmert, C.; Rothenbacher, D.; Meisinger, C.; Winkelmann, B.; Khuseyinova, N.; Böhm, B.O.; Illig, T.; März, W.; et al. Genetic variation in Fcγ receptor IIa and risk of coronary heart disease: negative results from two large independent populations. BMC Med. Genet. 2009, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Karakas, M.; Baumert, J.; Greven, S.; Rückerl, R.; Peters, A.; Koenig, W. Reproducibility in Serial C-Reactive Protein and Interleukin-6 Measurements in Post–Myocardial Infarction Patients: Results from the AIRGENE Study. Clin. Chem. 2010, 56, 861–864. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 27 July 2018).
- Swedberg, K.; Young, J.B.; Anand, I.S.; Cheng, S.; Desai, A.S.; Diaz, R.; Maggioni, A.P.; McMurray, J.J.V.; O’Connor, C.; Pfeffer, M.A.; et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J. Med. 2013, 368, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Comin-Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009, 361, 2436–4248. [Google Scholar] [CrossRef] [PubMed]
- Karakas, M.; Koenig, W. CRP in cardiovascular disease. Herz 2009, 34, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Zeller, T.; Waldeyer, C.; Ojeda, F.; Schnabel, R.B.; Schäfer, S.; Altay, A.; Lackner, K.J.; Anker, S.D.; Westermann, D.; Blankenberg, S.; et al. Adverse Outcome Prediction of Iron Deficiency in Patients with Acute Coronary Syndrome. Biomolecules 2018, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Traghella, I.; Mastorci, F.; Alessia, P.; Pingitore, A.; Vassalle, C. Nontraditional Cardiovascular Biomarkers and Risk Factors: Rationale and Future Perspectives. Biomolecules 2018, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Zeller, T.; Altay, A.; Waldeyer, C.; Appelbaum, S.; Ojeda, F.; Ruhe, J.; Schnabel, R.B.; Lackner, K.J.; Blankenberg, S.; Karakas, M. Prognostic Value of Iron-Homeostasis Regulating Peptide Hepcidin in Coronary Heart Disease—Evidence from the Large AtheroGene Study. Biomolecules 2018, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [PubMed]
- De Domenico, I.; Ward, D.M.; Kaplan, J. Hepcidin regulation: ironing out the details. J. Clin. Investig. 2007, 117, 1755–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enko, D.; Wagner, H.; Kriegshauser, G.; Kimbacher, C.; Stolba, R.; Worf, E.; Halwachs-Baumann, G. Hepcidin-25 vs. conventional clinical biomarkers in the diagnosis of functional iron deficiency. Eur. J. Haematol. 2015, 95, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation 2005, 111, 3481–8348. [Google Scholar] [CrossRef] [PubMed]
- Isoda, M.; Hanawa, H.; Watanabe, R.; Yoshida, T.; Toba, K.; Yoshida, K.; Kojima, M.; Otaki, K.; Hao, K.; Ding, L.; et al. Expression of the peptide hormone hepcidin increases in cardiomyocytes under myocarditis and myocardial infarction. J. Nutr. Biochem. 2010, 21, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Merle, U.; Fein, E.; Gehrke, S.G.; Stremmel, W.; Kulaksiz, H. The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology 2007, 148, 2663–2668. [Google Scholar] [CrossRef] [PubMed]
- Simonis, G.; Mueller, K.; Schwarz, P.; Wiedemann, S.; Adler, G.; Strasser, R.H.; Kulaksiz, H. The iron-regulatory peptide hepcidin is upregulated in the ischemic and in the remote myocardium after myocardial infarction. Peptides 2010, 31, 1786–1790. [Google Scholar] [CrossRef] [PubMed]
- Florian, A.; Ludwig, A.; Rösch, S.; Yildiz, H.; Klumpp, S.; Sechtem, U.; Yilmaz, A. Positive effect of intravenous iron-oxide administration on left ventricular remodelling in patients with acute ST-elevation myocardial infarction—A cardiovascular magnetic resonance (CMR) study. Int. J. Cardiol. 2014, 73, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Dziegala, M.; Kasztura, M.; Kobak, K.; Bania, J.; Banasiak, W.; Ponikowski, P.; Jankowska, E.A. Influence of the availability of iron during hypoxia on the genes associated with apoptotic activity and local iron metabolism in rat H9C2 cardiomyocytes and L6G8C5 skeletal myocytes. Mol. Med. Rep. 2016, 14, 3969–3977. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S.; Wang, Y.; Galy, B.; Korf-Klingebiel, M.; Hirsch, V.; Baru, A.M.; Rostami, F.; Reboll, M.R.; Heineke, J.; Flögel, U.; et al. Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur. Heart J. 2017, 38, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; et al. Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A report from the American Heart Association. Circulation 2016, 133, 447–454. [Google Scholar] [CrossRef] [PubMed]
N | 811 |
Age (years) * | 63.0 (55.0, 68.8) |
Male sex (%) | 78.9 |
BMI (kg/m²) * | 27.2 (25.1, 30.1) |
Smoker (%) | 16.9 |
Diabetes (%) | 22.1 |
Hypertension (%) | 80.1 |
Hyperlipidemia (%) | 79.9 |
History of MI (%) | 45.3 |
Total Cholesterol (mg/dL) * | 193 .0 (163.0, 222.0) |
HDL-C (mg/dL) * | 48.0 (41.0, 57.0) |
LDL-C (mg/dL) * | 120.0 (94.0, 147.0) |
Troponin I (ng/mL) * | 0.1 (0, 10) |
NT-proBNP (pg/mL) * | 148.4 (76.3, 365.4) |
CRP (mg/dL) *# | 2.3 (1.2, 4.7) |
sTfR (mg/L) * | 2.2 (1.7, 2.7) |
Hepcidin (ng/mL) * | 23.2 (15.4, 34.7) |
Hemoglobin (g/dL) * | 14.1 (13.1, 15.0) |
sTfR (p-Value) | Hepcidin (p-Value) | |
---|---|---|
Male gender | −0.10 (0.005) | 0.08 (0.025) |
Age | 0.05 (0.15) | −0.02 (0.62) |
Smoking status | −0.03 (0.41) | −0.03 (0.41) |
Diabetes | 0.07 (0.038) | −0.02 (0.66) |
Hypertension | 0.01 (0.77) | 0.05 (0.14) |
History of MI | −0.04 (0.24) | −0.01 (0.75) |
Hyperlipidemia | −0.04 (0.24) | −0.01 (0.75) |
BMI | 0.06 (0.073) | 0.12 (<0.001) |
Troponin I | 0.10 (0.006) | 0.05 (0.14) |
NT-proBNP | 0.13 (<0.001) | 0.02 (0.66) |
Hemoglobin | 0.02 (0.63) | 0.01 (0.82) |
CRP | 0.17 (<0.001) | 0.24 (<0.001) |
Creatinine | 0.06 (0.074) | 0.06 (0.08) |
eGFR | −0.11 (0.002) | −0.02 (0.58) |
HR | 95% CI | p-Value | |
---|---|---|---|
Model 1 | 0.41 | 0.16–1.10 | 0.076 |
Model 2 | 0.37 | 0.14–0.99 | 0.047 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruhe, J.; Waldeyer, C.; Ojeda, F.; Altay, A.; Schnabel, R.B.; Schäfer, S.; Lackner, K.J.; Blankenberg, S.; Zeller, T.; Karakas, M. Intrinsic Iron Release Is Associated with Lower Mortality in Patients with Stable Coronary Artery Disease—First Report on the Prospective Relevance of Intrinsic Iron Release. Biomolecules 2018, 8, 72. https://doi.org/10.3390/biom8030072
Ruhe J, Waldeyer C, Ojeda F, Altay A, Schnabel RB, Schäfer S, Lackner KJ, Blankenberg S, Zeller T, Karakas M. Intrinsic Iron Release Is Associated with Lower Mortality in Patients with Stable Coronary Artery Disease—First Report on the Prospective Relevance of Intrinsic Iron Release. Biomolecules. 2018; 8(3):72. https://doi.org/10.3390/biom8030072
Chicago/Turabian StyleRuhe, Julia, Christoph Waldeyer, Francisco Ojeda, Alev Altay, Renate B. Schnabel, Sarina Schäfer, Karl J Lackner, Stefan Blankenberg, Tanja Zeller, and Mahir Karakas. 2018. "Intrinsic Iron Release Is Associated with Lower Mortality in Patients with Stable Coronary Artery Disease—First Report on the Prospective Relevance of Intrinsic Iron Release" Biomolecules 8, no. 3: 72. https://doi.org/10.3390/biom8030072
APA StyleRuhe, J., Waldeyer, C., Ojeda, F., Altay, A., Schnabel, R. B., Schäfer, S., Lackner, K. J., Blankenberg, S., Zeller, T., & Karakas, M. (2018). Intrinsic Iron Release Is Associated with Lower Mortality in Patients with Stable Coronary Artery Disease—First Report on the Prospective Relevance of Intrinsic Iron Release. Biomolecules, 8(3), 72. https://doi.org/10.3390/biom8030072