Alcoholic Liver Disease: Role of Cytokines
Abstract
:1. Introduction
2. Alcohol and Cytokines
Refs. | Population/Matrix | Findings: Mean ± Standard Deviation or Median (IQR); |
---|---|---|
[11] | 28 alcoholics, 13 controls/CFS | MCP-1 (pg/mL): Healthy controls 425.7; Alcoholics 455.9 (p = 0.001) IL-1β: no difference |
[12] | 400 human immunodeficiency virus-infected adults with alcohol problems followed prospectively/serum | IL-6 (pg/mL): 2.75 (IQR 1.52–4.81) IL-10 (pg/mL): 5.03 (IQR 3.08–8.20) TNF-α (pg/mL): 7.15 (IQR 4.85–9.70) CRP (mg/mL): 1.48 (IQR 0.60–3.47) Cystatin-C (ng/mL): 0.77 (IQR 0.67–0.91) MCP-1 (pg/mL): 577 (IQR 397–815) Amyloid A (mg/mL): 3.2 (1.8–6.4) |
[13] | 50 cirrhotic patients (60% of alcoholic etiology)/serum | CRP (mg/dL): 0.53 ± 0.21 Lipopolysaccharide-binding protein (ng/mL): 8669 ± 1207 IL-6 (pg/mL): 6.94 ± 3.43 |
[14] | 47 ALD (31 non-cirrhotic and 16 cirrhotic), 18 controls; in serum | TNF-α (pg/mL): Controls 6.12 ± 1.87; ALD Non-cirrhotic: 5.013 ± 2.10; ALD Cirrhotic: 7.18 ± 3.51 IL-4 (ng/mL): Controls 4.62 ± 6.17; ALD Non-cirrhotic: 0.82 ± 1.53; ALD Cirrhotic: 1.89 ± 4.57 IL-6 (pg/mL): Controls 5.94 ± 1.68; ALD Non-cirrhotic: 6.46 ± 4.87; ALD Cirrhotic: 7.79 ± 9.11 IL-10 (pg/mL): Controls 9.00 ± 12.10; ALD Non-cirrhotic: 11.67 ± 24.92; ALD Cirrhotic: 11.71 ± 8.21 IL-13 (pg/mL): Controls 4.06 ± 6.60; ALD Non-cirrhotic: 10.67 ± 19.90; ALD Cirrhotic: 26.42 ± 32.49 IFN-γ (pg/mL): Controls 0.7 ± 0.51; ALD Non-cirrhotic: 6.75 ± 7.64; ALD Cirrhotic: 4.23 ± 2.58 |
[15] | 56 AH patients, 18 age- and sex-matched controls/serum | CRP (mg/mL): Controls 0.36 ± 1.11; AH day 0: 3.68 ± 6.09 (p < 0.001); AH day 15: 1.34 ± 1.87 (p < 0.001) IL-8 (pg/mL): Controls 6.75 ± 1.79; AH day 0: 57.80 ± 97.05 (p < 0.005 vs. control); AH day 15: 26.60 ± 35.15 (p < 0.005 vs. control); IL-10 (pmol/L): Controls 8.22 ± 10.69; AH day 0: 5.13 ± 0.59 (p < 0.001 vs. control); AH day 15: 5.90 ± 4.10 (p < 0.001 vs. control) IL-4 (ng/mL): Controls 2.28 ± 1.72; AH day 0: 6.88 ± 10.20 (p < 0.05 vs. control); AH day 15: 27.49 ± 42.90 (p < 0.05 vs. control) IFN-γ (pg/mL): Controls 0.66 ± 0.50; AH day 0: 4.74 ± 12.60 (p < 0.05 vs. control); AH day 15: 2.94 ± 3.68 (p < 0.05 vs. control) TNF-α (pg/mL): Controls 5.83 ± 1.77; AH day 0: 7.22 ± 7.21; AH day 15: 6.97 ± 3.84 IL-6 (pg/mL): Controls 5.77 ± 1.40; AH day 0: 39.82 ± 81.85; AH day 15: 11.87 ± 21.38 Malondialdehyde: Controls 1.31 ± 0.69; AH day 0: 8.34 ± 6.76 (p < 0.001 vs. control); AH day 15: 7.16 ± 5.38 (p < 0.001 vs. control) |
[16] | 45 stable patients with alcoholic cirrhosis (16 with Child A stage, 19 with Child B stage and 10 with Child C stage), 12 healthy controls; in serum | MCP-1 (pg/mL): Controls 460 (IQR 376–617); Child A stage: 305 (IQR 139–365); Child B: 220 (IQR 169–277) (p<0.05 vs. controls and Child A); Child C: 174 (IQR 99–271) (p < 0.05 vs. controls and Child A) TNF-α (pg/mL): Controls 3.9 (IQR 3.5–6.5) ); Child A stage: 5.6 (IQR 3.4–27.8); Child B: 5.0 (IQR 2.8–33.2); Child C: 7.2 (IQR 4.2–16.8) IL-6 (pg/mL): Controls 24.2 (IQR 1.2–43.1); Child A stage: 23.1 (IQR 8.9–78.2); Child B: 30.3 (IQR 12.4–95.6); Child C: 35.8 (IQR 22.8–85.6) IL-8 (pg/mL): Controls 18 (IQR 8–36) ); Child A stage: 50.3 (IQR 21.2–77.9); Child B: 49.0 (IQR 14.3–80.2); Child C: 94.8 (IQR 46.2–261.4) VEGF (pg/mL): Controls 265 (IQR 96–740) ); Child A stage: 732 (IQR 386–846); Child B: 405 (IQR 97–716); Child C: 429 (IQR 249–599) hsCRP (mg/L): Controls 1.6 (IQR 1.1–5.1) ); Child A stage: 3.6 (IQR 2.1–8.9); Child B: 5.0 (IQR 1.4–7.0); Child C: 8.2 (IQR 7.3–12.8) (p < 0.05 vs. controls and Child B) |
[17] | 24 AH patients (5 severe and 19 non-severe disease), 20 healthy controls/plasma | IL-6 (pg/mL): Controls <7.8; Severe AH: 504 ± 681; Non-severe AH: 25 ± 32 (p < 0.001 vs. severe AH) IL-8 (pg/mL): Controls <15.6; Severe AH: 216 ± 304; Non-severe AH: 37 ± 77 (p < 0.05 vs. severe AH) TNF-α (pg/mL): Controls <15.6; ; Severe AH: 29 ± 18; Non-severe AH:17 ± 6 (p < 0.005 vs. severe AH) |
[18] | 33 ALD cirrhosis, 24 healthy controls/serum | sTNF-R55 (pg/mL): Controls 1.28 ± 0.12; ALD: 5.94 ± 0.48 (p < 0.001); sIL-2R (pg/mL): Controls 545.33 ± 37.30; ALD: 953.06 ± 85.03 (p < 0.001) |
[19] | 94 ALD (17 steatosis, 37 AH; 40 cirrhosis), 35 abstainers | IL-12 pg/mL: Controls 39.3 ± 8.3; Steatosis: 74.4 ± 26.2; AH: 163.1 ± 57.8 |
[20] | 24 alcoholic patients; hepatic mRNA expression | TNF-α: fibrosis (F3/F4) 1.74 ± 0.27; (F0/F1):1 ± 0.16 (p = 0.039) TGF-β: fibrosis (F3/F4) 2.33 ± 0.17; (F0/F1):1 ± 0.16 (p = 0.0001) Fas ligand: fibrosis (F3/F4) 1.55 ± 0.13; (F0/F1); 1.55 ± 0.13 (p = 0.007) |
[21] | 43 patients with ALD cirrhosis (29 compensated and 14 de-compensated), 30 healthy controls; in plasma | TNF-α (pg/mL): Controls 46 ± 10.0; cirrhosis 30.2 ± 2.10 (p < 0.05 vs. control); De-compensated cirrhosis; 24.5 ± 1.9 (p < 0.05 vs. control and vs. compensated) IL-6 (pg/mL): Controls 33.11 ± 2.06; cirrhosis 41.06 ± 4.57 (p < 0.05 vs. control): De-compensated cirrhosis 53.5 ± 4.8 (p < 0.05 vs. control and vs. compensated) CRP (mg/L): Controls 6.99 ± 0.98; cirrhosis: 20.07 ± 13.90 (p < 0.05 vs. control); De-compensated cirrhosis: 24.9 ± 15.0 (p < 0.05 vs. control) |
3. Alcohol and Chemokines
4. Alcoholic Hepatitis and Lipopolysaccharides
5. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | alcoholic liver disease |
AH | alcoholic hepatitis |
CI | confidence interval |
HCC | hepatocellular carcinoma |
HCV | hepatitis C virus |
HR | hazard ratio |
hsCRP | high-sensitivity C-reactive protein |
IL | interleukin |
IFN | interferon |
LBP | lipopolysaccharide-binding protein |
LPS | lipopolysaccharide |
OR | odds ratio |
TGF | transforming growth factor |
TLR | Toll-like receptor |
TNF | tumor necrosis factor |
References
- Zimmerman, H.J. The evolution of alcoholic cirrhosis. Med. Clin. N. Am. 1955, 39, 249–251. [Google Scholar]
- Neuman, M.G. Cytokines and inflamed liver. Clin. Biochem. 1999, 33, 601–605. [Google Scholar]
- Neuman, M.G. Mechanism of alcoholic liver disease. Clin. Biochem. 2001, 34, 163–167. [Google Scholar] [CrossRef]
- Neuman, M.G. Cytokines in alcoholic liver. Alcohol Res. Health 2003, 27, 307–316. [Google Scholar] [PubMed]
- Ishak, K.G.; Zimmerman, H.J.; Ray, M.B. Alcoholic liver disease: Pathologic, pathogenetic and clinical aspects. Alcohol Clin. Exp. Res. 1991, 15, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitch, J.H. Morphology of alcoholic liver disease. Clin. Liver Dis. 2005, 9, 37–53. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, R.S.; Dasarathy, S.; McCullough, A.J. Alcoholic liver disease. Hepatology 2010, 51, 307–28. [Google Scholar] [CrossRef] [PubMed]
- Pares, A.; Caballeria, J.; Bruguera, M.; Torres, M.; Rodes, J. Histologic course of alcoholic hepatitis: Influence of abstinence, sex and extent of hepatic damage. J. Hepatol. 1986, 2, 33–42. [Google Scholar] [CrossRef]
- Decker, K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur. J. Biochem. 1990, 192, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Neuman, M.G.; French, S.W.; French, B.A.; Seitz, H.K.; Cohen, L.B.; Mueller, S.; Osna, N.A.; Kharbanda, K.K.; Seth, D.; Bautista, A.; et al. Alcoholic and nonalcoholic steatohepatitis. Exp. Mol. Pathol. 2014, 97, 492–510. [Google Scholar] [CrossRef] [PubMed]
- Umhau, J.C.; Schwandt, M.; Solomon, M.G.; Yuan, P.; Nugent, A.; Zarate, C.A.; Drevets, W.C.; Hall, S.D.; George, D.T.; Heilig, M. Cerebrospinal fluid monocyte chemoattractant protein-1 in alcoholics: Support for a neuroinflammatory model of chronic alcoholism. Alcohol Clin. Exp. Res. 2014, 38, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Fuster, D.; Cheng, D.M.; Quinn, E.K.; Armah, K.A.; Saitz, R.; Freiberg, M.S.; Samet, J.H.; Tsui, J.I. Inflammatory cytokines and mortality in a cohort of HIV-infected adults with alcohol problems. AIDS 2014, 28, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Reiberger, T.; Ferlitsch, A.; Payer, B.A.; Mandorfer, M.; Heinisch, B.B.; Hayden, H.; Lammert, F.; Trauner, M.; Peck-Radosavljevic, M.; Vogelsang, H. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J. Hepatol. 2013, 58, 911–921. [Google Scholar] [CrossRef] [PubMed]
- González-Reimers, E.; Santolaria-Fernández, F.; Medina-García, J.A.; González-Pérez, J.M.; de la Vega-Prieto, M.J.; Medina-Vega, L.; Martín-González, C.; Durán-Castellón, M.C. TH-1 and TH-2 cytokines in stable chronic alcoholics. Alcohol Alcohol. 2012, 47, 390–396. [Google Scholar] [CrossRef] [PubMed]
- González-Reimers, E.; Sánchez-Pérez, M.J.; Santolaria-Fernández, F.; Abreu-González, P.; de la Vega-Prieto, M.J.; Viña-Rodríguez, J.; Alemán-Valls, M.R.; Rodríguez-Gaspar, M. Changes in cytokine levels during admission and mortality in acute alcoholic hepatitis. Alcohol 2012, 46, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, C.; Andersen, O.; Krag, A.; Bendtsen, F.; Møller, S. High-sensitivity C-reactive protein levels predict survival and are related to haemodynamics in alcoholic cirrhosis. Eur. J. Gastroenterol. Hepatol. 2012, 24, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Uemura, M.; Matsuyama, T.; Matsumoto, M.; Ishizashi, H.; Kato, S.; Morioka, C.; Fujimoto, M.; Kojima, H.; Yoshiji, H.; et al. Potential role of enhanced cytokinemia and plasma inhibitor on the decreased activity of plasma ADAMTS13 in patients with alcoholic hepatitis: Relationship to endotoxemia. Alcohol Clin. Exp. Res. 2010, 34, S25–S33. [Google Scholar] [CrossRef] [PubMed]
- Díez-Ruiz, A.; García-Saura, P.L.; García-Ruiz, P.; González-Calvin, J.L.; Gallego-Rojo, F.; Fuchs, D. Bone mineral density, bone turnover markers and cytokines in alcohol-induced cirrhosis. Alcohol Alcohol. 2010, 45, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Tung, K.H.; Huang, Y.S.; Yang, K.C.; Perng, C.L.; Lin, H.C.; Lee, S.D. Serum interleukin-12 levels in alcoholic liver disease. J. Chin. Med. Assoc. 2010, 73, 67–71. [Google Scholar] [CrossRef]
- Lavallard, V.J.; Bonnafous, S.; Patouraux, S.; Saint-Paul, M.C.; Rousseau, D.; Anty, R.; le Marchand-Brustel, Y.; Tran, A.; Gual, P. Serum markers of hepatocyte death and apoptosis are non invasive biomarkers of severe fibrosis in patients with alcoholic liver disease. PLoS ONE 2011, 6, e17599. [Google Scholar] [CrossRef] [PubMed]
- Zuwała-Jagiełło, J.; Pazgan-Simon, M.; Simon, K.; Warwas, M. Advanced oxidation protein products and inflammatory markers in liver cirrhosis: A comparison between alcohol-related and HCV-related cirrhosis. Acta Biochim. Pol. 2011, 58, 59–65. [Google Scholar] [PubMed]
- Friedman, S.L. Molecular regulation of hepatic fibrosis, and integrated cellular response to tissue injury. J. Biol. Chem. 2000, 275, 2247–2250. [Google Scholar] [CrossRef] [PubMed]
- Neuman, M.G.; Schmilovitz-Weiss, H.; Hilzenrat, N.; Bourliere, M.; Marcellin, P.; Trepo, C.; Mazulli, T.; Moussa, G.; Patel, A.; Baig, A.A.; et al. Markers of inflammation and fibrosis in alcoholic hepatitis and viral hepatitis C. Int. J. Hepatol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Sowa, J.P.; Atmaca, Ö.; Kahraman, A.; Schlattjan, M.; Lindner, M.; Sydor, S.; Scherbaum, N.; Lackner, K.; Gerken, G.; Heider, D.; et al. Non-invasive separation of alcoholic and non-alcoholic liver disease with predictive modeling. PLoS ONE 2014, 9, e101444. [Google Scholar] [CrossRef] [PubMed]
- Chatzipanagiotou, S.; Kalykaki, M.; Tzavellas, E.; Karaiskos, D.; Paparrigopoulos, T.; Liappas, A.; Nicolaou, C.; Michalopoulou, M.; Zoga, M.; Boufidou, F.; et al. Alteration of biological markers in alcohol-dependent individuals without liver disease during the detoxification therapy. In Vivo 2010, 24, 325–328. [Google Scholar] [PubMed]
- Roy, N.; Mukhopadhyay, I.; Das, K.; Pandit, P.; Majumder, P.P.; Santra, A.; Datta, S.; Banerjee, S.; Chowdhury, A. Genetic variants of TNFα, IL10, IL1β, CTLA4 and TGFβ1 modulate the indices of alcohol-induced liver injury in East Indian population. Gene 2012, 509, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Park, S.K.; Kwon, O.S.; Won, I.S.; Kim, D.K.; Jung, Y.K.; Ku, Y.S.; Kim, Y.S.; Choi, D.J.; Kim, J.H. Genetic polymorphism at codon 10 of the transforming growth factor-β1 gene inpatients with alcoholic liver cirrhosis. Korean J. Hepatol. 2011, 17, 37–43. [Google Scholar] [CrossRef] [PubMed]
- McClain, C.J.; Hill, D.B.; Schmidt, J.; Diehl, A.M. Cytokines and alcoholic liver disease. Semin Liver Dis. 1993, 13, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Xu, M. Chemokines and alcoholic hepatitis: Are chemokines good therapeutic targets? Gut 2014, 63, 1683–1684. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, A.D.; Lee, R.W.; Collins, P.L.; McCune, C.A. Molecular targets in the treatment of alcoholic hepatitis. World J. Gastroenterol. 2012, 18, 5504–5513. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, M.; Miquel, R.; Colmenero, J.; Moreno, M.; García-Pagán, J.C.; Bosch, J.; Arroyo, V.; Ginès, P.; Caballería, J.; Bataller, R. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 2009, 136, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- Affò, S.; Dominguez, M.; Lozano, J.J.; Sancho-Bru, P.; Rodrigo-Torres, D.; Morales-Ibanez, O.; Moreno, M.; Millán, C.; Loaeza-del-Castillo, A.; Altamirano, J.; et al. Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut 2013, 62, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Affò, S.; Morales-Ibanez, O.; Rodrigo-Torres, D.; Altamirano, J.; Blaya, D.; Dapito, D.H.; Millán, C.; Coll, M.; Caviglia, J.M.; Arroyo, V.; et al. CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut 2014, 63, 1782–1792. [Google Scholar] [CrossRef] [PubMed]
- Voican, C.S.; Njiké-Nakseu, M.; Boujedidi, H.; Barri-Ova, N.; Bouchet-Delbos, L.; Agostini, H.; Maitre, S.; Prévot, S.; Cassard-Doulcier, A.M.; Naveau, S.; et al. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 2015, 35, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Patouraux, S.; Bonnafous, S.; Voican, C.S.; Anty, R.; Saint-Paul, M.C.; Rosenthal-Allieri, M.A.; Agostini, H.; Njike, M.; Barri-Ova, N.; Naveau, S.; et al. The osteopontin level in liver, adipose tissue and serum is correlated with fibrosis in patients with alcoholic liver disease. PLoS ONE 2012, 7, e35612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Ibanez, O.; Domínguez, M.; Ki, S.H.; Marcos, M.; Chaves, J.F.; Nguyen-Khac, E.; Houchi, H.; Affò, S.; Sancho-Bru, P.; Altamirano, J.; et al. Human and experimental evidence supporting a role for osteopontin in alcoholic hepatitis. Hepatology 2013, 58, 1742–1756. [Google Scholar] [CrossRef] [PubMed]
- Nischalke, H.D.; Berger, C.; Lutz, P.; Langhans, B.; Wolter, F.; Eisenhardt, M.; Krämer, B.; Kokordelis, P.; Glässner, A.; Müller, T.; et al. Influence of the CXCL1 rs4074 A allele on alcohol induced cirrhosis and HCC inpatients of European descent. PLoS ONE 2013, 8, e80848. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Benkdane, M.; Teixeira-Clerc, F.; Bonnafous, S.; Louvet, A.; Lafdil, F.; Pecker, F.; Tran, A.; Gual, P.; Mallat, A.; et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 2014, 59, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, V.; Gabbert, C.; Raina, A.; Li, H.; Malik, S.; DeLany, J.P.; Behari, J. Stratification of risk of death in severe acute alcoholic hepatitis using a panel of adipokines and cytokines. Alcohol Clin. Exp. Res. 2014, 38, 2712–2721. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, P.; Chen, W.C.; Schnabl, B. The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease. Front. Physiol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Bode, C.; Bode, J.C. Activation of the innate immune system and alcoholic liver disease: Effects of ethanol per se or enhanced intestinal translocation of bacterial toxins induced by ethanol? Alcohol Clin. Exp. Res. 2005, 29, S166–S171. [Google Scholar] [CrossRef]
- Chassaing, B.; Etienne-Mesmin, L.; Gewirtz, A.T. Microbiota-liver axis in hepatic disease. Hepatology 2014, 59, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Correia, J.; Soldau, K.; Christen, U.; Tobias, P.S.; Ulevitch, R.J. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 2001, 276, 21129–21135. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Takeuchi, O.; Fujita, T.; Inoue, J.; Mühlradt, P.F.; Sato, S.; Hoshino, K.; Akira, S. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 2001, 167, 5887–5894. [Google Scholar] [CrossRef] [PubMed]
- Jampana, S.C.; Khan, R. Pathogenesis of alcoholic hepatitis: Role of inflammatory signaling and oxidative stress. World J. Hepatol. 2011, 3, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Stärkel, P.; Turner, J.R.; Ho, S.B.; Schnabl, B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 2015, 61, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Barve, S.; Kirpich, I.A.; McClain, C.J. Tumor necrosis factor alpha-induced receptor 1 signaling in alcoholic liver disease: A gut reaction? Hepatology 2015, 61, 754–756. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S.; Nobili, V.; Alisi, A. Toll-like receptor-mediated signaling cascade as a regulator of the inflammation network during alcoholic liver disease. World J. Gastroenterol. 2014, 20, 16443–16451. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, E.A.; Gillevet, P.M.; Rangwala, H.; Sikaroodi, M.; Naqvi, A.; Engen, P.A.; Kwasny, M.; Lau, C.K.; Keshavarzian, A. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest Liver Physiol. 2012, 302, G966–G978. [Google Scholar] [CrossRef] [PubMed]
- Markwick, L.J.; Riva, A.; Ryan, J.M.; Cooksley, H.; Palma, E.; Tranah, T.H.; Manakkat Vijay, G.K.; Vergis, N.; Thursz, M.; Evans, A.; et al. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology 2015, 148, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.; Polvorosa, M.A.; Gonzalez-Quintela, A.; Marcos, M.; Pastor, I.; Cerceño, M.L.H.; Orfao, A.; Laso, F.J. Decreased peripheral blood CD4+/CD25+ regulatory T cells in patients with alcoholic hepatitis. Alcohol Clin. Exp. Res. 2013, 37, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Sandahl, T.D.; Grønbaek, H.; Møller, H.J.; Støy, S.; Thomsen, K.L.; Dige, A.K.; Agnholt, J.; Hamilton-Dutoit, S.; Thiel, S.; Vilstrup, H. Hepatic macrophage activation and the LPS pathway in patients with alcoholic hepatitis: A prospective cohort study. Am. J. Gastroenterol. 2014, 109, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuman, M.G.; Maor, Y.; Nanau, R.M.; Melzer, E.; Mell, H.; Opris, M.; Cohen, L.; Malnick, S. Alcoholic Liver Disease: Role of Cytokines. Biomolecules 2015, 5, 2023-2034. https://doi.org/10.3390/biom5032023
Neuman MG, Maor Y, Nanau RM, Melzer E, Mell H, Opris M, Cohen L, Malnick S. Alcoholic Liver Disease: Role of Cytokines. Biomolecules. 2015; 5(3):2023-2034. https://doi.org/10.3390/biom5032023
Chicago/Turabian StyleNeuman, Manuela G., Yaakov Maor, Radu M. Nanau, Ehud Melzer, Haim Mell, Mihai Opris, Lawrence Cohen, and Stephen Malnick. 2015. "Alcoholic Liver Disease: Role of Cytokines" Biomolecules 5, no. 3: 2023-2034. https://doi.org/10.3390/biom5032023
APA StyleNeuman, M. G., Maor, Y., Nanau, R. M., Melzer, E., Mell, H., Opris, M., Cohen, L., & Malnick, S. (2015). Alcoholic Liver Disease: Role of Cytokines. Biomolecules, 5(3), 2023-2034. https://doi.org/10.3390/biom5032023