Therapeutic Convergence in Neurodegeneration: Natural Products, Drug Repurposing, and Biomolecular Targets
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
MS | Multiple sclerosis |
SCA1 | Spinocerebellar ataxia type 1 |
ACAT1 | Acyl-CoA:cholesterol acyltransferase 1 |
ABCA1 | ATP-binding cassette transporter A1 |
LXR | Liver X receptor |
PMCA | Protein misfolding cyclic amplification |
TNFAIP3 | Tumor necrosis factor alpha-induced protein 3 |
EGR1 | Early growth response protein 1 |
TSPO | Translocator protein |
IgG | Immunoglobulin G |
References
- Pathak, N.; Vimal, S.K.; Tandon, I.; Agrawal, L.; Hongyi, C.; Bhattacharyya, S. Neurodegenerative disorders of alzheimer, parkinsonism, amyotrophic lateral sclerosis and multiple sclerosis: An early diagnostic approach for precision treatment. Metab. Brain Dis. 2022, 37, 67–104. [Google Scholar] [CrossRef]
- Scheckel, C.; Aguzzi, A. Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet. 2018, 19, 405–418. [Google Scholar] [CrossRef]
- Matilla-Dueñas, A.; Goold, R.; Giunti, P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum 2008, 7, 106–114. [Google Scholar] [CrossRef]
- Vicidomini, C.; Borbone, N.; Roviello, V.; Roviello, G.N.; Oliviero, G. Summary of the Current Status of DNA Vaccination for Alzheimer Disease. Vaccines 2023, 11, 1706. [Google Scholar] [CrossRef]
- Miller, J.H.; Das, V. Potential for treatment of neurodegenerative diseases with natural products or synthetic compounds that stabilize microtubules. Curr. Pharm. Des. 2020, 26, 4362–4372. [Google Scholar] [CrossRef]
- Rasool, M.; Malik, A.; Qureshi, M.S.; Manan, A.; Pushparaj, P.N.; Asif, M.; Qazi, M.H.; Qazi, A.M.; Kamal, M.A.; Gan, S.H. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Altern. Med. 2014, 2014, 979730. [Google Scholar] [CrossRef]
- Leuci, R.; Brunetti, L.; Poliseno, V.; Laghezza, A.; Loiodice, F.; Tortorella, P.; Piemontese, L. Natural compounds for the prevention and treatment of cardiovascular and neurodegenerative diseases. Foods 2020, 10, 29. [Google Scholar] [CrossRef]
- Falanga, A.P.; Piccialli, I.; Greco, F.; D’Errico, S.; Nolli, M.G.; Borbone, N.; Oliviero, G.; Roviello, G.N. Nanostructural Modulation of G-Quadruplex DNA in Neurodegeneration: Orotate Interaction Revealed Through Experimental and Computational Approaches. J. Neurochem. 2025, 169, e16296. [Google Scholar] [CrossRef]
- Vicidomini, C.; Cioffi, F.; Broersen, K.; Roviello, V.; Riccardi, C.; Montesarchio, D.; Capasso, D.; Gaetano, S.D.; Musumeci, D.; Roviello, G.N. Benzodifurans for biomedical applications: BZ4, a selective anti-proliferative and anti-amyloid lead compound. Future Med. Chem. 2019, 11, 285–302. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.R.; Supti, F.A.; Dhar, P.S.; Shohag, S.; Ferdous, J.; Shuvo, S.K.; Akter, A.; Hossain, M.S.; Sharma, R. Exploring the therapeutic effect of neurotrophins and neuropeptides in neurodegenerative diseases: At a glance. Mol. Neurobiol. 2023, 60, 4206–4231. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Du, Y.-F.; Chen, L. Neuropeptides exert neuroprotective effects in Alzheimer’s disease. Front. Mol. Neurosci. 2019, 11, 493. [Google Scholar] [CrossRef]
- Huynh Krumeich, T.N.P. Targeting the Cholesterol Storage Enzyme ACAT1/SOAT1 in Brain Cells and Mouse Model: A Novel Approach to Address Aging and APOE4-Related Neuroinflammation. Ph.D. Thesis, Dartmouth College, Hanover, NH, USA, 2024. [Google Scholar]
- Zhou, Y.; Miles, J.R.; Tavori, H.; Lin, M.; Khoshbouei, H.; Borchelt, D.R.; Bazick, H.; Landreth, G.E.; Lee, S.; Fazio, S. PMP22 regulates cholesterol trafficking and ABCA1-mediated cholesterol efflux. J. Neurosci. 2019, 39, 5404–5418. [Google Scholar] [CrossRef] [PubMed]
- Saá, P.; Cervenakova, L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res. 2015, 207, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, P.; Torrent, J.; Prigent, S.; Granata, V.; Pauwels, K.; Pastore, A.; Rezaei, H.; Zagari, A. Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2013, 1832, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Alves, C.; Soledade, F.; Martins, A.; Pinteus, S.; Gaspar, H.; Alfonso, A.; Pedrosa, R. Marine-derived components: Can they be a potential therapeutic approach to Parkinson’s disease? Mar. Drugs 2023, 21, 451. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Z.; Cui, W. Marine-derived natural compounds for the treatment of Parkinson’s disease. Mar. Drugs 2019, 17, 221. [Google Scholar] [CrossRef]
- Fakhri, S.; Abdian, S.; Zarneshan, S.N.; Akkol, E.K.; Farzaei, M.H.; Sobarzo-Sánchez, E. Targeting mitochondria by plant secondary metabolites: A promising strategy in combating Parkinson’s disease. Int. J. Mol. Sci. 2021, 22, 12570. [Google Scholar] [CrossRef]
- Kesharwani, A.; Sree, B.K.; Singh, N.; Gajbhiye, R.L.; Murti, K.; Peraman, R.; Pandey, K.; Limoli, C.L.; Velayutham, R.; Parihar, V.K. Dehydrozingerone Improves Mood and Memory in Diabetic Mice via Modulating Core Neuroimmune Genes and Their Associated Proteins. ACS Pharmacol. Transl. Sci. 2025, 8, 1694–1710. [Google Scholar] [CrossRef]
- Weinstock, M. Role of Oxidative Stress and Neuroinflammation in the Etiology of Alzheimer’s Disease: Therapeutic Options. Antioxidants 2025, 14, 769. [Google Scholar] [CrossRef]
- Weinreb, O.; Amit, T.; Bar-Am, O.; BH Youdim, M. Ladostigil: A novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr. Drug Targets 2012, 13, 483–494. [Google Scholar] [CrossRef]
- Zohar, K.; Lezmi, E.; Reichert, F.; Eliyahu, T.; Rotshenker, S.; Weinstock, M.; Linial, M. Temporal shifts in microRNAs signify the inflammatory state of primary murine microglial cells. Int. J. Mol. Sci. 2025, 26, 5677. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Rojas, D.F.; de Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Valarezo, E.; Ledesma-Monteros, G.; Jaramillo-Fierro, X.; Radice, M.; Meneses, M.A. Antioxidant Application of Clove (Syzygium aromaticum) Essential Oil in Meat and Meat Products: A Systematic Review. Plants 2025, 14, 1958. [Google Scholar] [CrossRef]
- Sargsyan, T.; Simonyan, H.M.; Stepanyan, L.; Tsaturyan, A.; Vicidomini, C.; Pastore, R.; Guerra, G.; Roviello, G.N. Neuroprotective Properties of Clove (Syzygium aromaticum): State of the Art and Future Pharmaceutical Applications for Alzheimer’s Disease. Biomolecules 2025, 15, 452. [Google Scholar] [CrossRef]
- Uchewa, O.O.; Egwuagu, C.B.; Ibegbu, A.O. Clove oil as a neuromodulator in environmental cadmium cognitive impairment on the prefrontal cortex of Wistar rats. J. Trace Elem. Miner. 2025, 11, 100212. [Google Scholar] [CrossRef]
- Wang, A.; Since, M.; Dallemagne, P.; Rochais, C. Implication of Central β2 Adrenergic Receptor for the Development of Novel Drugs Against Alzheimer’s Disease. Arch. Der Pharm. 2025, 358, e2400750. [Google Scholar] [CrossRef]
- Roviello, G.; Cioffi, C.; Moccia, M.; Gillick-Healy, M.W.; Kelly, B.G.; Adamo, M.F.A. Synthesis of active pharmaceutical ingredient atomoxetine via desulfurative halogenation. Tetrahedron Lett. 2025, 171–172, 155800. [Google Scholar] [CrossRef]
- Levey, A.I.; Qiu, D.; Zhao, L.; Hu, W.T.; Duong, D.M.; Higginbotham, L.; Dammer, E.B.; Seyfried, N.T.; Wingo, T.S.; Hales, C.M. A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain 2022, 145, 1924–1938. [Google Scholar] [CrossRef]
- Saez-Calveras, N.; Stuve, O. The role of the complement system in Multiple Sclerosis: A review. Front. Immunol. 2022, 13, 970486. [Google Scholar] [CrossRef]
- Garton, T.; Gadani, S.P.; Gill, A.J.; Calabresi, P.A. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024, 112, 3231–3251. [Google Scholar] [CrossRef] [PubMed]
- Ripolone, M.; Lucchini, V.; Ronchi, D.; Fagiolari, G.; Bordoni, A.; Fortunato, F.; Mondello, S.; Bonato, S.; Meregalli, M.; Torrente, Y. Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. J. Neurosci. Res. 2018, 96, 1576–1585. [Google Scholar] [CrossRef]
- Tejwani, L.; Lim, J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cell. Mol. Life Sci. 2020, 77, 4015–4029. [Google Scholar] [CrossRef]
- Pulagam, K.R.; Colás, L.; Padro, D.; Plaza-García, S.; Gómez-Vallejo, V.; Higuchi, M.; Llop, J.; Martín, A. Evaluation of the novel TSPO radiotracer [18F] VUIIS1008 in a preclinical model of cerebral ischemia in rats. EJNMMI Res. 2017, 7, 93. [Google Scholar] [CrossRef]
- Salerno, S.; Viviano, M.; Baglini, E.; Poggetti, V.; Giorgini, D.; Castagnoli, J.; Barresi, E.; Castellano, S.; Da Settimo, F.; Taliani, S. TSPO radioligands for neuroinflammation: An overview. Molecules 2024, 29, 4212. [Google Scholar] [CrossRef]
- Uzuegbunam, B.C.; Rummel, C.; Librizzi, D.; Culmsee, C.; Hooshyar Yousefi, B. Radiotracers for Imaging of Inflammatory Biomarkers TSPO and COX-2 in the Brain and in the Periphery. Int. J. Mol. Sci. 2023, 24, 17419. [Google Scholar] [CrossRef]
- Herholz, K.; Carter, S.; Jones, M. Positron emission tomography imaging in dementia. Br. J. Radiol. 2007, 80, S160–S167. [Google Scholar] [CrossRef]
Disease/Condition | Key Pathological Features | Therapeutic Strategies/Compounds |
---|---|---|
Alzheimer’s disease | Neuronal vulnerability, metabolic stress, proteotoxicity, protein misfolding | Syzygium aromaticum (clove), adrenergic receptor-targeting drugs, antioxidant and neurotransmitter support |
Parkinson’s disease | Mitochondrial dysfunction, dopaminergic neuron loss | Dehydrozingerone and its dimer (in Drosophila), marine/plant-derived bioactives |
Prion disorders | Protein misfolding, cross-species infectivity | Methylene blue |
Multiple sclerosis | Myelin debris, cholesterol ester accumulation, immune dysregulation | ACAT1 inhibition, ABCA1-mediated cholesterol efflux via LXR pathway |
Spinocerebellar ataxia type 1 | Purkinje cell degeneration, motor coordination loss | Genetic, pharmacological, and cellular therapies |
Aging brain | Lipid metabolism dysregulation, neuroinflammation, mitochondrial stress, protein misfolding | Natural compounds, synthetic agents, drug repurposing |
Alzheimer’s disease | Cholesterol accumulation, immune activation | Ladostigil (modulates TNFAIP3 and EGR1), ACAT1 inhibition |
Neuronal vulnerability, metabolic stress, proteotoxicity, protein misfolding | Syzygium aromaticum, adrenergic receptor-targeting drugs, antioxidant and neurotransmitter support |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicidomini, C.; Roviello, G.N. Therapeutic Convergence in Neurodegeneration: Natural Products, Drug Repurposing, and Biomolecular Targets. Biomolecules 2025, 15, 1333. https://doi.org/10.3390/biom15091333
Vicidomini C, Roviello GN. Therapeutic Convergence in Neurodegeneration: Natural Products, Drug Repurposing, and Biomolecular Targets. Biomolecules. 2025; 15(9):1333. https://doi.org/10.3390/biom15091333
Chicago/Turabian StyleVicidomini, Caterina, and Giovanni N. Roviello. 2025. "Therapeutic Convergence in Neurodegeneration: Natural Products, Drug Repurposing, and Biomolecular Targets" Biomolecules 15, no. 9: 1333. https://doi.org/10.3390/biom15091333
APA StyleVicidomini, C., & Roviello, G. N. (2025). Therapeutic Convergence in Neurodegeneration: Natural Products, Drug Repurposing, and Biomolecular Targets. Biomolecules, 15(9), 1333. https://doi.org/10.3390/biom15091333