Approach to a Child with Hypophosphatemia
Abstract
1. Phosphates and Their Role in the Body’s Homeostasis
1.1. Phosphate Demand and Turnover in the Human Body
1.2. Role of Phosphate in the Human Body
2. Mechanisms of Phosphate Homeostasis
2.1. Parathyroid Hormone
2.2. Calcitriol–1,25(OH)2D
2.3. Fibroblast Growth Factor 23
3. Symptoms of Hypophosphatemia
4. Diagnostic Tests in the Diagnosis of Hypophosphatemia
4.1. Overview of Laboratory Tests
4.2. Assessment of Serum Phosphate Concentration
4.3. Assessment of Urinary Phosphate Excretion
4.4. Assessment of FG23 Concentration
4.5. Molecular Studies
4.6. Imaging Studies
5. Causes of Hypophosphatemia
6. Non-Renal Causes of Hypophosphatemia
6.1. Hypophosphatemia Secondary to Insufficient Supply or Impaired Absorption of Phosphates
6.2. Loss of Phosphates During Renal Replacement Therapy
6.3. Hypophosphatemia Due to Intracellular Shift
7. Renal Causes of Hypophosphatemia
7.1. PTH-Dependent Renal Causes
7.1.1. Primary Hyperparathyroidism
7.1.2. Calcipenic Rickets
7.2. PTH- and FGF23-Independent Renal Causes
7.2.1. Hypophosphatemia Due to SLC34A1 and SLC34A3 Pathogenic Variants
7.2.2. Fanconi Syndrome
7.3. FGF23-Dependent Renal Causes
7.3.1. Tumor-Induced Osteomalacia
7.3.2. Cutaneous Skeletal Hypophosphatemia Syndrome
7.3.3. Iron-Induced Hypophosphatemia
7.3.4. X-Linked Hypophosphatemia
7.3.5. Autoantibodies Against PHEX
8. Treatment of Hypophosphatemia
8.1. Causative Treatment
8.2. Symptomatic Treatment
8.3. Burosumab
8.4. Limitations of Available Treatment Methods and New Therapies on the Horizon
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, R.; Mukherjee-Roy, N.; Gattineni, J. The role of fibroblast growth factor 23 in regulation of phosphate balance. Pediatr. Nephrol. 2024, 39, 3439–3451. [Google Scholar] [CrossRef]
- Wagner, C.A. The basics of phosphate metabolism. Nephrol. Dial. Transplant. 2024, 39, 190–201. [Google Scholar] [CrossRef]
- Ito, N.; Hidaka, N.; Kato, H. The pathophysiology of hypophosphatemia. Best Pract. Res. Clin. Endocrinol. Metab. 2024, 38, 101851. [Google Scholar] [CrossRef] [PubMed]
- Saurette, M.; Alexander, R.T. Intestinal phosphate absorption: The paracellular pathway predominates? Exp. Biol. Med. 2019, 244, 646–654. [Google Scholar] [CrossRef]
- Perumal, N.L.; Padidela, R. Phosphate Homeostasis and Disorders of Phosphate Metabolism. Curr. Pediatr. Rev. 2024, 20, 412–425. [Google Scholar] [CrossRef]
- Murray, S.L.; Wolf, M. Calcium and Phosphate Disorders: Core Curriculum 2024. Am. J. Kidney Dis. 2024, 83, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Christov, M.; Jüppner, H. Phosphate homeostasis disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 685–706. [Google Scholar] [CrossRef] [PubMed]
- Lafage-Proust, M.H.; Magne, D. Biology of bone mineralization and ectopic calcifications: The same actors for different plays. Arch. Pediatr. 2024, 31, 4s3–4s12. [Google Scholar] [CrossRef]
- Peacock, M. Phosphate Metabolism in Health and Disease. Calcif. Tissue Int. 2021, 108, 3–15. [Google Scholar] [CrossRef]
- Robinson, M.E.; AlQuorain, H.; Murshed, M.; Rauch, F. Mineralized tissues in hypophosphatemic rickets. Pediatr. Nephrol. 2020, 35, 1843–1854. [Google Scholar] [CrossRef]
- Kamenický, P.; Briot, K.; Munns, C.F.; Linglart, A. X-linked hypophosphataemia. Lancet 2024, 404, 887–901. [Google Scholar] [CrossRef]
- Khundmiri, S.J.; Murray, R.D.; Lederer, E. PTH and Vitamin D. Compr. Physiol. 2016, 6, 561–601. [Google Scholar] [CrossRef]
- Bezerra, C.N.; Girardi, A.C.; Carraro-Lacroix, L.R.; Rebouças, N.A. Mechanisms underlying the long-term regulation of NHE3 by parathyroid hormone. Am. J. Physiol. Ren. Physiol. 2008, 294, F1232–F1237. [Google Scholar] [CrossRef]
- Balcells, M.E.; Yokobori, N.; Hong, B.Y.; Corbett, J.; Cervantes, J. The lung microbiome, vitamin D, and the tuberculous granuloma: A balance triangle. Microb. Pathog. 2019, 131, 158–163. [Google Scholar] [CrossRef]
- Yamashita, T.; Yoshioka, M.; Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commun. 2000, 277, 494–498. [Google Scholar] [CrossRef]
- Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 2000, 26, 345–348. [CrossRef]
- Bär, L.; Stournaras, C.; Lang, F.; Föller, M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett. 2019, 593, 1879–1900. [Google Scholar] [CrossRef]
- Gohil, A.; Imel, E.A. FGF23 and Associated Disorders of Phosphate Wasting. Pediatr. Endocrinol. Rev. 2019, 17, 17–34. [Google Scholar] [PubMed]
- Ho, B.B.; Bergwitz, C. FGF23 signalling and physiology. J. Mol. Endocrinol. 2021, 66, R23–R32. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Bardet, C.; Prié, D. Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism 2020, 103s, 153865. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Aizawa, H.; Shiraki-Iida, T.; Nagai, R.; Kuro-o, M.; Nabeshima, Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun. 1998, 242, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Zhang, J.; Quiñones, H.; Griffith, C.; Kuro-o, M.; Moe, O.W. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 2011, 22, 124–136. [Google Scholar] [CrossRef]
- Shroff, R. Phosphate is a vascular toxin. Pediatr. Nephrol. 2013, 28, 583–593. [Google Scholar] [CrossRef]
- Imel, E.A. Congenital Conditions of Hypophosphatemia in Children. Calcif. Tissue Int. 2021, 108, 74–90. [Google Scholar] [CrossRef]
- Haffner, D.; Leifheit-Nestler, M.; Grund, A.; Schnabel, D. Rickets guidance: Part I-diagnostic workup. Pediatr. Nephrol. 2022, 37, 2013–2036. [Google Scholar] [CrossRef]
- Pott, V.; Tietze, H.; Kanzelmeyer, N.; von der Born, J.; Baumann, U.; Mindermann, C.; Suhlrie, A.; Drube, J.; Melk, A.; Das, A.M.; et al. LMS-Based Pediatric Reference Values for Parameters of Phosphate Homeostasis in the HARP Cohort. J. Clin. Endocrinol. Metab. 2024, 109, 668–679. [Google Scholar] [CrossRef]
- Adeli, K.; Higgins, V.; Trajcevski, K.; White-Al Habeeb, N. The Canadian laboratory initiative on pediatric reference intervals: A CALIPER white paper. Crit. Rev. Clin. Lab. Sci. 2017, 54, 358–413. [Google Scholar] [CrossRef] [PubMed]
- Kliegman, R.M.; Geme, J.W.S., III. Nelson Textbook of Pediatrics, 22nd ed.; Elsevier: Amsterdam, The Netherlands, 2024; p. 4896. [Google Scholar]
- Hartley, I.R.; Gafni, R.I.; Roszko, K.L.; Brown, S.M.; de Castro, L.F.; Saikali, A.; Ferreira, C.R.; Gahl, W.A.; Pacak, K.; Blau, J.E.; et al. Determination of FGF23 Levels for the Diagnosis of FGF23-Mediated Hypophosphatemia. J. Bone Miner. Res. 2022, 37, 2174–2185. [Google Scholar] [CrossRef] [PubMed]
- Haffner, D.; Emma, F.; Seefried, L.; Högler, W.; Javaid, K.M.; Bockenhauer, D.; Bacchetta, J.; Eastwood, D.; Biosse Duplan, M.; Schnabel, D.; et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 2025, 21, 330–354. [Google Scholar] [CrossRef]
- Thacher, T.D.; Fischer, P.R.; Pettifor, J.M.; Lawson, J.O.; Manaster, B.J.; Reading, J.C. Radiographic scoring method for the assessment of the severity of nutritional rickets. J. Trop. Pediatr. 2000, 46, 132–139. [Google Scholar] [CrossRef]
- Laurent, M.R.; De Schepper, J.; Trouet, D.; Godefroid, N.; Boros, E.; Heinrichs, C.; Bravenboer, B.; Velkeniers, B.; Lammens, J.; Harvengt, P.; et al. Consensus Recommendations for the Diagnosis and Management of X-Linked Hypophosphatemia in Belgium. Front. Endocrinol. 2021, 12, 641543. [Google Scholar] [CrossRef]
- Beck-Nielsen, S.S.; Mughal, Z.; Haffner, D.; Nilsson, O.; Levtchenko, E.; Ariceta, G.; de Lucas Collantes, C.; Schnabel, D.; Jandhyala, R.; Mäkitie, O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J. Rare Dis. 2019, 14, 58. [Google Scholar] [CrossRef]
- Haffner, D.; Emma, F.; Eastwood, D.M.; Biosse Duplan, M.; Bacchetta, J.; Schnabel, D.; Wicart, P.; Bockenhauer, D.; Santos, F.; Levtchenko, E.; et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 2019, 15, 435–455. [Google Scholar] [CrossRef]
- Kuhlmann, M.K. Phosphate elimination in modalities of hemodialysis and peritoneal dialysis. Blood Purif 2010, 29, 137–144. [Google Scholar] [CrossRef]
- Zhou, X.; He, J.; Zhu, D.; Yao, Z.; Peng, D.; Zhang, X. Relationship between serum phosphate and mortality in critically ill children receiving continuous renal replacement therapy. Front. Pediatr. 2023, 11, 1129156. [Google Scholar] [CrossRef] [PubMed]
- Baeg, S.I.; Lee, K.; Jeon, J.; Jang, H.R. Management for Electrolytes Disturbances during Continuous Renal Replacement Therapy. Electrolytes Blood Press. 2022, 20, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Heung, M.; Mueller, B.A. Prevention of hypophosphatemia during continuous renal replacement therapy-An overlooked problem. Semin. Dial. 2018, 31, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, C.; Anastasopoulou, C. Hungry Bone Syndrome. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Jain, N.; Reilly, R.F. Hungry bone syndrome. Curr. Opin. Nephrol. Hypertens. 2017, 26, 250–255. [Google Scholar] [CrossRef]
- Khalatbari, H.; Cheeney, S.H.E.; Manning, S.C.; Parisi, M.T. Pediatric hyperparathyroidism: Review and imaging update. Pediatr. Radiol. 2021, 51, 1106–1120. [Google Scholar] [CrossRef]
- Stokes, V.J.; Nielsen, M.F.; Hannan, F.M.; Thakker, R.V. Hypercalcemic Disorders in Children. J. Bone Miner. Res. 2017, 32, 2157–2170. [Google Scholar] [CrossRef]
- Levine, M.A. Diagnosis and Management of Vitamin D Dependent Rickets. Front. Pediatr. 2020, 8, 315. [Google Scholar] [CrossRef]
- Carpenter, T.O.; Shaw, N.J.; Portale, A.A.; Ward, L.M.; Abrams, S.A.; Pettifor, J.M. Rickets. Nat. Rev. Dis. Primers 2017, 3, 17101. [Google Scholar] [CrossRef]
- Schlingmann, K.P.; Ruminska, J.; Kaufmann, M.; Dursun, I.; Patti, M.; Kranz, B.; Pronicka, E.; Ciara, E.; Akcay, T.; Bulus, D.; et al. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. J. Am. Soc. Nephrol. 2016, 27, 604–614. [Google Scholar] [CrossRef]
- Janiec, A.; Halat-Wolska, P.; Obrycki, Ł.; Ciara, E.; Wójcik, M.; Płudowski, P.; Wierzbicka, A.; Kowalska, E.; Książyk, J.B.; Kułaga, Z.; et al. Long-term outcome of the survivors of infantile hypercalcaemia with CYP24A1 and SLC34A1 mutations. Nephrol. Dial. Transplant. 2021, 36, 1484–1492. [Google Scholar] [CrossRef]
- Schinke, T.; Oheim, R. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH), a complex disorder in need of precision medicine. Kidney Int. 2024, 105, 927–929. [Google Scholar] [CrossRef] [PubMed]
- Stürznickel, J.; Heider, F.; Delsmann, A.; Gödel, M.; Grünhagen, J.; Huber, T.B.; Kornak, U.; Amling, M.; Oheim, R. Clinical Spectrum of Hereditary Hypophosphatemic Rickets With Hypercalciuria (HHRH). J. Bone Miner. Res. 2022, 37, 1580–1591. [Google Scholar] [CrossRef]
- Bergwitz, C.; Miyamoto, K.I. Hereditary hypophosphatemic rickets with hypercalciuria: Pathophysiology, clinical presentation, diagnosis and therapy. Pflug. Arch. 2019, 471, 149–163. [Google Scholar] [CrossRef]
- Williams, A.A.; Pir Muhammad, A.I.; Ruchi, R.; Ali, R. Managing Ifosfamide-Induced Arginine Vasopressin Resistance: Diagnostic and Treatment Strategies. Cureus 2025, 17, e81236. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ma, T.; Yu, X.; Su, T. Severe Hypophosphatemia as the Initial Presentation of Renal Fanconi’s Syndrome and Distal Renal Tubular Acidosis Related to Zoledronic Acid: A Case Report and Literature Review. Kidney Blood Press. Res. 2023, 48, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Portales-Castillo, I.; Mount, D.B.; Nigwekar, S.U.; Yu, E.W.; Rennke, H.G.; Gupta, S. Zoledronic Acid-Associated Fanconi Syndrome in Patients With Cancer. Am. J. Kidney Dis. 2022, 80, 555–559. [Google Scholar] [CrossRef]
- Gutierrez, J.O.; Zurita, M.F.; Zurita, L.A. Sjögren’s Syndrome Associated with Fanconi’s Syndrome and Osteomalacia. Am. J. Case Rep. 2018, 19, 392–396. [Google Scholar] [CrossRef]
- François, H.; Mariette, X. Renal involvement in primary Sjögren syndrome. Nat. Rev. Nephrol. 2016, 12, 82–93. [Google Scholar] [CrossRef]
- Shimada, T.; Mizutani, S.; Muto, T.; Yoneya, T.; Hino, R.; Takeda, S.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Yamashita, T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl. Acad. Sci. USA 2001, 98, 6500–6505. [Google Scholar] [CrossRef] [PubMed]
- Bowe, A.E.; Finnegan, R.; Jan de Beur, S.M.; Cho, J.; Levine, M.A.; Kumar, R.; Schiavi, S.C. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem. Biophys. Res. Commun. 2001, 284, 977–981. [Google Scholar] [CrossRef]
- Jadhav, S.S.; Shah, R.; Patil, V. Tumor-induced osteomalacia: An overview. Best Pract. Res. Clin. Endocrinol. Metab. 2024, 38, 101834. [Google Scholar] [CrossRef]
- Minisola, S.; Fukumoto, S.; Xia, W.; Corsi, A.; Colangelo, L.; Scillitani, A.; Pepe, J.; Cipriani, C.; Thakker, R.V. Tumor-induced Osteomalacia: A Comprehensive Review. Endocr. Rev. 2023, 44, 323–353. [Google Scholar] [CrossRef]
- Florenzano, P.; Hartley, I.R.; Jimenez, M.; Roszko, K.; Gafni, R.I.; Collins, M.T. Tumor-Induced Osteomalacia. Calcif. Tissue Int. 2021, 108, 128–142. [Google Scholar] [CrossRef]
- Lim, Y.H.; Ovejero, D.; Derrick, K.M.; Collins, M.T.; Choate, K.A. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy. J. Am. Acad. Dermatol. 2016, 75, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Ovejero, D.; Lim, Y.H.; Boyce, A.M.; Gafni, R.I.; McCarthy, E.; Nguyen, T.A.; Eichenfield, L.F.; DeKlotz, C.M.; Guthrie, L.C.; Tosi, L.L.; et al. Cutaneous skeletal hypophosphatemia syndrome: Clinical spectrum, natural history, and treatment. Osteoporos. Int. 2016, 27, 3615–3626. [Google Scholar] [CrossRef]
- Ferre-Sanfrancisco, M.; Del Bosque Granero, I.; Expósito, M.V.; Díaz, M.V. Osteomalacia: A Challenging Diagnosis Adverse Event Associated with Intravenous Ferric Carboxymaltose-A Case Report. Calcif. Tissue Int. 2024, 116, 1. [Google Scholar] [CrossRef] [PubMed]
- Boots, J.M.M.; Quax, R.A.M. High-Dose Intravenous Iron with Either Ferric Carboxymaltose or Ferric Derisomaltose: A Benefit-Risk Assessment. Drug Saf. 2022, 45, 1019–1036. [Google Scholar] [CrossRef]
- Abu-Zaid, A.; Magzoub, D.; Aldehami, M.A.; Behiry, A.A.; Bhagavathula, A.S.; Hajji, R. The Effect of Iron Supplementation on FGF23 in Chronic Kidney Disease Patients: A Systematic Review and Time-Response Meta-Analysis. Biol. Trace Elem. Res. 2021, 199, 4516–4524. [Google Scholar] [CrossRef]
- Ariceta, G.; Beck-Nielsen, S.S.; Boot, A.M.; Brandi, M.L.; Briot, K.; de Lucas Collantes, C.; Emma, F.; Giannini, S.; Haffner, D.; Keen, R.; et al. The International X-Linked Hypophosphatemia (XLH) Registry: First interim analysis of baseline demographic, genetic and clinical data. Orphanet J. Rare Dis. 2023, 18, 304. [Google Scholar] [CrossRef] [PubMed]
- Padidela, R.; Nilsson, O.; Makitie, O.; Beck-Nielsen, S.; Ariceta, G.; Schnabel, D.; Brandi, M.L.; Boot, A.; Levtchenko, E.; Smyth, M.; et al. The international X-linked hypophosphataemia (XLH) registry (NCT03193476): Rationale for and description of an international, observational study. Orphanet J. Rare Dis. 2020, 15, 172. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, Y.; Okamoto, K.; Ogawa, T.; Kato, H.; Irie, K.; Watanabe, S.; Kimura, S.; Hidaka, N.; Kinoshita, Y.; Kobayashi, H.; et al. Acquired Osteomalacia Associated with Autoantibodies against PHEX. New Engl. J. Med. 2025, 392, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Insogna, K.L.; Briot, K.; Imel, E.A.; Kamenický, P.; Ruppe, M.D.; Portale, A.A.; Weber, T.; Pitukcheewanont, P.; Cheong, H.I.; Jan de Beur, S.; et al. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. J. Bone Miner. Res. 2018, 33, 1383–1393. [Google Scholar] [CrossRef]
- Carpenter, T.O.; Whyte, M.P.; Imel, E.A.; Boot, A.M.; Högler, W.; Linglart, A.; Padidela, R.; Van’t Hoff, W.; Mao, M.; Chen, C.Y.; et al. Burosumab Therapy in Children with X-Linked Hypophosphatemia. New Engl. J. Med. 2018, 378, 1987–1998. [Google Scholar] [CrossRef]
- Imel, E.A.; Glorieux, F.H.; Whyte, M.P.; Munns, C.F.; Ward, L.M.; Nilsson, O.; Simmons, J.H.; Padidela, R.; Namba, N.; Cheong, H.I.; et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: A randomised, active-controlled, open-label, phase 3 trial. Lancet 2019, 393, 2416–2427. [Google Scholar] [CrossRef]
- Crotti, C.; Zucchi, F.; Alfieri, C.; Caporali, R.; Varenna, M. Long-term use of burosumab for the treatment of tumor-induced osteomalacia. Osteoporos. Int. 2023, 34, 201–206. [Google Scholar] [CrossRef]
- Brener, R.; Zeitlin, L.; Lebenthal, Y.; Brener, A. Dental health of pediatric patients with X-linked hypophosphatemia (XLH) after three years of burosumab therapy. Front. Endocrinol. 2022, 13, 947814. [Google Scholar] [CrossRef]
- Dodamani, M.H.; Kumar, S.C.; Bhattacharjee, S.; Barnabas, R.; Kumar, S.; Lila, A.R.; Memon, S.S.; Karlekar, M.; Patil, V.A.; Bandgar, T.R. Efficacy and safety of burosumab compared with conventional therapy in patients with X-linked hypophosphatemia: A systematic review. Arch. Endocrinol. Metab. 2024, 68, e230242. [Google Scholar] [CrossRef] [PubMed]
- Kiafzezi, D.; Stamati, A.; Karagiannis, T.; Goulis, D.G.; Christoforidis, A. Burosumab Efficacy and Safety in Patients with X-Linked Hypophosphatemia: Systematic Review and Meta-analysis of Real-World Data. Calcif. Tissue Int. 2024, 115, 229–241. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; He, M.; Li, Y.; Xiao, M.; Ma, H. Efficacy and Safety of Burosumab in X-linked Hypophosphatemia. J. Clin. Endocrinol. Metab. 2023, 109, 293–302. [Google Scholar] [CrossRef]
- André, J.; Zhukouskaya, V.V.; Lambert, A.S.; Salles, J.P.; Mignot, B.; Bardet, C.; Chaussain, C.; Rothenbuhler, A.; Linglart, A. Growth hormone treatment improves final height in children with X-linked hypophosphatemia. Orphanet J. Rare Dis. 2022, 17, 444. [Google Scholar] [CrossRef]
- Meyerhoff, N.; Haffner, D.; Staude, H.; Wühl, E.; Marx, M.; Beetz, R.; Querfeld, U.; Holder, M.; Billing, H.; Rabl, W.; et al. Effects of growth hormone treatment on adult height in severely short children with X-linked hypophosphatemic rickets. Pediatr. Nephrol. 2018, 33, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Fuente, R.; Gil-Peña, H.; Claramunt-Taberner, D.; Hernández-Frías, O.; Fernández-Iglesias, Á.; Alonso-Durán, L.; Rodríguez-Rubio, E.; Hermida-Prado, F.; Anes-González, G.; Rubio-Aliaga, I.; et al. MAPK inhibition and growth hormone: A promising therapy in XLH. FASEB J. 2019, 33, 8349–8362. [Google Scholar] [CrossRef]
- Shin, M.H.; Kim, J.; Lim, S.A.; Kim, J.; Lee, K.M. Current Insights into Combination Therapies with MAPK Inhibitors and Immune Checkpoint Blockade. Int. J. Mol. Sci. 2020, 21, 2531. [Google Scholar] [CrossRef]
- Zhukouskaya, V.V.; Jauze, L.; Charles, S.; Leborgne, C.; Hilliquin, S.; Sadoine, J.; Slimani, L.; Baroukh, B.; van Wittenberghe, L.; Danièle, N.; et al. A novel therapeutic strategy for skeletal disorders: Proof of concept of gene therapy for X-linked hypophosphatemia. Sci. Adv. 2021, 7, eabj5018. [Google Scholar] [CrossRef]
- Bittmann, S.; Moschuring-Alieva, E.; Luchter, E.; Villalon, G. Current and Future Therapeutical Aspects of X-Linked Hypophosphatemia in Children With Special Attention to Klotho/Fibroblast Growth Factor 23 System. J. Clin. Med. Res. 2022, 14, 436–439. [Google Scholar] [CrossRef]
- Imel, E.A.; Liu, Z.; Coffman, M.; Acton, D.; Mehta, R.; Econs, M.J. Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Iron-Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets. J. Bone Miner. Res. 2020, 35, 231–238. [Google Scholar] [CrossRef] [PubMed]
Product | Phosphorus Content Per 100 g |
---|---|
Wheat bran | 950 mg |
Sesame | 720 mg |
Parmesan | 694 mg |
Gouda cheese | 546 mg |
Cheddar cheese | 545 mg |
Egg yolk of a hen | 542 mg |
Soybeans (grain) | 603 mg |
Turkey | 200 mg |
Red caviar | 490 mg |
Black caviar | 465 mg |
Shrimp | 225 mg |
Horseradish (root) | 130 mg |
Garlic | 100 mg |
Oxalis (green) | 90 mg |
Positive Regulator | Negative Regulator |
---|---|
Increased serum phosphate | Low serum phosphate |
Increased 1,25(OH)2D (calcitriol) | Low serum calcium |
Parathyroid hormone (PTH) increases FGF23 secretion; however, it activates the cleavage of the intact molecule into C-terminal and N-terminal FGF23 peptides. | Low 1,25(OH)2D (calcitriol) |
Deficiency of PHEX | Loss-of-function variants in GALNT3 |
Deficiency of DMP1 | |
Deficiency of FAM20C | |
O-glycosylation by GALNT3 | |
Iron deficiency Erythropoetin Inflammation Hypoxia |
Site of Action | Parathyroid Hormone | Calcitriol | Fibroblast Growth Factor 23 |
---|---|---|---|
Intestine | - | Increases intestinal phosphate absorption by increasing expression of sodium-phosphate cotransporter (NaPi2b) | - |
Kidney | Increases urinary phosphate wasting by decreasing expression of sodium-phosphate cotransporters (NaPi2a and NaPi2c) | - | Increases urinary phosphate wasting by decreasing expression of sodium-phosphate cotransporters (NaPi2a and NaPi2c) |
Bone | Increases bone resorption by stimulating osteoblasts to produce RANKL, which, in turn, binds to RANK and stimulates osteoclasts | Increases bone resorption | - |
Muscles | Nervous System | Skeletal System | Other Systems |
---|---|---|---|
|
|
|
|
Blood |
|
Urine |
|
Indicators calculated |
|
Age (Years) | Boys | Girls |
---|---|---|
Nelson Textbook of Pediatrics, 22nd Edition [28] | ||
Neonates | 1.55–2.65 | 1.55–2.65 |
Infants and toddlers < 3 years | 1.25–2.10 | 1.25–2.10 |
Children 4–11 years | 1.20–1.80 | 1.20–1.80 |
Adolescents >12 years | 0.90–1.80 | 0.90–1.80 |
The HARP cohort [26] | ||
0 years | 1.58–2.24 | 1.65–2.25 |
1 year | 1.46–2.08 | 1.52–2.10 |
3 years | 1.29–1.87 | 1.34–1.88 |
7 years | 1.25–1.89 | 1.24–1.81 |
10 years | 1.22–1.90 | 1.17–1.78 |
12 years | 1.19–1.90 | 1.10–1.72 |
15 years | 1.04–1.75 | 0.92–1.51 |
18 years | 0.73–1.39 | 0.79–1.36 |
The CALIPER cohort [27] | ||
0–14 days | 1.80–3.40 | 1.80–3.40 |
15 days–<1 year | 1.54–2.72 | 1.54–2.72 |
1 year–<5 years | 1.38–2.19 | 1.38–2.19 |
5 years–<13 years | 1.33–1.92 | 1.33–1.92 |
13 years–<16 years | 1.14–1.99 | 1.02–1.79 |
16 years–<19 years | 0.95–1.62 | 0.95–1.62 |
Extrarenal Causes (Low Urinary Phosphate Loss) | Renal Causes (High Urinary Phosphate Loss) | |||
---|---|---|---|---|
Intestinal Losses or Other Losses | Intracellular Shift | Intrinsic Renal Loss | PTH-Dependent Renal Loss | FGF23-Dependent Renal Loss |
Vitamin D deficiency | Insulin | Congenital Fanconi syndrome | Primary hyperparathyroidism | X-linked hypophosphatemia |
Diarrhea | Refeeding syndrome | Acquired Fanconi syndrome | Vitamin-D-deficient rickets | Autosomal dominant hypophosphatemic rickets |
Malnutrition | Alkalosis | Pathogenic variants in SCL34A1, SCL34A3, and CLCN5 | Vitamin-D-dependent rickets | Autosomal recessive hypophosphatemic rickets 1–3 |
Phosphate binders, antacids | Hungry bone syndrome | Jansen metaphyseal chondrodysplasia | Tumor-induced osteomalacia | |
Ferric carboxymaltose infusion | ||||
Autoantibodies against PHEX protein |
Ca | P | ALP | PTH | 25OHD | 1,25(OH)2D | iFGF23 | UCa | UP | TmP/GFR |
---|---|---|---|---|---|---|---|---|---|
N/↑ | ↓ | ↑↑↑ | N | N | N/↑ | N | Variable | ↓ | N |
Ca | P | ALP | PTH | 25OHD | 1,25(OH)2D | iFGF23 | UCa | UP | TmP/GFR |
---|---|---|---|---|---|---|---|---|---|
↑ | ↓ | ↑ | ↑ | N | N/↑ | N | ↑ | ↑ | ↓ |
Disease | Ca | P | ALP | PTH | 25OHD | iFGF23 | 1,25(OH)2D | UCa | UP | TmP/GFR |
---|---|---|---|---|---|---|---|---|---|---|
Vit. D deficiency | N/↓ | N/↓ | ↑↑↑ | ↑↑↑ | ↓↓↓ | N | Variable | ↓ | Variable | ↓ |
VDDR1A | ↓ | N/↓ | ↑↑↑ | ↑↑↑ | N | N/↓ | ↓ | ↓ | Variable | ↓ |
VDDR1B | ↓ | N/↓ | ↑↑↑ | ↑↑↑ | ↓↓ | N | Variable | ↓ | Variable | ↓ |
VDDR2A | ↓ | N/↓ | ↑↑↑ | ↑↑↑ | N | N/↓ | ↑↑ | ↓ | Variable | ↓ |
VDDR2B | ↓ | N/↓ | ↑↑↑ | ↑↑↑ | N | N | ↑↑ | ↓ | Variable | ↓ |
VDDR3 | ↓ | ↓ | ↑↑↑ | ↑↑↑ | ↓ | N | ↓ | ↓ | Variable | ↓ |
Disease and OMIM Number | Gene | Inheritance | Estimated Prevalence According to OMIM and ORPHANET | Mechanism |
---|---|---|---|---|
VDDR1A, #264700 | CYP27B1 | AR | 1–5/10,000 | Disturbed 1,25(OH)2D synthesis |
VDDR1B, #600081 | CYP2R1 | AR | 1–5/10,000 | Disturbed 25(OH)D synthesis |
VDDR2A, #277440 | VDR | AR | Unknown | Disturbed signal transduction from VDR |
VDDR2B, #600785 | HNRNPC | AR | Unknown | Disturbed signal transduction from VDR |
VDDR3, #619073 | CYP3A4 | AD | Unknown | Excessive breakdown of 1,25(OH)2D |
Disease and OMIM Number | The Gene Responsible | Estimated Prevalence According to OMIM and ORPHANET | Characteristic Features |
---|---|---|---|
Infantile hypercalcemia-2 (HCINF2; #616963) Fanconi renal-tubular syndrome 2 (FRTS; #613388) Hypophosphatemic nephrolithiasis/osteoporosis-1 (NPHLOP1; 612286) | SLC34A1 | <1/1,000,000 | Loss of sodium-phosphate cotransporter NaPi2a function in the proximal tubule, decreased FGF23 concentration, high 1,25(OH)2D concentration |
Hereditary hypophosphatemic rickets with hypercalciuria (HHHR); #241530 | SLC34A3 | 1/250,000 | Loss of sodium-phosphate cotransporter NaPi2c function in the proximal tubule, decreased FGF23 concentration, high 1,25(OH)2D concentration |
Proteinuria, low molecular weight, with hypercalciuric nephrocalcinosis (#308990) | CLCN5 | 1/400,000–1,000,000 | Loss of CLCN5 function in the proximal tubule |
Genetically determined Fanconi syndrome (e.g., cystinosis—#219800, #219900) | CTNS and others | 1–9/100,000 | Extrarenal symptoms may occur, such as the accumulation of cystine in the eye. |
Acquired Fanconi syndrome | - | Unknown | Heavy metal poisoning, a condition after treatment with, among others, ifosfamide, cisplatin, and aminoglycoside antibiotics |
Ca | P | ALP | PTH | 25OHD | 1,25(OH)2D | iFGF23 | UCa | UP | TmP/GFR |
---|---|---|---|---|---|---|---|---|---|
N | ↓/N | ↑ | N/↑ | N | ↑/N | N/↓ | ↑/N | ↑ | ↓ |
Inherited causes | Cystinosis Dent’s disease Fanconi–Bickel syndrome Galactosemia Glycogenosis type I (von Gierke disease) Hereditary fructose intolerance Mitochondrial cytopathies Lowe’s syndrome Lysinuric protein intolerance Tyrosinemia type I Wilson’s disease Idiopathic Fanconi syndrome |
Acquired causes | Acute tubular necrosis Acute/chronic tubulointerstitial nephritis Sjögren syndrome Medications (aminoglycosides, tetracyclines, tenofovir, adefovir, cidofovir, didanosine, lamivudine, stavudine, ifosfamide, cisplatin, valproate, salicylates) Iron-chelating agents (deferasirox) Heavy-metal exposure (cadmium, lead, mercury, chromium) Monoclonal gammapathies Renal transplantation |
Ca | P | ALP | PTH | 25OHD | 1,25(OH)2D | iFGF23 | UCa | UP | TmP/GFR |
---|---|---|---|---|---|---|---|---|---|
N/↓ | ↓ | ↑ | N/↑ | N | N/↓ | N/↓ | ↑ | ↑ | ↓ |
The Disease OMIM Number | The Gene Responsible | Estimated Prevalence According to OMIM and ORPHANET | Characteristic Features |
---|---|---|---|
X-linked hypophosphatemic rickets (XLH) #307800 | PHEX | 1–9/100,000 | Beginning in childhood, periapical lesions, rickets, enthesopathies, hearing loss, and often hypocalciuria |
Autosomal dominant hypophosphatemic rickets (ADHR) #193100 | FGF23 | <1/1,000,000 | Onset at various ages may be accompanied by periods of exacerbation and remission. |
Autosomal recessive hypophosphatemic rickets, autosomal recessive hypophosphatemia ARHR1, #241520; ARHR2, #613312; | DMP1, ENPP1 | 1/64,000–1/250,000 | ARHR1—phenotype similar to HXL, ENPP1—may manifest as generalized arterial calcification in infancy |
Raine syndrome #259775 | FAM20C | <1/1,000,000 | Often lethal in the perinatal period, osteosclerosis |
Tumor-induced osteomalacia (TIO) | In 60% of cases, the FN1-FGFR1 or FN1-FGF1 fusion gene | 0.1–0.7/100,000 | Different ages of onset, bone pain, pseudo-fractures, weakness, and tumors may be small and difficult to locate |
McCune-Albright syndrome #174800 | GNAS1 | 1/100,000–1/1,000,000 | Aminoaciduria, proteinuria, fibrous dysplasia, café au lait spots, premature puberty |
Cutaneous skeletal hypophosphatemia syndrome (CSHS) | RAS somatic mutation | Unknown, less than 100 cases reported | Skin marks, neurological defects |
intravenous iron supply | n/a | n/a | Intravenous iron induces an increase in FGF23, pseudofractures |
Autoantibodies against PHEX protein | n/a | 5 cases reported | Described in Japanese adults, phenotype similar to TIO, other autoimmune diseases may be present |
Ca | P | ALP | PTH | 25OHD | 1,25(OH)2D | iFGF23 | UCa | UP | TmP/GFR |
---|---|---|---|---|---|---|---|---|---|
N | ↓ | ↑ | N/↑ | N | N/↓ | ↑/N | ↓ | ↑ | ↓ |
Disease | Treatment Modality |
---|---|
Malabsorption due to celiac disease | Gluten-free diet |
Malabsorption due to Giardiasis | Tinidazol, metronidazole |
Malabsorption due to Whipple’s disease | Long-term antibiotic therapy—penicillin/ceftriaxone followed by trimethoprim/sulphamethoxazole |
Hypophosphatemia due to removal in renal replacement therapy | Modification of dialysis protocol |
Fanconi syndrome due to cystinosis | Cysteamine |
Fanconi syndrome due to Sjögren disease | Immunosuppressive treatment |
Parathyroid hormone-producing adenoma | Parathyroidectomy |
Tumor-induced osteomalacia | Surgical treatment/burosumab |
X-linked hypophosphatemia | Burosumab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonowicz, A.; Lipiński, P.; Popow, M.; Skrzypczyk, P. Approach to a Child with Hypophosphatemia. Biomolecules 2025, 15, 1321. https://doi.org/10.3390/biom15091321
Antonowicz A, Lipiński P, Popow M, Skrzypczyk P. Approach to a Child with Hypophosphatemia. Biomolecules. 2025; 15(9):1321. https://doi.org/10.3390/biom15091321
Chicago/Turabian StyleAntonowicz, Agnieszka, Patryk Lipiński, Michał Popow, and Piotr Skrzypczyk. 2025. "Approach to a Child with Hypophosphatemia" Biomolecules 15, no. 9: 1321. https://doi.org/10.3390/biom15091321
APA StyleAntonowicz, A., Lipiński, P., Popow, M., & Skrzypczyk, P. (2025). Approach to a Child with Hypophosphatemia. Biomolecules, 15(9), 1321. https://doi.org/10.3390/biom15091321