Cerebrospinal Fluid Erythrocyte Burden Amplifies the Impact of PTAU on Entorhinal Degeneration in Alzheimer’s Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
Variable | AD (n = 18) | CN (n = 49) |
---|---|---|
APOE4 carriers (≥1 ε4) | 83.3% | 26.5% |
APOE4 copies | ||
0 copies | 16.7% | 73.5% |
1 copy | 55.6% | 24.5% |
2 copies | 27.7% | 2.0% |
CDR-SB (mean, SD) | 4.31, 2.00 | 0.02, 0.10 |
NPI-Q total (mean, SD) | 2.56, 3.05 | 0.35, 0.86 |
Hypertension | 83.3% | 77.6% |
Diabetes | 33.3% | 34.7% |
Mean ± Stddev |
Cognitively Normal (CN)
(49 Subjects) |
Alzheimer’s Disease (AD)
(18 Subjects) |
---|---|---|
Years of Age | 76.2 ± 4.9 | 73.2 ± 7.2 |
Females | 25 (51%) | 10 (56%) |
Males | 24 (49%) | 8 (44%) |
2.2. Image Processing and Segmentation
- •
- Unzip DICOM files and convert to NIFTI
- •
- Loop over all unprocessed scans, processing 8 in parallel:
- •
- Monitor processing outcome (success, failure, or unusable)
- •
- Log result and replace with the following scan in the queue
2.3. Model Development
- •
- : observation index (row in data)
- •
- : is the intercept (baseline mean when all predictors are zero)
- •
- : are fixed effect coefficients corresponding to main effects and interaction terms
- •
- : is the random intercept for subject j corresponding to observation i and accounts for individual-level variability
- •
- : is the residual error term.
3. Results
3.1. Model Description
- •
- : observation index (row in data)
- •
- : is the intercept (baseline mean when all predictors are zero)
- •
- : are fixed effect coefficients corresponding to main effects and interaction terms
- •
- : is the random intercept for subject j corresponding to observation i and accounts for individual-level variability
- •
- : is the residual error term
3.2. Model Results
3.2.1. Interpretation
Predictor | Coefficient | Std. Error | z-Value | p-Value | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|---|
Intercept | 0.002 | <0.001 | +9.023 | <0.001 | +0.001 | +0.002 |
PTAU | <0.001 | <0.001 | −0.815 | 0.415 | <0.001 | <0.001 |
CTRED | <0.001 | <0.001 | −2.829 | 0.005 | <0.001 | <0.001 |
PTAU: CTRED | <0.001 | <0.001 | +2.845 | 0.004 | <0.001 | <0.001 |
3.2.2. Interpretation for CN Group
3.3. Model Prediction Plots and Interpretation
4. Discussion
4.1. Summary of the Main Findings
4.2. Tau Pathology and Entorhinal Cortex Vulnerability
4.3. Microvascular Dysfunction and Cerebrospinal Fluid (CSF) Erythrocyte Toxicity
Biomarker | Pathological Role | Region Affected | Interaction Effect |
---|---|---|---|
Phosphorylated Tau (PTAU) | Promotes tau aggregation and neurofibrillary tangle formation, impairing axonal transport and causing neurodegeneration. | Primarily medial temporal lobe structures, especially the entorhinal cortex and hippocampus. | Alone, not always significantly associated with volume loss. |
CSF Erythrocyte Burden (CTRED) | Indicates vascular–CSF barrier disruption releases heme iron, causing oxidative stress and inflammation. | Regions with early vascular compromise modulate tau’s effect on the entorhinal cortex. | Amplifies PTAU-related atrophy when elevated, supporting a multi-hit model of neurodegeneration. |
4.4. Microglial Response to Hemolysis
4.5. Iron Metabolism and Oxidative Damage
4.6. Ferroptosis Susceptibility in the Entorhinal Cortex
Mechanism | Description | Implications in Alzheimer’s Disease |
---|---|---|
Heme Toxicity | RBC breakdown releases heme into CSF, promoting oxidative stress via the Fenton reaction. | Exacerbates neurodegeneration when tau pathology is present. |
Iron Overload | Iron accumulation disrupts redox balance, leading to lipid peroxidation and cell death. | Correlates with PTAU-related cortical thinning in the entorhinal cortex. |
Microglial Activation | Triggered by blood products, microglia become overactive, secreting pro-inflammatory cytokines. | May fail to adequately clear hemolytic byproducts, contributing to sustained inflammation and worsening of AD pathology. |
Ferroptosis | Iron-dependent, non-apoptotic cell death pathway driven by lipid peroxidation and reduced GPX4 activity. | Particularly affects entorhinal astrocytes, contributing to early cortical atrophy in AD. |
4.7. Comparison to Previous Literature
4.8. Clinical Implications
4.9. Limitations
4.10. Future Directions
Key Finding | Clinical Implication | Translational Application |
---|---|---|
CTRED is significantly associated with entorhinal cortex atrophy | Monitoring CSF RBC levels may help predict neurodegeneration risk | Use CTRED in biomarker panels for early detection or disease staging |
PTAU alone is not predictive of atrophy | PTAU should not be used in isolation for prognosis | Develop composite biomarker models including PTAU and vascular–CSF markers |
CTRED and PTAU interact to predict greater neurodegeneration | Dual-marker models may better stratify patients for targeted therapies | Test antioxidant, anti-ferroptosis, or vascular stabilizing therapies in PTAU+/CTRED+ patients |
No significant effects observed in CN controls | Supports the specificity of vascular-tau interaction in AD rather than normal aging | Tailor therapeutic interventions to high-risk biomarker profiles. |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
AB | Amyloid Beta |
APC | Article Processing Charge |
CN | Cognitively Normal |
CSF | Cerebrospinal Fluid |
CTRED | Cerebrospinal Fluid Erythrocyte Burden |
DAMP | Danger-Associated Molecular Pattern |
DICOM | Digital Imaging and Communications in Medicine |
EC | Entorhinal Cortex |
GPX4 | Glutathione Peroxidase 4 |
HO-1 | Heme Oxygenase-1 |
LMM | Linear Mixed Effects Model |
MCI | Mild Cognitive Impairment |
MMSE | Mini-Mental State Examination |
MRI | Magnetic Resonance Imaging |
NFT | Neurofibrillary Tangle |
PET | Positron Emission Tomography |
PHF | Paired Helical Filaments |
PTAU | Phosphorylated Tau |
QSM | Quantitative Susceptibility Mapping |
RBC | Red Blood Cell |
ROS | Reactive Oxygen Species |
SAH | Subarachnoid Hemorrhage |
TBI | Traumatic Brain Injury |
T-tau | Total Tau |
VM | Virtual Machine |
XAI | Explainable Artificial Intelligence |
References
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Hattori, H.; Miura, A.; Tanabe, M.; Yamori, Y. Prevalence of Alzheimer’s disease, vascular dementia and dementia with Lewy bodies in a Japanese population. Psychiatry Clin. Neurosci. 2001, 55, 21–25. [Google Scholar] [CrossRef]
- Monteiro, A.R.; Barbosa, D.J.; Remião, F.; Silva, R. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem. Pharmacol. 2023, 211, 115522. [Google Scholar] [CrossRef]
- Otero-Garcia, M.; Mahajani, S.U.; Wakhloo, D.; Tang, W.; Xue, Y.Q.; Morabito, S.; Pan, J.; Oberhauser, J.; Madira, A.E.; Shakouri, T.; et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 2022, 110, 2929–2948.e8. [Google Scholar] [CrossRef]
- Huber, C.M.; Yee, C.; May, T.; Dhanala, A.; Mitchell, C.S. Cognitive Decline in Preclinical Alzheimer’s Disease: Amyloid-Beta versus Tauopathy. J. Alzheimers Dis. 2018, 61, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K. A Review of Fluid Biomarkers for Alzheimer’s Disease: Moving from CSF to Blood. Neurol. Ther. 2017, 6, 15–24. [Google Scholar] [CrossRef]
- Zhang, S.; Crossley, C.A.; Yuan, Q. Neuronal Vulnerability of the Entorhinal Cortex to Tau Pathology in Alzheimer’s Disease. Br. J. Biomed. Sci. 2024, 81, 13169. [Google Scholar] [CrossRef]
- Wang, X.; Huang, W.; Su, L.; Xing, Y.; Jessen, F.; Sun, Y.; Shu, N.; Han, Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 55. [Google Scholar] [CrossRef]
- Karimani, F.; Asgari Taei, A.; Abolghasemi-Dehaghani, M.R.; Safari, M.S.; Dargahi, L. Impairment of entorhinal cortex network activity in Alzheimer’s disease. Front. Aging Neurosci. 2024, 16, 1402573. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, R.; Vamvouras, G.; Lorentzen, L.; Vassiliou, E. Erythrocyte Load in Cerebrospinal Fluid Linked with Hippocampal Atrophy in Alzheimer’s Disease. J. Clin. Med. 2025, 14, 4670. [Google Scholar] [CrossRef]
- Ricci, F.; Martorana, A.; Bonomi, C.G.; Serafini, C.; Mercuri, N.B.; Koch, G.; Motta, C. Effect of Vascular Risk Factors on Blood-Brain Barrier and Cerebrospinal Fluid Biomarkers Along the Alzheimer’s Disease Continuum: A Retrospective Observational Study. J Alzheimers Dis. 2023, 97, 599–607. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. NeuroImage 2012, 62, 774–781. [Google Scholar] [CrossRef]
- Thal, D.R.; Tomé, S.O. The central role of tau in Alzheimer’s disease: From neurofibrillary tangle maturation to the induction of cell death. Brain Res. Bull. 2022, 190, 204–217. [Google Scholar] [CrossRef]
- Lantero Rodriguez, J.; Karikari, T.K.; Suárez-Calvet, M.; Troakes, C.; King, A.; Emersic, A.; Aarsland, D.; Hye, A.; Zetterberg, H.; Blennow, K.; et al. Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol. 2020, 140, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Leuzy, A.; Janelidze, S.; Mattsson-Carlgren, N.; Palmqvist, S.; Jacobs, D.; Cicognola, C.; Stomrud, E.; Vanmechelen, E.; Dage, J.L.; Hansson, O. Comparing the Clinical Utility and Diagnostic Performance of CSF P-Tau181, P-Tau217, and P-Tau231 Assays. Neurology 2021, 97, e1681–e1694. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Pancani, S.; Manca, R.; Mitolo, M.; Baiardi, S.; Massa, F.; Coppola, L.; Franzese, M.; Nicolai, E.; Guerini, F.R.; et al. Role of Blood P-Tau Isoforms (181, 217, 231) in Predicting Conversion from MCI to Dementia Due to Alzheimer’s Disease: A Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 12916. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ortiz, F.; Kac, P.R.; Brum, W.S.; Zetterberg, H.; Blennow, K.; Karikari, T.K. Plasma phospho-tau in Alzheimer’s disease: Towards diagnostic and therapeutic trial applications. Mol. Neurodegener. 2023, 18, 18. [Google Scholar] [CrossRef]
- Goettemoeller, A.M.; Banks, E.; Kumar, P.; Olah, V.J.; McCann, K.E.; South, K.; Ramelow, C.C.; Eaton, A.; Duong, D.M.; Seyfried, N.T.; et al. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. Nat. Commun. 2024, 15, 7918. [Google Scholar] [CrossRef]
- Terni, B.; Boada, J.; Portero-Otin, M.; Pamplona, R.; Ferrer, I. Mitochondrial ATP-synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of Alzheimer’s disease pathology. Brain Pathol. 2010, 20, 222–233. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, Y.; Zhai, Y.; Yuan, Y.; Hu, H.; Meng, X.; Fan, X.; Sun, H.; Li, S. Attenuated iron stress and oxidative stress may participate in anti-seizure and neuroprotective roles of xenon in pentylenetetrazole-induced epileptogenesis. Front. Cell Neurosci. 2022, 16, 1007458. [Google Scholar] [CrossRef]
- Canepa, E.; Fossati, S. Impact of Tau on Neurovascular Pathology in Alzheimer’s Disease. Front. Neurol. 2020, 11, 573324. [Google Scholar] [CrossRef]
- Vogel, J.W.; Iturria-Medina, Y.; Strandberg, O.T.; Smith, R.; Levitis, E.; Evans, A.C.; Hansson, O. Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat. Commun. 2020, 11, 2612. [Google Scholar] [CrossRef]
- Hernández-Frausto, M.; Vivar, C. Entorhinal cortex–hippocampal circuit connectivity in health and disease. Front. Hum. Neurosci. 2024, 18, 1448791. [Google Scholar] [CrossRef]
- Miller, J.F.; Fried, I.; Suthana, N.; Jacobs, J. Repeating spatial activations in human entorhinal cortex. Curr. Biol. 2015, 25, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Ghiso, J.; Tomidokoro, Y.; Revesz, T.; Frangione, B.; Rostagno, A. Cerebral amyloid angiopathy and Alzheimer’s disease. Hirosaki Med. J. 2010, 61, S111–S124. [Google Scholar]
- Dutra, F.F.; Bozza, M.T. Heme on innate immunity and inflammation. Front. Pharmacol. 2014, 5, 115. [Google Scholar] [CrossRef] [PubMed]
- Schallner, N.; Pandit, R.; LeBlanc, R.; Thomas, A.J.; Ogilvy, C.S.; Zuckerbraun, B.S.; Gallo, D.; Otterbein, L.E.; Hanafy, K.A. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J. Clin. Investig. 2015, 125, 2609–2625. [Google Scholar] [CrossRef]
- Zheng, Y.; Tan, X.; Cao, S. The Critical Role of Erythrolysis and Microglia/Macrophages in Clot Resolution After Intracerebral Hemorrhage: A Review of the Mechanisms and Potential Therapeutic Targets. Cell Mol. Neurobiol. 2023, 43, 59–67. [Google Scholar] [CrossRef]
- Zhao, X.; Kruzel, M.; Aronowski, J. Lactoferrin and hematoma detoxification after intracerebral hemorrhage. Biochem. Cell Biol. 2021, 99, 97–101. [Google Scholar] [CrossRef]
- Loane, D.J.; Kumar, A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp. Neurol. 2016, 275 Pt 3, 316–327. [Google Scholar] [CrossRef]
- Zhao, X.; Aronowski, J. Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH. Transl. Stroke Res. 2013, 4, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Chen, C.; Li, S.; Ding, Y.; Zhou, Y.; Mai, F.; Hong, S.; Wu, J.; Yang, Y.; Zhu, Z.; et al. TRIOL attenuates intracerebral hemorrhage injury by bidirectionally modulating microglia- and neuron-mediated hematoma clearance. Redox Biol. 2025, 80, 103487. [Google Scholar] [CrossRef]
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Shen, Y.; Li, H.; Rausch, W.D.; Huang, X. Iron Dyshomeostasis and Ferroptosis: A New Alzheimer’s Disease Hypothesis? Front. Aging Neurosci. 2022, 14, 830569. [Google Scholar] [CrossRef]
- Tran, D.; DiGiacomo, P.; Born, D.E.; Georgiadis, M.; Zeineh, M. Iron and Alzheimer’s Disease: From Pathology to Imaging. Front. Hum. Neurosci. 2022, 16, 838692. [Google Scholar] [CrossRef]
- Majerníková, N.; Marmolejo-Garza, A.; Salinas, C.S.; Luu, M.D.A.; Zhang, Y.; Trombetta-Lima, M.; Tomin, T.; Birner-Gruenberger, R.; Lehtonen, Š.; Koistinaho, J.; et al. The link between amyloid β and ferroptosis pathway in Alzheimer’s disease progression. Cell Death Dis. 2024, 15, 782. [Google Scholar] [CrossRef]
- Majerníková, N.; Marmolejo-Garza, A.; Salinas, C.S.; Luu, M.D.; Zhang, Y.; Trombetta-Lima, M.; Tomin, T.; Birner-Gruenberger, R.; Lehtonen, Š.; Koistinaho, J.; et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci. Transl. Med. 2020, 12, eaau5732. [Google Scholar] [CrossRef]
- Hanseeuw, B.; Jacobs, H.I.; Schultz, A.P.; Buckley, R.F.; Properzi, M.J.; Becker, A.; Farrell, M.E.; Scott, M.R.; Hampton, O.L.; Sanchez, J.S.; et al. Longitudinal hippocampal atrophy is associated with an amyloid-independent entorhinal tauopathy and an amyloid-dependent neocortical tauopathy. Alzheimers Dement. 2020, 16, e045733. [Google Scholar] [CrossRef]
- Antonioni, A.; Raho, E.M.; Manzoli, L.; Koch, G.; Flacco, M.E.; Di Lorenzo, F. Blood phosphorylated Tau181 reliably differentiates amyloid-positive from amyloid-negative subjects in the Alzheimer’s disease continuum: A systematic review and meta-analysis. Alzheimers Dement. 2025, 17, e70068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, R.C.; Vamvouras, G.; Petrou, V.; Papageorgiou, P.S.; Pitsillos, R.; Rivera, L.; Vassiliou, E.; Papageorgiou, S.G.; Solomou, E.E.; for the Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal Fluid Erythrocyte Burden Amplifies the Impact of PTAU on Entorhinal Degeneration in Alzheimer’s Disease. Biomolecules 2025, 15, 1300. https://doi.org/10.3390/biom15091300
Christodoulou RC, Vamvouras G, Petrou V, Papageorgiou PS, Pitsillos R, Rivera L, Vassiliou E, Papageorgiou SG, Solomou EE, for the Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal Fluid Erythrocyte Burden Amplifies the Impact of PTAU on Entorhinal Degeneration in Alzheimer’s Disease. Biomolecules. 2025; 15(9):1300. https://doi.org/10.3390/biom15091300
Chicago/Turabian StyleChristodoulou, Rafail C., Georgios Vamvouras, Vasileia Petrou, Platon S. Papageorgiou, Rafael Pitsillos, Ludwing Rivera, Evros Vassiliou, Sokratis G. Papageorgiou, Elena E. Solomou, and for the Alzheimer’s Disease Neuroimaging Initiative. 2025. "Cerebrospinal Fluid Erythrocyte Burden Amplifies the Impact of PTAU on Entorhinal Degeneration in Alzheimer’s Disease" Biomolecules 15, no. 9: 1300. https://doi.org/10.3390/biom15091300
APA StyleChristodoulou, R. C., Vamvouras, G., Petrou, V., Papageorgiou, P. S., Pitsillos, R., Rivera, L., Vassiliou, E., Papageorgiou, S. G., Solomou, E. E., & for the Alzheimer’s Disease Neuroimaging Initiative. (2025). Cerebrospinal Fluid Erythrocyte Burden Amplifies the Impact of PTAU on Entorhinal Degeneration in Alzheimer’s Disease. Biomolecules, 15(9), 1300. https://doi.org/10.3390/biom15091300