Peroxisome Proliferator-Activated Receptors (PPARs): A Themed Issue in Honor of Prof. Walter Wahli
1. From Vitellogenin to Nuclear Receptor Mechanisms
2. Founding and Expanding the PPAR Field
3. Physiological Breadth: From Tissue Repair to Cancer and Cardiometa-bolism
4. Developmental and Nutritional Axes
5. PPARs as Nutrient-Sensing Transcriptional Hubs Coordinating Inter-Organ Communication and Stress Cytokines
6. About This Special Issue
7. Concluding Remarks
Conflicts of Interest
References
- Wahli, W.; Wyler, T.; Weber, R.; Ryffel, G.U. Size, complexity and abundance of a specific poly(A)-containing RNA of liver from male Xenopus induced to vitellogenin synthesis by estrogen. Eur. J. Biochem. 1976, 66, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Ryffel, G.U.; Wahli, W.; Weber, R. Quantitation of vitellogenin messenger RNA in the liver of male Xenopus toads during primary and secondary stimulation by estrogen. Cell 1977, 11, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Wahli, W.; Dawid, I.B.; Wyler, T.; Jaggi, R.B.; Weber, R.; Ryffel, G.U. Vitellogenin in Xenopus laevis is encoded in a small family of genes. Cell 1979, 16, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Wahli, W.; Dawid, I.B. Isolation of two closely related vitellogenin genes, including their flanking regions, from a Xenopus laevis gene library. Proc. Natl. Acad. Sci. USA 1980, 77, 1437–1441. [Google Scholar] [CrossRef]
- Wahli, W.; Dawid, I.B.; Wyler, T.; Weber, R.; Ryffel, G.U. Comparative analysis of the structural organization of two closely related vitellogenin genes in Xenopus laevis. Cell 1980, 20, 107–117. [Google Scholar] [CrossRef]
- Wahli, W.; Dawid, I.B.; Ryffel, G.U.; Weber, R. Vitellogenesis and the vitellogenin gene family. Science 1981, 212, 298–304. [Google Scholar] [CrossRef]
- Walker, P.; Germond, J.-E.; Brown-Luedi, M.; Givel, F.; Wahli, W. Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Res. 1984, 12, 8611–8626. [Google Scholar] [CrossRef]
- Martinez, E.; Givel, F.; Wahli, W. The estrogen responsive element as an inducible enhancer: DNA sequence requirements and its conversion to a glucocorticoid responsive element. EMBO J. 1987, 6, 3719–3727. [Google Scholar] [CrossRef]
- Martinez, E.; Givel, F.; Wahli, W. A common ancestor DNA motif for invertebrate and vertebrate hormone response elements. EMBO J. 1991, 10, 263–268. [Google Scholar] [CrossRef]
- Martinez, E.; Wahli, W. Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity. EMBO J. 1989, 8, 3781–3791. [Google Scholar] [CrossRef]
- Theulaz, I.; Hipskind, R.; ten Heggeler-Bordier, S.; Green, S.; Kumar, V.; Chambon, P.; Wahli, W. Expression of human estrogen receptor mutants in Xenopus oocytes: Correlation between transcriptional activity and ability to form protein–DNA complexes. EMBO J. 1988, 7, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Green, S.; Kumar, V.; Theulaz, I.; Wahli, W.; Chambon, P. The N-terminal DNA-binding ‘zinc finger’ of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J. 1988, 7, 3037–3044. [Google Scholar] [CrossRef] [PubMed]
- Corthésy, B.; Hipskind, R.; Theulaz, I.; Wahli, W. Estrogen-dependent in vitro transcription from the Xenopus vitellogenin promoter in homologous liver nuclear extracts. Science 1988, 239, 1137–1139. [Google Scholar] [CrossRef] [PubMed]
- Schild, C.; Claret, F.X.; Wahli, W.; Wolffe, A.P. A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro. EMBO J. 1993, 12, 423–433. [Google Scholar] [CrossRef]
- Dreyer, C.; Krey, G.; Keller, H.; Givel, F.; Helftenbein, G.; Wahli, W. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 1992, 68, 879–887. [Google Scholar] [CrossRef]
- Issemann, I.; Green, S. Activation of a Member of the Steroid Hormone Receptor Superfamily by Peroxisome Proliferators. Nature 1990, 347, 645–650. [Google Scholar] [CrossRef]
- Krey, G.; Braissant, O.; L’Horset, F.; Kalkhoven, E.; Perroud, M.; Parker, M.G.; Wahli, W. Fatty acids, eicosanoids and hypolipidaemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 1997, 11, 779–791. [Google Scholar] [CrossRef]
- Kliewer, S.A.; Sundseth, S.S.; Jones, S.A.; Brown, P.J.; Wisely, G.B.; Kobel, C.S.; Devchand, P.; Wahli, W.; Willson, T.M.; Lenhard, J.M.; et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with PPARα and PPARγ. Proc. Natl. Acad. Sci. USA 1997, 94, 4318–4323. [Google Scholar] [CrossRef]
- Devchand, P.R.; Keller, H.; Peters, J.M.; Vazquez, M.; Gonzalez, F.J.; Wahli, W. The PPARα–leukotriene B4 pathway to inflammation control. Nature 1996, 384, 39–43. [Google Scholar] [CrossRef]
- Kersten, S.; Seydoux, J.; Peters, J.M.; Gonzalez, F.J.; Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Investig. 1999, 103, 1489–1498. [Google Scholar] [CrossRef]
- Michalik, L.; Desvergne, B.; Basu-Modak, S.; Escher, P.; Peters, J.M.; Kaya, G.; Gonzalez, F.J.; Zakany, J.; Metzger, D.; Chambon, P.; et al. Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)α and PPARβ mutant mice. J. Cell Biol. 2001, 154, 799–814. [Google Scholar] [CrossRef]
- Chong, H.C.; Tan, M.J.; Philippe, V.; Tan, S.H.; Tan, C.K.; Ku, C.W.; Goh, Y.Y.; Wahli, W.; Michalik, L.; Tan, N.S. Regulation of epithelial–mesenchymal IL-1 signaling by PPARβ/δ is essential for skin homeostasis and wound healing. J. Cell Biol. 2009, 184, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Michalik, L.; Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptors and cancers: Complex stories. Nat. Rev. Cancer 2004, 4, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Takakuwa, R.; Marchand, S.; Dentz, E.; Bornert, J.-M.; Messadeq, N.; Wendling, O.; Mark, M.; Desvergne, B.; Wahli, W.; et al. PPARγ is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl. Acad. Sci. USA 2004, 101, 4543–4547. [Google Scholar] [CrossRef] [PubMed]
- Woldt, E.; Terrand, J.; Mlih, M.; Matz, R.L.; Bruban, V.; Foppolo, S.; El Asmar, Z.; Cholet, M.E.; Ninio, E.; Bednarczyk, A.; et al. PPARγ counteracts LRP1-induced vascular calcification by inhibiting a WNT5A signaling pathway. Nat. Commun. 2012, 3, 1077. [Google Scholar] [CrossRef]
- Schuler, M.; Ali, F.; Chambon, C.; Duteil, D.; Bornert, J.-M.; Tardivel, A.; Desvergne, B.; Wahli, W.; Chambon, P.; Metzger, D. PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity and type 2 diabetes. Cell Metab. 2006, 4, 407–414. [Google Scholar] [CrossRef]
- Planavila, A.; Rodriguez-Calvo, R.; Jové, M.; Michalik, L.; Wahli, W.; Laguna, J.C.; Vázquez-Carrera, M. Peroxisome proliferator-activated receptor β/δ activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc. Res. 2005, 65, 832–841. [Google Scholar] [CrossRef]
- Iglesias, J.; Barg, S.; Yessoufou, A.; Pradevand, S.; McDonald, A.; Bonal, C.; Debril, M.; Metzger, D.; Chambon, P.; Herrera, P.; et al. Modulation of pancreatic β-cell mass and insulin release by PPARβ/δ in mice. J. Clin. Investig. 2012, 122, 4105–4117. [Google Scholar] [CrossRef]
- Leuenberger, N.; Pradervand, S.; Wahli, W. Sumoylated PPARα mediates gender-specific gene repression and protects the liver from estrogen-induced toxicity. J. Clin. Investig. 2009, 119, 3138–3148. [Google Scholar] [CrossRef]
- Rando, G.; Tan, C.K.; Khaled, N.; Montagner, A.; Leuenberger, N.; Bertrand-Michel, J.; Paramalingam, E.; Guillou, H.; Wahli, W. Glucocorticoid receptor–PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism. eLife 2016, 5, e11853. [Google Scholar] [CrossRef]
- Iroz, A.; Montagner, A.; Benhamed, F.; Levavasseur, F.; Polizzi, A.; Anthony, E.; Régnier, M.; Fouché, E.; Lukowicz, C.; Cauzac, M.; et al. A specific ChREBP and PPARα cross-talk is required for the glucose-mediated FGF21 response. Cell Rep. 2017, 21, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Montagner, A.; Polizzi, A.; Fouché, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Régnier, M.; Lukowicz, C.; Benhamed, F.; et al. Liver PPARα is crucial for whole body fatty acid homeostasis and protects from NAFLD. Gut 2016, 65, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Tomas, J.; Mulet, C.; Saffarian, A.; Cavin, J.-B.; Ducroc, R.; Regnault, B.; Tan, C.K.; Duszka, K.; Burcelin, R.; Wahli, W.; et al. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl. Acad. Sci. USA 2016, 113, E5934–E5943. [Google Scholar] [CrossRef] [PubMed]
- Duszka, K.; Ellero-Simatos, S.; Ow, G.S.; Defernez, M.; Tett, A.; Shi, Y.; König, J.; Narbad, A.; Kuznetsov, V.A.; Guillou, H.; et al. Complementary intestinal and microbiome responses to caloric restriction. Sci. Rep. 2018, 8, 11338. [Google Scholar] [CrossRef]
- Lahiri, S.; Kim, H.; Garcia-Perez, I.; Reza, M.M.; Martin, K.A.; Kundu, P.; Cox, L.M.; Selkrig, J.; Posma, J.M.; Zhang, H.; et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci. Transl. Med. 2019, 11, eaan5662. [Google Scholar] [CrossRef]
- Fougerat, A.; Schoiswohl, G.; Polizzi, A.; Régnier, M.; Wagner, C.; Smati, S.; Fougeray, T.; Lippi, Y.; Lasserre, F.; Raho, I.; et al. ATGL-dependent white adipose tissue lipolysis controls hepatocyte PPARα activity. Cell Rep. 2022, 39, 110910. [Google Scholar] [CrossRef]
- Paumelle, R.; Haas, J.T.; Hennuyer, N.; Baugé, E.; Deleye, Y.; Mesotten, D.; Langouche, L.; Vanhoutte, J.; Cudejko, C.; Wouters, K.; et al. Hepatic PPARα is critical in the metabolic adaptation to sepsis. J. Hepatol. 2019, 70, 963–973. [Google Scholar] [CrossRef]
- Aguilar-Recarte, D.; Barroso, E.; Gumà, A.; Pizarro-Delgado, J.; Peña, L.; Ruart, M.; Palomer, X.; Wahli, W.; Vázquez-Carrera, M. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep. 2021, 36, 109501. [Google Scholar] [CrossRef]
- Rostami, A.; Palomer, X.; Pizarro-Delgado, J.; Barroso, E.; Valenzuela-Alcaraz, B.; Crispi, F.; Nistal, J.F.; Hurlé, M.A.; García, R.; Wahli, W.; et al. PPARβ/δ prevents inflammation and fibrosis during diabetic cardiomyopathy. Pharmacol. Res. 2024, 210, 107515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillou, H.; Vázquez-Carrera, M. Peroxisome Proliferator-Activated Receptors (PPARs): A Themed Issue in Honor of Prof. Walter Wahli. Biomolecules 2025, 15, 1276. https://doi.org/10.3390/biom15091276
Guillou H, Vázquez-Carrera M. Peroxisome Proliferator-Activated Receptors (PPARs): A Themed Issue in Honor of Prof. Walter Wahli. Biomolecules. 2025; 15(9):1276. https://doi.org/10.3390/biom15091276
Chicago/Turabian StyleGuillou, Hervé, and Manuel Vázquez-Carrera. 2025. "Peroxisome Proliferator-Activated Receptors (PPARs): A Themed Issue in Honor of Prof. Walter Wahli" Biomolecules 15, no. 9: 1276. https://doi.org/10.3390/biom15091276
APA StyleGuillou, H., & Vázquez-Carrera, M. (2025). Peroxisome Proliferator-Activated Receptors (PPARs): A Themed Issue in Honor of Prof. Walter Wahli. Biomolecules, 15(9), 1276. https://doi.org/10.3390/biom15091276