The Impact of PCSK9 on Diabetic Cardiomyopathy: Mechanisms and Implications
Abstract
1. Introduction
2. Mechanisms of Diabetic Cardiomyopathy
3. Mechanisms of PCSK9
3.1. PCSK9 Biology
3.2. PCSK9 Demographics
3.3. PCSK9 and Lipid Metabolism
3.3.1. HNF1α
3.3.2. SREBP2
3.3.3. CD36
3.4. PCSK9 and Glucose Metabolism
3.4.1. PCSK9 and T2DM
Author | Dose of the Intervention | Year | Number of Participants | Follow-Up (Mean or Median) Years | Inclusion Criteria | Type Randomization | Outcome Change |
---|---|---|---|---|---|---|---|
Imbalzano et al. [89] | Alirocumab/ Evolocumab Varied (see individual trials) | 2023 | 20651(aggregated) | 51 weeks | DM + hypercholesterolemia, RCTs comparing PCSK9i vs. placebo | Meta-analysis of 8 RCTs | MACE 18% ↓; LDL-C, HDL-C, TG, Lp(a), and ApoB ↓. |
Ray et al. [90] | Alirocumab 75 mg every 2 weeks (Q2W), increased to 150 mg if required | 2019 | 413 | 24 weeks | Type 2 Diabetes Mellitus (T2DM), mixed dyslipidemia, LDL-C ≥ 100 mg/dL, ASCVD, on stable maximally tolerated statin therapy | RCT | LDL-C, non-HDL-C, ApoB, and LDL particle number (LDL-PN) ↓ |
Fischer et al. [91] | Alirocumab (75 mg or 150 mg) and Evolocumab (140 mg) | 2021 | 237 | Median 18 months | Age > 18 years; PCSK9 inhibitors (alirocumab or evolocumab) for secondary prevention; Available LDL-C data at baseline and during follow-up for at least 3 months | Observational study | MACE ↓; LDL-C, non-HDL-C, and ApoB ↓ |
Rosenson et al. [92] | Evolocumab 420 mg subcutaneously once a month | 2019 | 421 | 12 weeks | Type 2 diabetes, hyperlipidemia or mixed dyslipidemia, background atorvastatin 20 mg/d | RCT | LDL-C 54.3% ↓ (12 weeks); non-HDL-C, and ApoB ↓. |
Chen et al. [93] | Evolocumab 140 mg every 2 weeks/420 mg monthly | 2019 | 453 | 12 weeks | T2DM with hyperlipidemia, LDL-C ≥ 2.6 mmol/L on statin or ≥3.4 mmol/L without statin | RCT | LDL-C ↓ Non-HDL-C, ApoB100, triglycerides, and Lp(a) ↓; HbA1c and FSG(–) |
Schwartz et al. [16] | Alirocumab (75 mg or 150 mg every 2 weeks) | 2025 | 8107 | Median follow-up of 2.4 years | Patients with recent acute coronary syndrome, elevated lipoproteins, and no diabetes at baseline | RCT | NODM(–) |
Sabatine et al. [94] | Evolocumab 140 mg every 2 weeks or 420 mg monthly | 2017 | 27,564 | 104 weeks | Atherosclerotic cardiovascular disease, LDL-C ≥ 1.8 mmol/L, on statin therapy | RCT | NODM(–) |
Moura et al. [95] | Evolocumab 140 mg every 2 weeks vs. placebo | 2025 | 9388 (No diabetes at baseline) | Median follow-up of 2.3 years | Age 40–85, stable cardiovascular disease, LDL ≥ 70 mg/dL, on statin therapy, no T2D at baseline | RCT | NODM(–) |
González-Lleó et al. [14] | Alirocumab 75 or 150 mg or evolocumab 140 mg every 2 weeks | 2024 | 218 | Mean follow-up of 3.2 years | Patients over 18 years with hypercholesterolemia, including familial hypercholesterolemia (FH), undergoing treatment with PCSK9 inhibitors | Observational study | NODM (2.6%/year); Glycemic parameters(–) |
3.4.2. PCSK9 and Antihyperglycemic Drug
3.4.3. PCSK9 and Atherogenic Dyslipidemia
3.4.4. PCSK9 Mutations and Gene Silencing
3.5. PCSK9 and Inflammation
3.5.1. PCSK9 Activates the TLR4/NF-κB Pathway
3.5.2. NLRP3 Inflammasome Via IL-1β Regulates PCSK9 Secretion
3.6. Pyroptosis
3.7. Autophagy
3.8. Ferroptosis
4. PCSK9 Involvement in the Pathological Processes of DCM
4.1. Cardiomyocytes
4.2. Endothelial Cells
4.3. Monocyte
4.4. Macrophage
4.5. Vascular Smooth Muscle Cells
5. Research Progress on PCSK9 in Other Fields
5.1. PCSK9 and Ischemia/Reperfusion Injury
5.2. PCSK9 and Cancer
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119, Erratum in Diabetes Res. Clin. Pract. 2023, 204, 110945. https://doi.org/10.1016/j.diabres.2023.110945. [Google Scholar] [CrossRef] [PubMed]
- Seferović, P.M.; Paulus, W.J.; Rosano, G.; Polovina, M.; Petrie, M.C.; Jhund, P.S.; Tschöpe, C.; Sattar, N.; Piepoli, M.; Papp, Z.; et al. Diabetic Myocardial Disorder. A Clinical Consensus Statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases. Eur. J. Heart Fail. 2024, 26, 1893–1903. [Google Scholar] [CrossRef]
- Cavallari, I.; Bhatt, D.L.; Steg, P.G.; Leiter, L.A.; McGuire, D.K.; Mosenzon, O.; Im, K.; Raz, I.; Braunwald, E.; Scirica, B.M. Causes and Risk Factors for Death in Diabetes. J. Am. Coll. Cardiol. 2021, 77, 1837–1840. [Google Scholar] [CrossRef]
- Wu, Q.; Zeng, Y.; Geng, K.; Guo, M.; Teng, F.; Yan, P.; Lei, Y.; Long, Y.; Jiang, Z.; Law, B.Y.-K.; et al. The Role of IL-1 Family Cytokines in Diabetic Cardiomyopathy. Metabolism 2025, 163, 156083. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Alavudeen, S.S.; Raza, A.; Imam, M.T.; Almalki, Z.S.; Tabassum, F.; Iqbal, M.J. Current Understanding of Structural and Molecular Changes in Diabetic Cardiomyopathy. Life Sci. 2023, 332, 122087. [Google Scholar] [CrossRef]
- Congur, I.; Mingrone, G.; Guan, K. Targeting Endoplasmic Reticulum Stress as a Potential Therapeutic Strategy for Diabetic Cardiomyopathy. Metabolism 2025, 162, 156062. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Z.; Chen, H.; Chen, Q. Pyroptosis: Mechanisms and Links with Diabetic Cardiomyopathy. Ageing Res. Rev. 2024, 94, 102182. [Google Scholar] [CrossRef]
- Peyot, M.-L.; Roubtsova, A.; Lussier, R.; Chamberland, A.; Essalmani, R.; Murthy Madiraju, S.R.; Seidah, N.G.; Prentki, M.; Prat, A. Substantial PCSK9 Inactivation in β-Cells Does Not Modify Glucose Homeostasis or Insulin Secretion in Mice. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2021, 1866, 158968. [Google Scholar] [CrossRef] [PubMed]
- Tiller, C.; Holzknecht, M.; Lechner, I.; Oberhollenzer, F.; Von Der Emde, S.; Kremser, T.; Gollmann-Tepeköylü, C.; Mayr, A.; Bauer, A.; Metzler, B.; et al. Association of Circulating PCSK9 With Ischemia-Reperfusion Injury in Acute ST-Elevation Myocardial Infarction. Circ. Cardiovasc. Imaging 2024, 17, e016482. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Guo, L.; An, Y.-L.; Yu, W.-J.; Shi, D.-Y.; Lin, Q.-Y.; Zhang, B. Evolocumab Attenuates Myocardial Ischemia/Reperfusion Injury by Blocking PCSK9/LIAS-Mediated Cuproptosis of Cardiomyocytes. Basic Res. Cardiol. 2025, 120, 301–320. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Robinson, J.G.; Brook, R.D.; Catapano, A.L.; Chapman, M.J.; Neff, D.R.; Voros, S.; Giugliano, R.P.; Davey Smith, G.; Fazio, S.; et al. Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease and Diabetes. N. Engl. J. Med. 2016, 375, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, G.; Li, C.; Qin, X.; Liu, R.; Zhang, M. Safety of Proprotein Convertase Subtilisin/Kexin Type 9 Monoclonal Antibodies in Regard to Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Cardiovasc. Drugs 2020, 20, 343–353. [Google Scholar] [CrossRef]
- Rojo-Martínez, G.; Valdés, S.; Soriguer, F.; Vendrell, J.; Urrutia, I.; Pérez, V.; Ortega, E.; Ocón, P.; Montanya, E.; Menéndez, E.; et al. Incidence of Diabetes Mellitus in Spain as Results of the Nation-Wide Cohort Diabet.es Study. Sci. Rep. 2020, 10, 2765. [Google Scholar] [CrossRef]
- González-Lleó, A.M.; Sánchez-Hernández, R.M.; Plana, N.; Ibarretxe, D.; Rehues, P.; Ribalta, J.; Llop, D.; Wägner, A.M.; Masana, L.; Boronat, M. Impact of PCSK9 Inhibitors in Glycaemic Control and New-Onset Diabetes. Cardiovasc. Diabetol. 2024, 23, 4. [Google Scholar] [CrossRef]
- Ramin-Mangata, S.; Thedrez, A.; Nativel, B.; Diotel, N.; Blanchard, V.; Wargny, M.; Aguesse, A.; Billon-Crossouard, S.; Vindis, C.; Le May, C.; et al. Effects of Proprotein Convertase Subtilisin Kexin Type 9 Modulation in Human Pancreatic Beta Cells Function. Atherosclerosis 2021, 326, 47–55. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Szarek, M.; Jukema, J.W.; Cobbaert, C.M.; Reijnders, E.; Bittner, V.A.; Schwertfeger, M.; Bhatt, D.L.; Fazio, S.; Garon, G.; et al. Risk of Incident Diabetes Related to Lipoprotein(a), LDL Cholesterol, and Their Changes with Alirocumab: Post Hoc Analyses of the ODYSSEY OUTCOMES Randomized Trial. Diabetes Care 2025, 48, 596–604. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, M.; Zhao, S.; Lu, Q.; Ni, L.; Zou, C.; Lu, L.; Xu, X.; Guan, H.; Zheng, Z.; et al. Activation of the TXNIP/NLRP3 Inflammasome Pathway Contributes to Inflammation in Diabetic Retinopathy: A Novel Inhibitory Effect of Minocycline. Inflamm. Res. 2017, 66, 157–166. [Google Scholar] [CrossRef]
- Weissman, D.; Maack, C. Bile Acids for Diabetic Cardiomyopathy. Nat. Metab. 2024, 6, 993–995. [Google Scholar] [CrossRef] [PubMed]
- Winell, K.; Pietilä, A.; Salomaa, V. Incidence and Prognosis of Heart Failure in Persons with Type 2 Diabetes Compared with Individuals without Diabetes—A Nation-Wide Study from Finland in 1996–2012. Ann. Med. 2019, 51, 174–181. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Yin, Z.; Zhang, Y.; Xue, X.; Han, J.; Zhu, Y.; Zhang, J.; Emmert, M.Y.; Wang, H. Gender Differences in Fibrosis Remodeling in Patients with Long-Standing Persistent Atrial Fibrillation. Oncotarget 2017, 8, 53714–53729. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Cui, H.; Fan, C.; Xue, Y.; Liu, H.; Li, H.; Li, J.; Li, H.; Sun, Y.; et al. Inhibition of Fatty Acid Uptake by TGR5 Prevents Diabetic Cardiomyopathy. Nat. Metab. 2024, 6, 1161–1177. [Google Scholar] [CrossRef]
- Huynh, K.; Kiriazis, H.; Du, X.-J.; Love, J.E.; Gray, S.P.; Jandeleit-Dahm, K.A.; McMullen, J.R.; Ritchie, R.H. Targeting the Upregulation of Reactive Oxygen Species Subsequent to Hyperglycemia Prevents Type 1 Diabetic Cardiomyopathy in Mice. Free Radic. Biol. Med. 2013, 60, 307–317. [Google Scholar] [CrossRef]
- Mariappan, N.; Elks, C.M.; Sriramula, S.; Guggilam, A.; Liu, Z.; Borkhsenious, O.; Francis, J. NF-κB-Induced Oxidative Stress Contributes to Mitochondrial and Cardiac Dysfunction in Type II Diabetes. Cardiovasc. Res. 2010, 85, 473–483. [Google Scholar] [CrossRef]
- Meng, L.; Lu, Y.; Wang, X.; Cheng, C.; Xue, F.; Xie, L.; Zhang, Y.; Sui, W.; Zhang, M.; Zhang, Y.; et al. NPRC Deletion Attenuates Cardiac Fibrosis in Diabetic Mice by Activating PKA/PKG and Inhibiting TGF-Β1/Smad Pathways. Sci. Adv. 2023, 9, eadd4222. [Google Scholar] [CrossRef]
- Ralston, J.C.; Lyons, C.L.; Kennedy, E.B.; Kirwan, A.M.; Roche, H.M. Fatty Acids and NLRP3 Inflammasome–Mediated Inflammation in Metabolic Tissues. Annu. Rev. Nutr. 2017, 37, 77–102. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Dang, S.-P.; Li, S.-S.; Liu, Y.; Qi, M.-M.; Wang, N.; Miao, L.-F.; Wu, Y.; Li, X.-Y.; Wang, C.-X.; et al. Glucose Fluctuations Aggravate Myocardial Fibrosis via the Nuclear Factor-κB-Mediated Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Inflammasome Activation. Front. Cardiovasc. Med. 2022, 9, 748183. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, D.; Ma, Y.; Du, H.; Wang, Y.; Luo, W.; Wang, R.; Yi, F. ROS in Diabetic Atria Regulate SK2 Degradation by Atrogin-1 through the NF-κB Signaling Pathway. J. Biol. Chem. 2024, 300, 105735. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, W.; Han, J.; Khan, Z.A.; Fang, Q.; Jin, Y.; Chen, X.; Zhang, Y.; Wang, M.; Qian, J.; et al. MD2 Activation by Direct AGE Interaction Drives Inflammatory Diabetic Cardiomyopathy. Nat. Commun. 2020, 11, 2148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Thai, P.N.; Shivnaraine, R.V.; Ren, L.; Wu, X.; Siepe, D.H.; Liu, Y.; Tu, C.; Shin, H.S.; Caudal, A.; et al. Multiscale Drug Screening for Cardiac Fibrosis Identifies MD2 as a Therapeutic Target. Cell 2024, 187, 7143–7163.e22. [Google Scholar] [CrossRef]
- Wan, L.; Bai, X.; Zhou, Q.; Chen, C.; Wang, H.; Liu, T.; Xue, J.; Wei, C.; Xie, L. The Advanced Glycation End-Products (AGEs)/ROS/NLRP3 Inflammasome Axis Contributes to Delayed Diabetic Corneal Wound Healing and Nerve Regeneration. Int. J. Biol. Sci. 2022, 18, 809–825. [Google Scholar] [CrossRef]
- Yu, L.; Yang, Y.X.; Gong, Z.; Wan, Q.; Du, Y.; Zhou, Q.; Xiao, Y.; Zahr, T.; Wang, Z.; Yu, Z.; et al. FcRn-Dependent IgG Accumulation in Adipose Tissue Unmasks Obesity Pathophysiology. Cell Metab. 2025, 37, 656–672.e7. [Google Scholar] [CrossRef]
- Liu, Y.; Su, W.; Liu, Z.; Hu, Z.; Shen, J.; Zheng, Z.; Ding, D.; Huang, W.; Li, W.; Cai, G.; et al. Macrophage CREBZF Orchestrates Inflammatory Response to Potentiate Insulin Resistance and Type 2 Diabetes. Adv. Sci. 2024, 11, e2306685. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Xia, J.; Zhang, L.; Chen, B.; Lian, G.; Yun, C.; Yang, J.; Yan, Y.; Wang, P.; et al. Macrophage HIF-2α Suppresses NLRP3 Inflammasome Activation and Alleviates Insulin Resistance. Cell Rep. 2021, 36, 109607. [Google Scholar] [CrossRef]
- You, D.; Jung, B.C.; Villivalam, S.D.; Lim, H.-W.; Kang, S. JMJD8 Is a Novel Molecular Nexus Between Adipocyte-Intrinsic Inflammation and Insulin Resistance. Diabetes 2022, 71, 43–59. [Google Scholar] [CrossRef]
- Huang, H.; Chen, H.; Yao, Y.; Lou, X. Branched-Chain Amino Acids Supplementation Induces Insulin Resistance and pro-Inflammatory Macrophage Polarization via INFGR1/JAK1/STAT1 Signal Pathway. Mol. Med. 2024, 30, 149. [Google Scholar] [CrossRef]
- Larsen, J.K.; Stocks, B.; Henderson, J.; Andersson, D.; Bäckdahl, J.; Eriksson-Hogling, D.; Stidsen, J.V.; Sakamoto, K.; Højlund, K.; Rydén, M.; et al. Personalized Molecular Signatures of Insulin Resistance and Type 2 Diabetes 2024. Cell 2025, 188, 4106–4122.e16. [Google Scholar]
- Chen, L.; Lin, Y.; Zhu, X.; Zhuo, S.; Li, Z.; Guo, C.; Ye, X.; Chen, J.; Wang, S.; Chen, Y. MCT1-Mediated Lactate Shuttle to Mitochondria Governs Macrophage Polarization and Modulates Glucose Homeostasis by Affecting β Cells. Adv. Sci. 2025, e14760. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhu, J.; Zhang, M.; Shi, Q.; Guo, R.; Zhang, D.; Zheng, P.; Zhang, H.; Li, G.; Wu, J.; et al. SOSTDC1 Downregulation in CD4+ T Cells Confers Protection against Obesity-Induced Insulin Resistance. Cell Rep. 2025, 44, 115496. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Lai, C.-C.; Bonnavion, R.; Alnouri, M.W.; Wang, S.; Roquid, K.A.; Kawase, H.; Campos, D.; Chen, M.; Weinstein, L.S.; et al. Endothelial Insulin Resistance Induced by Adrenomedullin Mediates Obesity-Associated Diabetes. Science 2025, 387, 674–682. [Google Scholar] [CrossRef]
- She, J.; Tuerhongjiang, G.; Guo, M.; Liu, J.; Hao, X.; Guo, L.; Liu, N.; Xi, W.; Zheng, T.; Du, B.; et al. Statins Aggravate Insulin Resistance through Reduced Blood Glucagon-like Peptide-1 Levels in a Microbiota-Dependent Manner. Cell Metab. 2024, 36, 408–421.e5. [Google Scholar] [CrossRef] [PubMed]
- Seidah, N.G.; Prat, A. The Multifaceted Biology of PCSK9. Endocr. Rev. 2022, 43, 558–582. [Google Scholar] [CrossRef]
- Walley, K.R.; Thain, K.R.; Russell, J.A.; Reilly, M.P.; Meyer, N.J.; Ferguson, J.F.; Christie, J.D.; Nakada, T.; Fjell, C.D.; Thair, S.A.; et al. PCSK9 Is a Critical Regulator of the Innate Immune Response and Septic Shock Outcome. Sci. Transl. Med. 2014, 6, 258ra143. [Google Scholar] [CrossRef]
- Luna Saavedra, Y.G.; Zhang, J.; Seidah, N.G. PCSK9 Prosegment Chimera as Novel Inhibitors of LDLR Degradation. PLoS ONE 2013, 8, e72113. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, X.; Liu, S.; Zhou, S.; Kore, R.A.; Mu, S.; Deng, X.; Fan, Y.; Mehta, J.L. NLRP3 Inflammasome via IL-1β Regulates PCSK9 Secretion. Theranostics 2020, 10, 7100–7110. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, H. PCSK9/LOX-1 Is Associated with T2DM and Regulates High Glucose-Induced Lipid Metabolism Dysfunction in Human Microvascular Endothelial Cells. Endokrynol. Pol. 2025, 76, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Adorni, M.P.; Cipollari, E.; Favari, E.; Zanotti, I.; Zimetti, F.; Corsini, A.; Ricci, C.; Bernini, F.; Ferri, N. Inhibitory Effect of PCSK9 on Abca1 Protein Expression and Cholesterol Efflux in Macrophages. Atherosclerosis 2017, 256, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Liu, S.; Wang, X.; Deng, X.; Fan, Y.; Sun, C.; Wang, Y.; Mehta, J.L. Hemodynamic Shear Stress via ROS Modulates PCSK9 Expression in Human Vascular Endothelial and Smooth Muscle Cells and Along the Mouse Aorta. Antioxid. Redox Signal. 2015, 22, 760–771. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, S.; Wang, X.; Deng, X.; Fan, Y.; Shahanawaz, J.; Shmookler Reis, R.J.; Varughese, K.I.; Sawamura, T.; Mehta, J.L. Cross-Talk between LOX-1 and PCSK9 in Vascular Tissues. Cardiovasc. Res. 2015, 107, 556–567. [Google Scholar] [CrossRef]
- Cappelluti, M.A.; Mollica Poeta, V.; Valsoni, S.; Quarato, P.; Merlin, S.; Merelli, I.; Lombardo, A. Durable and Efficient Gene Silencing in Vivo by Hit-and-Run Epigenome Editing. Nature 2024, 627, 416–423. [Google Scholar] [CrossRef]
- Reduction of Low-Density Lipoprotein Cholesterol by Monoclonal Antibody Inhibition of PCSK9 | Annual Reviews. Available online: https://www.annualreviews.org/content/journals/10.1146/annurev-med-022613-090402 (accessed on 7 December 2024).
- Tang, Y.; Li, S.-L.; Hu, J.-H.; Sun, K.-J.; Liu, L.-L.; Xu, D.-Y. Research Progress on Alternative Non-Classical Mechanisms of PCSK9 in Atherosclerosis in Patients with and without Diabetes. Cardiovasc. Diabetol. 2020, 19, 33. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, X.; Yang, Z.; Zhu, X.; Liu, M.; Du, M.; Pan, X.; Wang, Y. PCSK9 Promotes LDLR Degradation by Preventing SNX17-Mediated LDLR Recycling. Circulation 2025, 151, 1512–1526. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, X.; Liu, S.; Shahanawaz, J.; Theus, S.; Fan, Y.; Deng, X.; Zhou, S.; Mehta, J.L. PCSK9 Expression in the Ischaemic Heart and Its Relationship to Infarct Size, Cardiac Function, and Development of Autophagy. Cardiovasc. Res. 2018, 114, 1738–1751. [Google Scholar] [CrossRef]
- Seidah, N.G.; Awan, Z.; Chrétien, M.; Mbikay, M. PCSK9: A Key Modulator of Cardiovascular Health. Circ. Res. 2014, 114, 1022–1036. [Google Scholar] [CrossRef]
- Al Said, S.; O’Donoghue, M.L.; Ran, X.; Murphy, S.A.; Atar, D.; Keech, A.; Flores-Arredondo, J.H.; Wang, B.; Sabatine, M.S.; Giugliano, R.P. Long-Term Lipid Lowering with Evolocumab in Older Individuals. J. Am. Coll. Cardiol. 2025, 85, 504–512. [Google Scholar] [CrossRef]
- Dhar, K.; Berger, J.; Newman, J.; Schwartzbard, A.; Pernia, A.C.J.; Weintraub, H.S. Evolocumab in Older Individuals. J. Am. Coll. Cardiol. 2025, 85, 513–514. [Google Scholar] [CrossRef]
- Rosoff, D.B.; Wagner, J.; Jung, J.; Pacher, P.; Christodoulides, C.; Davey Smith, G.; Ray, D.; Lohoff, F.W. Multiomic Mendelian Randomization Study Investigating the Impact of PCSK9 and HMGCR Inhibition on Type 2 Diabetes Across Five Populations. Diabetes 2025, 74, 120–130. [Google Scholar] [CrossRef]
- Rosoff, D.B.; Bell, A.S.; Wagner, J.; Mavromatis, L.A.; Hamandi, A.; Park, L.; Jung, J.; Lohoff, F.W. Assessing the Impact of PCSK9 and HMGCR Inhibition on Liver Function: Drug-Target Mendelian Randomization Analyses in Four Ancestries. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 29–40. [Google Scholar] [CrossRef]
- Rivera, F.B.; Cha, S.W.; Aparece, J.P.; Rocimo, A.; Ong, B.A.; Golbin, J.M.; Alfonso, P.G.; Enkhmaa, B.; Khan, S.U.; Cainzos-Achirica, M.; et al. Sex Differences in Cardiovascular Outcomes and Cholesterol-Lowering Efficacy of PCSK9 Inhibitors. JACC Adv. 2023, 2, 100669. [Google Scholar] [CrossRef] [PubMed]
- Hodeda, L.; Eisen, A.; Rotholz, A.; Kornowski, R.; Gurevitz, C. Sex Differences in the Treatment with PCSK9 Monoclonal Antibodies- Real World Experience from a Dedicated Preventive Cardiology Clinic. Am. J. Prev. Cardiol. 2025, 23, 101022. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong, B.; Park, S.W.; Lee, H.-S.; Chen, W.; Liu, J. Hepatocyte Nuclear Factor 1α Plays a Critical Role in PCSK9 Gene Transcription and Regulation by the Natural Hypocholesterolemic Compound Berberine. J. Biol. Chem. 2009, 284, 28885–28895. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yan, B.; Gui, Y.; Tang, Z.; Tai, S.; Zhou, S.; Zheng, X. Physiology and Role of PCSK9 in Vascular Disease: Potential Impact of Localized PCSK9 in Vascular Wall. J. Cell. Physiol. 2021, 236, 2333–2351. [Google Scholar] [CrossRef] [PubMed]
- Ai, D.; Chen, C.; Han, S.; Ganda, A.; Murphy, A.J.; Haeusler, R.; Thorp, E.; Accili, D.; Horton, J.D.; Tall, A.R. Regulation of Hepatic LDL Receptors by mTORC1 and PCSK9 in Mice. J. Clin. Invest. 2012, 122, 1262–1270. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Yan, C.; Xi, C.; Wu, C.; Zhao, J.; Li, F.; Ding, Y.; Zhang, R.; Qi, S.; et al. Identification and Evaluation of a Lipid-Lowering Small Compound in Preclinical Models and in a Phase I Trial. Cell Metab. 2022, 34, 667–680.e6. [Google Scholar] [CrossRef]
- Wang, M.; Shu, H.; Xie, J.; Huang, Y.; Wang, K.; Feng, R.; Yu, X.; Guan, J.; Feng, W.; Liu, M. An Intron Mutation of HNF1A Causes Abnormal Splicing and Impairs Its Activity as a Transcription Factor. Mol. Cell. Endocrinol. 2022, 545, 111575. [Google Scholar] [CrossRef]
- Beucher, A.; Miguel-Escalada, I.; Balboa, D.; De Vas, M.G.; Maestro, M.A.; Garcia-Hurtado, J.; Bernal, A.; Gonzalez-Franco, R.; Vargiu, P.; Heyn, H.; et al. The HASTER lncRNA Promoter Is a Cis-Acting Transcriptional Stabilizer of HNF1A. Nat. Cell Biol. 2022, 24, 1528–1540. [Google Scholar] [CrossRef]
- Lu, F.; Li, E.; Gao, Y.; Zhang, Y.; Kong, L.; Yang, X. Dapagliflozin Modulates Hepatic Lipid Metabolism through the Proprotein Convertase Subtilisin/Kexin Type 9/Low Density Lipoprotein Receptor Pathway. Diabetes Obes. Metab. 2025, 27, 2096–2109. [Google Scholar] [CrossRef]
- Luo, J.; Yang, H.; Song, B.-L. Mechanisms and Regulation of Cholesterol Homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. [Google Scholar] [CrossRef]
- Lebeau, P.F.; Byun, J.H.; Platko, K.; Saliba, P.; Sguazzin, M.; MacDonald, M.E.; Paré, G.; Steinberg, G.R.; Janssen, L.J.; Igdoura, S.A.; et al. Caffeine Blocks SREBP2-Induced Hepatic PCSK9 Expression to Enhance LDLR-Mediated Cholesterol Clearance. Nat. Commun. 2022, 13, 770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, H.; Yu, J.; Cui, J.; Chen, Z.; Li, Y.; Niu, Y.; Wang, S.; Ran, S.; Zou, Y.; et al. Immune Regulation of the Liver Through the PCSK9/CD36 Pathway During Heart Transplant Rejection. Circulation 2023, 148, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, K.L.; Zhang, Y.; Wu, Y.; Hu, Z.B.; Lv, L.L.; Tang, R.N.; Liu, H.; Ruan, X.Z.; Liu, B.C. Activation of mTORC1 Disrupted LDL Receptor Pathway: A Potential New Mechanism for the Progression of Non-Alcoholic Fatty Liver Disease. Int. J. Biochem. Cell Biol. 2015, 61, 8–19. [Google Scholar] [CrossRef]
- Hao, J.-W.; Wang, J.; Guo, H.; Zhao, Y.-Y.; Sun, H.-H.; Li, Y.-F.; Lai, X.-Y.; Zhao, N.; Wang, X.; Xie, C.; et al. CD36 Facilitates Fatty Acid Uptake by Dynamic Palmitoylation-Regulated Endocytosis. Nat. Commun. 2020, 11, 4765. [Google Scholar] [CrossRef]
- Heather, L.C.; Gopal, K.; Srnic, N.; Ussher, J.R. Redefining Diabetic Cardiomyopathy: Perturbations in Substrate Metabolism at the Heart of Its Pathology. Diabetes 2024, 73, 659–670. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Z.; Zheng, C.; Wintergerst, K.A.; Keller, B.B.; Cai, L. Mechanisms of Diabetic Cardiomyopathy and Potential Therapeutic Strategies: Preclinical and Clinical Evidence. Nat. Rev. Cardiol. 2020, 17, 585–607. [Google Scholar] [CrossRef]
- Roubtsova, A.; Munkonda, M.N.; Awan, Z.; Marcinkiewicz, J.; Chamberland, A.; Lazure, C.; Cianflone, K.; Seidah, N.G.; Prat, A. Circulating Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Regulates VLDLR Protein and Triglyceride Accumulation in Visceral Adipose Tissue. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 785–791. [Google Scholar] [CrossRef]
- Levy, E.; Ouadda, A.B.D.; Spahis, S.; Sane, A.T.; Garofalo, C.; Grenier, É.; Emonnot, L.; Yara, S.; Couture, P.; Beaulieu, J.-F.; et al. PCSK9 Plays a Significant Role in Cholesterol Homeostasis and Lipid Transport in Intestinal Epithelial Cells. Atherosclerosis 2013, 227, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Rohrbach, S.; Li, L.; Novoyatleva, T.; Niemann, B.; Knapp, F.; Molenda, N.; Schulz, R. Impact of PCSK9 on CTRP9-Induced Metabolic Effects in Adult Rat Cardiomyocytes. Front. Physiol. 2021, 12, 593862. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, A.K.; Paulo-Ramos, A.; Rastoldo, G.; Veeren, B.; Planesse, C.; Bringart, M.; Rondeau, P.; Chemello, K.; Meilhac, O.; Lambert, G.C.; et al. PCSK9 Deficiency Promotes the Development of Peripheral Neuropathy. JCI Insight 2025, 10, e183786. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Qin, H.; Liao, M.; Zheng, E.; Luo, X.; Xiao, A.; Li, Y.; Chen, L.; Wei, L.; Zhao, L.; et al. CD36 Promotes de Novo Lipogenesis in Hepatocytes through INSIG2-Dependent SREBP1 Processing. Mol. Metab. 2022, 57, 101428. [Google Scholar] [CrossRef]
- Da Dalt, L.; Ruscica, M.; Bonacina, F.; Balzarotti, G.; Dhyani, A.; Di Cairano, E.; Baragetti, A.; Arnaboldi, L.; De Metrio, S.; Pellegatta, F.; et al. PCSK9 Deficiency Reduces Insulin Secretion and Promotes Glucose Intolerance: The Role of the Low-Density Lipoprotein Receptor. Eur. Heart J. 2019, 40, 357–368. [Google Scholar] [CrossRef]
- Zaid, A.; Roubtsova, A.; Essalmani, R.; Marcinkiewicz, J.; Chamberland, A.; Hamelin, J.; Tremblay, M.; Jacques, H.; Jin, W.; Davignon, J.; et al. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9): Hepatocyte-Specific Low-Density Lipoprotein Receptor Degradation and Critical Role in Mouse Liver Regeneration. Hepatology 2008, 48, 646–654. [Google Scholar] [CrossRef]
- Guo, W.; Gong, Y.; Gu, Y.; Fu, Z.; Fan, H.; Gao, B.; Zhu, X.; Fu, J.; Zhao, Y.; Sun, M.; et al. Circulating PCSK9 Levels and 2-hPG Are Positively Correlated in Metabolic Diseases in a Chinese Han Population. Lipids Health Dis. 2018, 17. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, J.; Su, Q.; Yang, Z.; Qin, L. Correlation Between Circulating PCSK9 Levels and Gestational Diabetes Mellitus in a Chinese Population. Front. Endocrinol. 2022, 13, 826757. [Google Scholar] [CrossRef]
- Nelson, C.P.; Lai, F.Y.; Nath, M.; Ye, S.; Webb, T.R.; Schunkert, H.; Samani, N.J. Genetic Assessment of Potential Long-Term On-Target Side Effects of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Inhibitors. Circ. Genomic Precis. Med. 2019, 12, e002196. [Google Scholar] [CrossRef]
- Ray, K.K.; Colhoun, H.M.; Szarek, M.; Baccara-Dinet, M.; Bhatt, D.L.; Bittner, V.A.; Budaj, A.J.; Diaz, R.; Goodman, S.G.; Hanotin, C.; et al. Effects of Alirocumab on Cardiovascular and Metabolic Outcomes after Acute Coronary Syndrome in Patients with or without Diabetes: A Prespecified Analysis of the ODYSSEY OUTCOMES Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2019, 7, 618–628, Erratum in Lancet Diabetes Endocrinol. 2019, 7, 618–628. [Google Scholar] [CrossRef]
- Nishikido, T.; Ray, K.K. Targeting the Peptidase PCSK9 to Reduce Cardiovascular Risk: Implications for Basic Science and Upcoming Challenges. Br. J. Pharmacol. 2021, 178, 2168–2185. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J. PCSK9 Inhibitors and Reduction in Cardiovascular Events: Current Evidence and Future Perspectives. Pol. Heart J. Kardiologia Pol. 2023, 81, 115–122. [Google Scholar] [CrossRef]
- McClintick, D.J.; O’Donoghue, M.L.; De Ferrari, G.M.; Ferreira, J.; Ran, X.; Im, K.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; et al. Long-Term Efficacy of Evolocumab in Patients With or Without Multivessel Coronary Disease. J. Am. Coll. Cardiol. 2024, 83, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Imbalzano, E.; Ilardi, F.; Orlando, L.; Pintaudi, B.; Savarese, G.; Rosano, G. The Efficacy of PCSK9 Inhibitors on Major Cardiovascular Events and Lipid Profile in Patients with Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. Heart J.-Cardiovasc. Pharmacother. 2023, 9, 318–327. [Google Scholar] [CrossRef]
- Ray, K.K.; Del Prato, S.; Müller-Wieland, D.; Cariou, B.; Colhoun, H.M.; Tinahones, F.J.; Domenger, C.; Letierce, A.; Mandel, J.; Samuel, R.; et al. Alirocumab Therapy in Individuals with Type 2 Diabetes Mellitus and Atherosclerotic Cardiovascular Disease: Analysis of the ODYSSEY DM-DYSLIPIDEMIA and DM-INSULIN Studies. Cardiovasc. Diabetol. 2019, 18, 149. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.T.; Hochfellner, D.A.; Knoll, L.; Pöttler, T.; Mader, J.K.; Aberer, F. Real-World Data on Metabolic Effects of PCSK9 Inhibitors in a Tertiary Care Center in Patients with and without Diabetes Mellitus. Cardiovasc. Diabetol. 2021, 20, 89. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Daviglus, M.L.; Handelsman, Y.; Pozzilli, P.; Bays, H.; Monsalvo, M.L.; Elliott-Davey, M.; Somaratne, R.; Reaven, P. Efficacy and Safety of Evolocumab in Individuals with Type 2 Diabetes Mellitus: Primary Results of the Randomised Controlled BANTING Study. Diabetologia 2019, 62, 948–958. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, Z.; Lu, J.; Eliaschewitz, F.G.; Lorenzatti, A.J.; Monsalvo, M.L.; Wang, N.; Hamer, A.W.; Ge, J. Randomized Study of Evolocumab in Patients with Type 2 Diabetes and Dyslipidaemia on Background Statin: Pre-specified Analysis of the Chinese Population from the BERSON Clinical Trial. Diabetes Obes. Metab. 2019, 21, 1464–1473. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Leiter, L.A.; Wiviott, S.D.; Giugliano, R.P.; Deedwania, P.; De Ferrari, G.M.; Murphy, S.A.; Kuder, J.F.; Gouni-Berthold, I.; Lewis, B.S.; et al. Cardiovascular Safety and Efficacy of the PCSK9 Inhibitor Evolocumab in Patients with and without Diabetes and the Effect of Evolocumab on Glycaemia and Risk of New-Onset Diabetes: A Prespecified Analysis of the FOURIER Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2017, 5, 941–950. [Google Scholar] [CrossRef]
- Moura, F.A.; Kamanu, F.K.; Wiviott, S.D.; Giugliano, R.P.; Udler, M.S.; Florez, J.C.; Ellinor, P.T.; Sabatine, M.S.; Ruff, C.T.; Marston, N.A. Type 2 Diabetes Genetic Risk and Incident Diabetes across Diabetes Risk Enhancers. Diabetes Obes. Metab. 2025, 27, 1287–1295. [Google Scholar] [CrossRef]
- Mousavi, A.; Shojaei, S.; Soleimani, H.; Semirani-Nezhad, D.; Ebrahimi, P.; Zafari, A.; Ebrahimi, R.; Roozbehi, K.; Harrison, A.; Syed, M.A.; et al. Safety, Efficacy, and Cardiovascular Benefits of Combination Therapy with SGLT-2 Inhibitors and GLP-1 Receptor Agonists in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetol. Metab. Syndr. 2025, 17, 68. [Google Scholar] [CrossRef]
- Yang, S.-H.; Xu, R.-X.; Cui, C.-J.; Wang, Y.; Du, Y.; Chen, Z.-G.; Yao, Y.-H.; Ma, C.-Y.; Zhu, C.-G.; Guo, Y.-L.; et al. Liraglutide Downregulates Hepatic LDL Receptor and PCSK9 Expression in HepG2 Cells and Db/Db Mice through a HNF-1a Dependent Mechanism. Cardiovasc. Diabetol. 2018, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Vergès, B.; Duvillard, L.; de Barros, J.P.P.; Bouillet, B.; Baillot-Rudoni, S.; Rouland, A.; Petit, J.M.; Degrace, P.; Demizieux, L. Liraglutide Increases the Catabolism of Apolipoprotein B100–Containing Lipoproteins in Patients with Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression. Diabetes Care 2021, 44, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Tricò, D.; Raggi, F.; Distaso, M.; Ferrannini, E.; Solini, A. Effect of Empagliflozin on Plasma Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Patients with Type 2 Diabetes. Diabetes Res. Clin. Pract. 2022, 190, 109983. [Google Scholar] [CrossRef]
- Hu, D.; Guo, Y.; Wu, R.; Shao, T.; Long, J.; Yu, B.; Wang, H.; Luo, Y.; Lu, H.; Zhang, J.; et al. New Insight into Metformin-Induced Cholesterol-Lowering Effect Crosstalk Between Glucose and Cholesterol Homeostasis via ChREBP (Carbohydrate-Responsive Element-Binding Protein)-Mediated PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Regulation. Arterioscler. Thromb. Vasc. Biol. 2021, 41, e208–e223. [Google Scholar] [CrossRef] [PubMed]
- Amput, P.; Palee, S.; Arunsak, B.; Pratchayasakul, W.; Thonusin, C.; Kerdphoo, S.; Jaiwongkam, T.; Chattipakorn, S.C.; Chattipakorn, N. PCSK9 Inhibitor and Atorvastatin Reduce Cardiac Impairment in Ovariectomized Prediabetic Rats via Improved Mitochondrial Function and Ca2+ Regulation. J. Cell. Mol. Med. 2020, 24, 9189–9203. [Google Scholar] [CrossRef]
- Hummelgaard, S.; Hvid, H.; Birn, H.; Glerup, S.; Tom, N.; Bilgin, M.; Kirchhoff, J.E.; Weyer, K. Lack of Renoprotective Effects by Long-Term PCSK9 and SGLT2 Inhibition Using Alirocumab and Empagliflozin in Obese ZSF1 Rats. Am. J. Physiol.-Ren. Physiol. 2025, 328, F48–F67. [Google Scholar] [CrossRef]
- Miao, J.; Manthena, P.V.; Haas, M.E.; Ling, A.V.; Shin, D.-J.; Graham, M.J.; Crooke, R.M.; Liu, J.; Biddinger, S.B. Role of Insulin in the Regulation of Proprotein Convertase Subtilisin/Kexin Type 9. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1589–1596. [Google Scholar] [CrossRef]
- Niesen, M.; Bedi, M.; Lopez, D. Diabetes Alters LDL Receptor and PCSK9 Expression in Rat Liver. Arch. Biochem. Biophys. 2008, 470, 111–115. [Google Scholar] [CrossRef]
- Persson, L.; Gälman, C.; Angelin, B.; Rudling, M. Importance of Proprotein Convertase Subtilisin/Kexin Type 9 in the Hormonal and Dietary Regulation of Rat Liver Low-Density Lipoprotein Receptors. Endocrinology 2009, 150, 1140–1146. [Google Scholar] [CrossRef]
- Ruscica, M.; Macchi, C.; Giuliani, A.; Rizzuto, A.S.; Ramini, D.; Sbriscia, M.; Carugo, S.; Bonfigli, A.R.; Corsini, A.; Olivieri, F.; et al. Circulating PCSK9 as a Prognostic Biomarker of Cardiovascular Events in Individuals with Type 2 Diabetes: Evidence from a 16.8-Year Follow-up Study. Cardiovasc. Diabetol. 2023, 22, 222. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Gu, J.-X.; Wang, K.; Zhang, A.-M.; Hong, T.-T.; Li, S.-S.; Yao, X.-Q.; Yang, M.; Yin, Y.; Zhang, N.; et al. Association between Serum PCSK9 and Coronary Heart Disease in Patients with Type 2 Diabetes Mellitus. Diabetol. Metab. Syndr. 2023, 15, 260. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, M.C.G.J.; Troutt, J.S.; Van Greevenbroek, M.M.J.; Ferreira, I.; Feskens, E.J.; Van Der Kallen, C.J.H.; Schaper, N.C.; Schalkwijk, C.G.; Konrad, R.J.; Stehouwer, C.D.A. Plasma Proprotein Convertase Subtilisin Kexin Type 9 Is Not Altered in Subjects with Impaired Glucose Metabolism and Type 2 Diabetes Mellitus, but Its Relationship with Non-HDL Cholesterol and Apolipoprotein B May Be Modified by Type 2 Diabetes Mellitus: The CODAM Study. Atherosclerosis 2011, 217, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Liu, S.; Wang, X.; Theus, S.; Deng, X.; Fan, Y.; Zhou, S.; Mehta, J.L. PCSK9 Regulates Expression of Scavenger Receptors and Ox-LDL Uptake in Macrophages. Cardiovasc. Res. 2018, 114, 1145–1153, Erratum in Cardiovasc. Res. 2022, 118, 1849. https://doi.org/110.1093/cvr/cvab354. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Bradwin, G.; Rose, L. Plasma Proprotein Convertase Subtilisin/Kexin Type 9 Levels and the Risk of First Cardiovascular Events. Eur. Heart J. 2016, 37, 554–560. [Google Scholar] [CrossRef]
- Ravi, A.; Koyama, S.; Ellinor, P.T.; Natarajan, P. Genetic Predisposition to Low-Density Lipoprotein Cholesterol and Incident Type 2 Diabetes. JAMA Cardiol. 2025, 10, 379. [Google Scholar] [CrossRef]
- Armentaro, G.; Carbone, F.; Cassano, V.; Liberale, L.; Minetti, S.; Bertolotto, M.B.; Mannino, G.; Fiorentino, T.V.; Perticone, M.; Succurro, E.; et al. Serum Proprotein Convertase Subtilisin/Kexin Type 9 and Vascular Disease in Type 2 Diabetic Patients. Eur. J. Clin. Invest. 2023, 53, e13900. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.F.; Swerdlow, D.I.; Holmes, M.V.; Patel, R.S.; Fairhurst-Hunter, Z.; Lyall, D.M.; Hartwig, F.P.; Horta, B.L.; Hyppönen, E.; Power, C.; et al. PCSK9 Genetic Variants and Risk of Type 2 Diabetes: A Mendelian Randomisation Study. Lancet Diabetes Endocrinol. 2017, 5, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.K.; Matyas, A.; Asikhia, I.; Hu, Z.; Golder, M.; Beehler, K.; Kosenko, T.; Lagace, T.A. Pathogenic Gain-of-Function Mutations in the Prodomain and C-Terminal Domain of PCSK9 Inhibit LDL Binding. Front. Physiol. 2022, 13, 960272. [Google Scholar] [CrossRef] [PubMed]
- Laudette, M. Cardiomyocyte-Specific PCSK9 Deficiency Compromises Mitochondrial Bioenergetics and Heart Function. J. Mol. Cell. Cardiol. 2022, 173, S184. [Google Scholar] [CrossRef]
- Tremblay, F.; Xiong, Q.; Shah, S.S.; Ko, C.-W.; Kelly, K.; Morrison, M.S.; Giancarlo, C.; Ramirez, R.N.; Hildebrand, E.M.; Voytek, S.B.; et al. A Potent Epigenetic Editor Targeting Human PCSK9 for Durable Reduction of Low-Density Lipoprotein Cholesterol Levels. Nat. Med. 2025, 31, 1329–1338. [Google Scholar] [CrossRef]
- Scalise, V.; Sanguinetti, C.; Neri, T.; Cianchetti, S.; Lai, M.; Carnicelli, V.; Celi, A.; Pedrinelli, R. PCSK9 Induces Tissue Factor Expression by Activation of TLR4/NFkB Signaling. Int. J. Mol. Sci. 2021, 22, 12640. [Google Scholar] [CrossRef]
- Punch, E.; Klein, J.; Diaba-Nuhoho, P.; Morawietz, H.; Garelnabi, M. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2022, 11, e023328. [Google Scholar] [CrossRef]
- Jang, H.-D.; Lee, S.E.; Yang, J.; Lee, H.-C.; Shin, D.; Lee, H.; Lee, J.; Jin, S.; Kim, S.; Lee, S.J.; et al. Cyclase-Associated Protein 1 Is a Binding Partner of Proprotein Convertase Subtilisin/Kexin Type-9 and Is Required for the Degradation of Low-Density Lipoprotein Receptors by Proprotein Convertase Subtilisin/Kexin Type-9. Eur. Heart J. 2020, 41, 239–252. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.-C.; Kwon, Y.-W.; Lee, S.E.; Cho, Y.; Kim, J.; Lee, S.; Kim, J.-Y.; Lee, J.; Yang, H.-M.; et al. Adenylyl Cyclase-Associated Protein 1(CAP1) Is a Receptor for Human Resistin and Mediates Inflammatory Actions of Human Monocytes. Cell Metab. 2014, 19, 484–497. [Google Scholar] [CrossRef]
- Tuñón, J.; Badimón, L.; Bochaton-Piallat, M.-L.; Cariou, B.; Daemen, M.J.; Egido, J.; Evans, P.C.; Hoefer, I.E.; Ketelhuth, D.F.J.; Lutgens, E.; et al. Identifying the Anti-Inflammatory Response to Lipid Lowering Therapy: A Position Paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc. Res. 2019, 115, 10–19. [Google Scholar] [CrossRef]
- Chung, C.-C.; Kao, Y.-H.; Chen, Y.-C.; Lin, Y.-K.; Higa, S.; Hsu, K.-C.; Chen, Y.-J. PCSK9 Enhances Cardiac Fibrogenesis via the Activation of Toll-like Receptor and NLRP3 Inflammasome Signaling. Int. J. Mol. Sci. 2025, 26, 1921. [Google Scholar] [CrossRef]
- Huang, L.; Li, Y.; Cheng, Z.; Lv, Z.; Luo, S.; Xia, Y. PCSK9 Promotes Endothelial Dysfunction During Sepsis Via the TLR4/MyD88/NF-κB and NLRP3 Pathways. Inflammation 2023, 46, 115–128. [Google Scholar] [CrossRef]
- Huang, L.; Li, Y.; Cheng, Z.; Lv, Z.; Luo, S.; Xia, Y. PCSK9 Promotes Endothelial Dysfunction in Sepsis via TLR4/MyD88/NF-κB and NLRP3 Pathways. Research Square 2022. [Google Scholar] [CrossRef]
- Badimon, L.; Luquero, A.; Crespo, J.; Peña, E.; Borrell-Pages, M. PCSK9 and LRP5 in Macrophage Lipid Internalization and Inflammation. Cardiovasc. Res. 2021, 117, 2054–2068. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Liu, S.; Brickell, A.N.; Zhang, J.; Wu, Z.; Zhou, S.; Ding, Z. PCSK9 Regulates Pyroptosis via mtDNA Damage in Chronic Myocardial Ischemia. Basic Res. Cardiol. 2020, 115, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, Y.; Qiu, Y.; Sun, J.; He, J.; Liu, Z.; Shi, J.; Wei, W.; Wu, G.; Liang, J. PCSK9 Promotes Hypoxia-Induced EC Pyroptosis by Regulating Smac Mitochondrion-Cytoplasm Translocation in Critical Limb Ischemia. JACC Basic Transl. Sci. 2023, 8, 1060–1077. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Tu, Z.; Chen, K.; Xu, Y.; Chen, F.; Xu, S.; Shi, T.; Qian, J.; Shen, L.; Hwa, J.; et al. Gasdermin D Inhibition Confers Antineutrophil-Mediated Cardioprotection in Acute Myocardial Infarction. J. Clin. Invest. 2022, 132, e151268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Thompson, B.J.; Hietakangas, V.; Cohen, S.M. MAPK/ERK Signaling Regulates Insulin Sensitivity to Control Glucose Metabolism in Drosophila. PLoS Genet. 2011, 7, e1002429. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Everett, B.M.; Cornel, J.H.; Lainscak, M.; Anker, S.D.; Abbate, A.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Anti-Inflammatory Therapy With Canakinumab for the Prevention of Hospitalization for Heart Failure. Circulation 2019, 139, 1289–1299. [Google Scholar] [CrossRef]
- Maurea, N.; Bisceglia, I.; Paccone, A.; Buccolo, S.; Iovine, M.; Quagliariello, V. Dapagliflozin Reduces Systemic Pcsk9 Levels in Preclinical Models of Short-Term Doxorubicin Cardiotoxicity through Nlrp3 Inflammasome/Il-1β: A First Evidence of Sglt-2/Pcsk9 Cross-Talk in Cardioncology. J. Am. Coll. Cardiol. 2023, 81, 2269. [Google Scholar] [CrossRef]
- Higashikuni, Y.; Liu, W.; Numata, G.; Tanaka, K.; Fukuda, D.; Tanaka, Y.; Hirata, Y.; Imamura, T.; Takimoto, E.; Komuro, I.; et al. NLRP3 Inflammasome Activation Through Heart-Brain Interaction Initiates Cardiac Inflammation and Hypertrophy During Pressure Overload. Circulation 2023, 147, 338–355. [Google Scholar] [CrossRef]
- Ding, M.; Shi, R.; Du, Y.; Chang, P.; Gao, T.; De, D.; Chen, Y.; Li, M.; Li, J.; Li, K.; et al. O-GlcNAcylation-Mediated Endothelial Metabolic Memory Contributes to Cardiac Damage via Small Extracellular Vesicles. Cell Metab. 2025, 37, 1344–1363.e6. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Xu, C.; Liu, J.; Chen, J.; Li, G.; Huang, B.; Pan, Y.; Zhang, Y.; Wei, Q.; et al. Circular RNA circGlis3 Protects against Islet β-Cell Dysfunction and Apoptosis in Obesity. Nat. Commun. 2023, 14, 351. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Li, Q.; Wu, J.; Zhou, C.; Liu, X.; Yue, J.; Chen, X.; Liu, J.; Zhang, Q.; Zhang, Y.; et al. A Detrimental Role of Endothelial S1PR2 in Cardiac Ischemia-Reperfusion Injury via Modulating Mitochondrial Dysfunction, NLRP3 Inflammasome Activation, and Pyroptosis. Redox Biol. 2024, 75, 103244. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-P.; Qiu, S.; Tai, G.-J.; Liu, Y.-M.; Wei, W.; Fu, M.-M.; Fang, P.-Q.; Otieno, J.N.; Battulga, T.; Li, X.-X.; et al. NLRP3 Inflammasome-Modulated Angiogenic Function of EPC via PI3K/ Akt/mTOR Pathway in Diabetic Myocardial Infarction. Cardiovasc. Diabetol. 2025, 24, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, L.; Zhai, L.; Palade, P.; Wang, X.; Mehta, J.L. Direct Impact of PCSK9 on SMC Senescence and Apoptosis: A New Focus in Cardiovascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1491–1496. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Prattichizzo, F.; Marfella, R.; Sardu, C.; Martino, E.; Scisciola, L.; Marfella, L.; Grotta, R.L.; Frigé, C.; Paolisso, G.; et al. SIRT3 Mediates the Effects of PCSK9 Inhibitors on Inflammation, Autophagy, and Oxidative Stress in Endothelial Cells. Theranostics 2023, 13, 531–542. [Google Scholar] [CrossRef]
- Ouyang, Z.; Ma, M.; Zhang, Z.; Wu, H.; Xue, Y.; Jian, Y.; Yin, K.; Yu, S.; Zhao, C.; Guo, W.; et al. Targeted Degradation of PCSK9 In Vivo by Autophagy-Tethering Compounds. J. Med. Chem. 2024, 67, 433–449. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, Y.; He, N.; Gao, R.; Xu, W.; Zhuo, X.; Ren, Z.; Wu, C.; Liu, L. PCSK9: A Emerging Participant in Heart Failure. Biomed. Pharmacother. 2023, 158, 114106. [Google Scholar] [CrossRef]
- Luo, C.; Fang, C.; Zou, R.; Jiang, J.; Zhang, M.; Ge, T.; Zhou, H.; Fan, X.; Zheng, B.; Zeng, Z. Hyperglycemia-Induced DNA Damage Response Activates DNA-PK Complex to Promote Endothelial Ferroptosis in Type 2 Diabetic Cardiomyopathy. Theranostics 2025, 15, 4507–4525. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Peng, J.; Ren, Z.; Yang, J.; Li, T.-T.; Li, T.-H.; Wang, Z.; Wei, D.-H.; Liu, L.-S.; Zheng, X.-L.; et al. New Role of PCSK9 in Atherosclerotic Inflammation Promotion Involving the TLR4/NF-κB Pathway. Atherosclerosis 2017, 262, 113–122. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Liu, M.; Yin, M.; Chen, J.; Li, Y.; Li, Q.; Zhou, Y.; Xia, Y.; Chen, A.; et al. Nicorandil Alleviates Cardiac Microvascular Ferroptosis in Diabetic Cardiomyopathy: Role of the Mitochondria-Localized AMPK-Parkin-ACSL4 Signaling Pathway. Pharmacol. Res. 2024, 200, 107057. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Kutsche, H.S.; Schreckenberg, R.; Weber, M.; Li, L.; Rohrbach, S.; Schulz, R.; Schlüter, K.-D. Autocrine Effects of PCSK9 on Cardiomyocytes. Basic Res. Cardiol. 2020, 115, 65. [Google Scholar] [CrossRef] [PubMed]
- Da Dalt, L.; Castiglioni, L.; Baragetti, A.; Audano, M.; Svecla, M.; Bonacina, F.; Pedretti, S.; Uboldi, P.; Benzoni, P.; Giannetti, F.; et al. PCSK9 Deficiency Rewires Heart Metabolism and Drives Heart Failure with Preserved Ejection Fraction. Eur. Heart J. 2021, 42, 3078–3090. [Google Scholar] [CrossRef]
- Laudette, M.; Lindbom, M.; Cinato, M.; Bergh, P.-O.; Skålén, K.; Muhammad, A.; Miljanovic, A.; Czuba, T.; Perkins, R.; Smith, J.G.; et al. PCSK9 Regulates Cardiac Mitochondrial Cholesterol by Promoting TSPO Degradation. Circ. Res. 2025, 136, 924–942. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wan, S.; Wu, Q.; Xing, Y.; He, Y.; Huang, W.; Long, Y.; Zhang, C.; Xu, Y.; Jiang, Z. BDH1 Overexpression Alleviates Diabetic Cardiomyopathy through Inhibiting H3K9bhb-Mediated Transcriptional Activation of LCN2. Cardiovasc. Diabetol. 2025, 24, 101. [Google Scholar] [CrossRef]
- Cai, D.; Liu, C.; Li, H.; Wang, C.; Bai, L.; Feng, J.; Hu, M.; Wang, H.; Song, S.; Xie, Y.; et al. Foxk1 and Foxk2 Promote Cardiomyocyte Proliferation and Heart Regeneration. Nat. Commun. 2025, 16, 2877. [Google Scholar] [CrossRef]
- Ahmed, E.I.; Moneam Shamardl, H.A.; Elsayed, A.M.; Sadik, S.A. Evolocumab Ameliorates Myocardial Fibrosis and Improves Metabolic Syndrome–Induced Cardiac Dysfunction in Rats via Inhibiting PCSK9/NLRP3 Inflammasome and Caspase-1/IL-1β Pathways. Eur. J. Pharmacol. 2025, 998, 177499. [Google Scholar] [CrossRef]
- Bao, H.; Wang, X.; Zhou, H.; Zhou, W.; Liao, F.; Wei, F.; Yang, S.; Luo, Z.; Li, W. PCSK9 Regulates Myofibroblast Transformation through the JAK2/STAT3 Pathway to Regulate Fibrosis after Myocardial Infarction. Biochem. Pharmacol. 2024, 220, 115996. [Google Scholar] [CrossRef]
- Huang, Q.; Zhou, Z.; Xu, L.; Zhan, P.; Huang, G. PCSK9 Inhibitor Attenuates Cardiac Fibrosis in Reperfusion Injury Rat by Suppressing Inflammatory Response and TGF-Β1/Smad3 Pathway. Biochem. Pharmacol. 2024, 230, 116563. [Google Scholar] [CrossRef]
- Wu, C.; Lin, D.; Ji, J.; Jiang, Y.; Jiang, F.; Wang, Y. PCSK9 Inhibition Regulates Infarction-Induced Cardiac Myofibroblast Transdifferentiation via Notch1 Signaling. Cell Biochem. Biophys. 2023, 81, 359–369. [Google Scholar] [CrossRef]
- Wang, S.-H.; Cui, L.-G.; Su, X.-L.; Komal, S.; Ni, R.-C.; Zang, M.-X.; Zhang, L.-R.; Han, S.-N. GSK-3β-Mediated Activation of NLRP3 Inflammasome Leads to Pyroptosis and Apoptosis of Rat Cardiomyocytes and Fibroblasts. Eur. J. Pharmacol. 2022, 920, 174830. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, B.; Du, M.; Zhu, B.; Cui, K.; Li, K.; Yuan, K.; Cowan, D.B.; Bhattacharjee, S.; Wong, S.; et al. Targeting Epsins to Inhibit Fibroblast Growth Factor Signaling While Potentiating Transforming Growth Factor-β Signaling Constrains Endothelial-to-Mesenchymal Transition in Atherosclerosis. Circulation 2023, 147, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Tuleta, I.; Hanna, A.; Humeres, C.; Aguilan, J.T.; Sidoli, S.; Zhu, F.; Frangogiannis, N.G. Fibroblast-Specific TGF-β Signaling Mediates Cardiac Dysfunction, Fibrosis, and Hypertrophy in Obese Diabetic Mice. Cardiovasc. Res. 2024, 120, 2047–2063. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Bao, W.; Chen, X.; Lu, Y.; Fang, J.; Liu, J.; Peng, S.; Pi, J.; Tomlinson, B.; Chan, P.; et al. Endothelial Gata6 Deletion Reduces Monocyte Recruitment and Proinflammatory Macrophage Formation and Attenuates Atherosclerosis through Cmpk2-Nlrp3 Pathways. Redox Biol. 2023, 64, 102775, Erratum in Redox Biol. 2023, 66, 102854. https://doi.org/10.1016/j.redox.2023.102854. [Google Scholar] [CrossRef]
- Gao, J.-J.; Wu, F.-Y.; Liu, Y.-J.; Li, L.; Lin, Y.-J.; Kang, Y.-T.; Peng, Y.-M.; Liu, Y.-F.; Wang, C.; Ma, Z.-S.; et al. Increase of PCSK9 Expression in Diabetes Promotes VEGFR2 Ubiquitination to Inhibit Endothelial Function and Skin Wound Healing. Sci. China Life Sci. 2024, 67, 2635–2649. [Google Scholar] [CrossRef]
- Zeng, J.; Tao, J.; Xi, L.; Wang, Z.; Liu, L. PCSK9 Mediates the Oxidative Low-density Lipoprotein-induced Pyroptosis of Vascular Endothelial Cells via the UQCRC1/ROS Pathway. Int. J. Mol. Med. 2021, 47, 53. [Google Scholar] [CrossRef]
- Marston, N.A.; Kamanu, F.K.; Melloni, G.E.M.; Schnitzler, G.; Hakim, A.; Ma, R.X.; Kang, H.; Chasman, D.I.; Giugliano, R.P.; Ellinor, P.T.; et al. Endothelial Cell-Related Genetic Variants Identify LDL Cholesterol-Sensitive Individuals Who Derive Greater Benefit from Aggressive Lipid Lowering. Nat. Med. 2025, 31, 963–969. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, Z.-K.; Liang, Y.; Li, Z.-J.; Zhang, X.-W.; Li, K.-H.; Wu, H.; Zhang, X.-D.; Li, C.-S.; An, D.; et al. Monocytes Release Pro-Cathepsin D to Drive Blood-to-Brain Transcytosis in Diabetes. Circ. Res. 2024, 134, e17–e33. [Google Scholar] [CrossRef]
- Luo, T.; Guo, W.; Ji, W.; Du, W.; Lv, Y.; Feng, Z. Monocyte CCL2 Signaling Possibly Contributes to Increased Asthma Susceptibility in Type 2 Diabetes. Sci. Rep. 2025, 15, 10768. [Google Scholar] [CrossRef]
- Peng, H.; Pan, Y.; Sun, Y.; Wang, X.; Fan, X.; Wang, Y.; Zhao, L.; Li, X.; Dong, Y.; Chen, J.; et al. Hyperglycemia Induces an Immunosuppressive Microenvironment in Colorectal Cancer Liver Metastases by Recruiting Peripheral Blood Monocytes through the CCL3-CCR1 Axis. J. Immunother. Cancer 2025, 13, e011310. [Google Scholar] [CrossRef]
- Moens, S.J.B.; Neele, A.E.; Kroon, J.; Van Der Valk, F.M.; Van Den Bossche, J.; Hoeksema, M.A.; Hoogeveen, R.M.; Schnitzler, J.G.; Baccara-Dinet, M.T.; Manvelian, G.; et al. PCSK9 Monoclonal Antibodies Reverse the Pro-Inflammatory Profile of Monocytes in Familial Hypercholesterolaemia. Eur. Heart J. 2017, 38, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Krychtiuk, K.A.; Lenz, M.; Hohensinner, P.; Distelmaier, K.; Schrutka, L.; Kastl, S.P.; Huber, K.; Dostal, E.; Oravec, S.; Hengstenberg, C.; et al. Circulating Levels of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Are Associated with Monocyte Subsets in Patients with Stable Coronary Artery Disease. J. Clin. Lipidol. 2021, 15, 512–521. [Google Scholar] [CrossRef]
- Filatova, A.Y.; Afanasieva, O.I.; Arefieva, T.I.; Potekhina, A.V.; Tyurina, A.V.; Klesareva, E.A.; Razova, O.A.; Ezhov, M.V.; Pokrovsky, S.N. The Concentration of PCSK9-Lp(a) Complexes and the Level of Blood Monocytes in Males with Coronary Atherosclerosis. J. Pers. Med. 2023, 13, 1077. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Tate, A.; Mar, P.; Grushko, O.; Chen, Q.; Goonewardena, S.N. Inhibition of PCSK9 with Evolocumab Modulates Lipoproteins and Monocyte Activation in High-Risk ASCVD Subjects. Atherosclerosis 2024, 392, 117529. [Google Scholar] [CrossRef] [PubMed]
- Desouky, D.A.; Nosair, N.A.; Salama, M.K.; El-Magd, M.A.; Desouky, M.A.; Sherif, D.E. PCSK9 and Its Relationship with HMGB1, TLR4, and TNFα in Non-Statin and Statin-Treated Coronary Artery Disease Patients. Mol. Cell. Biochem. 2025, 480, 2935–2949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Wu, Y.; Li, M.; Mijiti, A.; Cheng, L.-F. Identification of Macrophage Driver Genes in Fibrosis Caused by Different Heart Diseases Based on Omics Integration. J. Transl. Med. 2024, 22, 839. [Google Scholar] [CrossRef]
- Mao, J.; Xia, W.; Wu, Y.; Li, M.; Zhao, Y.; Zhai, P.; Zhang, Y.; Zan, T.; Cui, W.; Sun, X. Biosynthesis of Lysosomally Escaped Apoptotic Bodies Inhibits Inflammasome Synthesis in Macrophages. Research 2025, 8, 0581. [Google Scholar] [CrossRef]
- Wolf, S.J.; Audu, C.O.; Moon, J.Y.; Joshi, A.D.; Melvin, W.J.; Barrett, E.C.; Mangum, K.; De Jimenez, G.S.; Rocco, S.; Buckley, S.; et al. Diabetic Wound Keratinocytes Induce Macrophage JMJD3-Mediated Nlrp3 Expression via IL-1R Signaling. Diabetes 2024, 73, 1462–1472. [Google Scholar] [CrossRef]
- Lv, D.; Cao, X.; Zhong, L.; Dong, Y.; Xu, Z.; Rong, Y.; Xu, H.; Wang, Z.; Yang, H.; Yin, R.; et al. Targeting Phenylpyruvate Restrains Excessive NLRP3 Inflammasome Activation and Pathological Inflammation in Diabetic Wound Healing. Cell Rep. Med. 2023, 4, 101129. [Google Scholar] [CrossRef]
- Zhang, X.; McDonald, J.G.; Aryal, B.; Canfrán-Duque, A.; Goldberg, E.L.; Araldi, E.; Ding, W.; Fan, Y.; Thompson, B.M.; Singh, A.K.; et al. Desmosterol Suppresses Macrophage Inflammasome Activation and Protects against Vascular Inflammation and Atherosclerosis. Proc. Natl. Acad. Sci. USA 2021, 118, e2107682118. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, Z.; Zhang, X.; Yu, J.; Xu, H.; Cui, J.; Li, Y.; Niu, Y.; Zhou, C.; Xia, J.; et al. Targeting PCSK9 Ameliorates Graft Vascular Disease in Mice by Inhibiting NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells. Front. Immunol. 2022, 13, 894789. [Google Scholar] [CrossRef]
- Fang, H.; Shi, M.; Wang, C.; Zhang, S.; Kong, N.; Ji, M.; Wang, Y.; Zhou, Y.; Zhu, Q.; Zhang, Y.; et al. PCSK9 Potentiates Innate Immune Response to RNA Viruses by Preventing AIP4-Mediated Polyubiquitination and Degradation of VISA/MAVS. Proc. Natl. Acad. Sci. USA 2025, 122, e2412206122. [Google Scholar] [CrossRef]
- Katsuki, S.; Jha, P.K.; Lupieri, A.; Nakano, T.; Passos, L.S.A.; Rogers, M.A.; Becker-Greene, D.; Le, T.-D.; Decano, J.L.; Ho Lee, L.; et al. Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Promotes Macrophage Activation via LDL Receptor-Independent Mechanisms. Circ. Res. 2022, 131, 873–889. [Google Scholar] [CrossRef]
- Yang, C.-L.; Zeng, Y.-D.; Hu, Z.-X.; Liang, H. PCSK9 Promotes the Secretion of Pro-Inflammatory Cytokines by Macrophages to Aggravate H/R-Induced Cardiomyocyte Injury via Activating NF-κB Signalling. Gen. Physiol. Biophys. 2020, 39, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Li, T.; Luo, J.; Zhang, X.; Wang, T.; Wang, Y.; Ma, Y.; Yang, B.; Jia, J.; Dmytriw, A.A.; et al. PCSK9 Increases Vulnerability of Carotid Plaque by Promoting Mitochondrial Dysfunction and Apoptosis of Vascular Smooth Muscle Cells. CNS Neurosci. Ther. 2024, 30, e14640. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Zhang, G.; Bao, Y.; Zhang, M. Involvement of Oxidative Stress-AMPK-Cx43-NLRP3 Pathway in Extracellular Matrix Remodeling of Gastric Smooth Muscle Cells in Rats with Diabetic Gastroparesis. Cell Stress Chaperones 2024, 29, 440–455. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Liu, J.; Ma, Y.; Qiu, C.; Liu, C.; Gong, Y.; Yuwen, Y.; Guan, G.; Zhang, Y.; et al. Palmitic Acid in Type 2 Diabetes Mellitus Promotes Atherosclerotic Plaque Vulnerability via Macrophage Dll4 Signaling. Nat. Commun. 2024, 15, 1281. [Google Scholar] [CrossRef]
- Mei, W.; Faraj Tabrizi, S.; Godina, C.; Lovisa, A.F.; Isaksson, K.; Jernström, H.; Tavazoie, S.F. A Commonly Inherited Human PCSK9 Germline Variant Drives Breast Cancer Metastasis via LRP1 Receptor. Cell 2025, 188, 371–389.e28. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, S.; Luo, H.; Lu, Q.; Yu, S. PCSK9 Promotes the Progression and Metastasis of Colon Cancer Cells through Regulation of EMT and PI3K/AKT Signaling in Tumor Cells and Phenotypic Polarization of Macrophages. J. Exp. Clin. Cancer Res. 2022, 41, 303. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, S.; Fang, Y.; Zou, Y.; Song, D.; Zhang, S.; Cai, Y. Proprotein Convertase Subtilisin/Kexin Type 9 Promotes Gastric Cancer Metastasis and Suppresses Apoptosis by Facilitating MAPK Signaling Pathway Through HSP70 Up-Regulation. Front. Oncol. 2021, 10, 609663. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, W.; Ji, X.; Yang, Z.; Guan, Q.; Pang, Y.; Zhong, L.; Wang, Y.; Xiang, J. PCSK9 Promotes Progression of Anaplastic Thyroid Cancer through E-Cadherin Endocytosis. Cell Death Dis. 2025, 16, 362. [Google Scholar] [CrossRef]
- Rademaker, G.; Hernandez, G.A.; Seo, Y.; Dahal, S.; Miller-Phillips, L.; Li, A.L.; Peng, X.L.; Luan, C.; Qiu, L.; Liegeois, M.A.; et al. PCSK9 Drives Sterol-Dependent Metastatic Organ Choice in Pancreatic Cancer. Nature 2025, 643, 1381–1390. [Google Scholar] [CrossRef]
- Chai, M.; He, Y.; Zhao, W.; Han, X.; Zhao, G.; Ma, X.; Qiao, P.; Shi, D.; Liu, Y.; Han, W.; et al. Efficacy and Safety of Tafolecimab in Chinese Patients with Heterozygous Familial Hypercholesterolemia: A Randomized, Double-Blind, Placebo-Controlled Phase 3 Trial (CREDIT-2). BMC Med. 2023, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Koren, M.J.; Vega, R.B.; Agrawal, N.; Xu, Y.; Barbour, A.M.; Yu, H.; Wallerstedt, E.; Carter, D.; Middlemiss, J.; Twaddle, L.; et al. An Oral PCSK9 Inhibitor for Treatment of Hypercholesterolemia. J. Am. Coll. Cardiol. 2025, 85, 1996–2007. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, P.; Wang, Y.; Du, S.; Zhao, J.; Zhang, Z. The Impact of PCSK9 on Diabetic Cardiomyopathy: Mechanisms and Implications. Biomolecules 2025, 15, 1240. https://doi.org/10.3390/biom15091240
Wang H, Wang P, Wang Y, Du S, Zhao J, Zhang Z. The Impact of PCSK9 on Diabetic Cardiomyopathy: Mechanisms and Implications. Biomolecules. 2025; 15(9):1240. https://doi.org/10.3390/biom15091240
Chicago/Turabian StyleWang, Haixia, Pei Wang, Yubo Wang, Shuzhen Du, Jing Zhao, and Zheng Zhang. 2025. "The Impact of PCSK9 on Diabetic Cardiomyopathy: Mechanisms and Implications" Biomolecules 15, no. 9: 1240. https://doi.org/10.3390/biom15091240
APA StyleWang, H., Wang, P., Wang, Y., Du, S., Zhao, J., & Zhang, Z. (2025). The Impact of PCSK9 on Diabetic Cardiomyopathy: Mechanisms and Implications. Biomolecules, 15(9), 1240. https://doi.org/10.3390/biom15091240