Beneficial Effects of Different Types of Exercise on Diabetic Cardiomyopathy
Abstract
1. Introduction
2. Methods
2.1. Animal Experiments and Study Design
2.2. Exercise Training Protocol
2.3. Echocardiographic Measurements
2.4. Tissue Collection
2.5. Histology
2.6. WGA Staining
2.7. TUNEL Staining
2.8. Immunofluorescence Staining
2.9. Quantitative Real-Time PCR
2.10. Western Blotting
2.11. Statistical Analysis
3. Results
3.1. Exercise Training Improves Cardiac Dysfunction in Mice with DCM
3.2. Exercise Training Suppresses Myocardial Inflammation in DCM Mice
3.3. Exercise Training Attenuates Myocardial Hypertrophy in DCM Mice
3.4. Exercise Training Ameliorates Myocardial Fibrosis in DCM Mice
3.5. Exercise Training Suppresses PANoptosis in the Myocardium of DCM Mice
3.6. Exercise Training Inhibits Activation of the cGAS-STING Pathway in the Myocardium of DCM Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.K.; Pearson-Stuttard, J.; Selvin, E.; Gregg, E.W. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia 2021, 65, 3–13. [Google Scholar] [CrossRef]
- Demir, S.; Nawroth, P.P.; Herzig, S.; Üstünel, B.E. Emerging Targets in Type 2 Diabetes and Diabetic Complications. Adv. Sci. 2021, 8, 2100275. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Wang, X.; Chen, Y.; Pang, P.; Yang, Q.; Lin, J.; Deng, S.; Wu, S.; Fan, G.; et al. Diabetic cardiomyopathy: Clinical phenotype and practice. Front. Endocrinol. 2022, 13, 1032268. [Google Scholar] [CrossRef]
- Boonman-de Winter, L.J.; Rutten, F.H.; Cramer, M.J.; Landman, M.J.; Liem, A.H.; Rutten, G.E.; Hoes, A.W. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia 2012, 55, 2154–2162. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, H.; Liu, T.; Zhou, Z.; Feng, B.; Wang, Y.; Qian, Z.; Hou, X.; Zou, J. Bmal1 downregulation leads to diabetic cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial Ca2+ overload. Redox Biol. 2023, 64, 102788. [Google Scholar] [CrossRef]
- Luo, W.; Lin, K.; Hua, J.; Han, J.; Zhang, Q.; Chen, L.; Khan, Z.A.; Wu, G.; Wang, Y.; Liang, G. Schisandrin B Attenuates Diabetic Cardiomyopathy by Targeting MyD88 and Inhibiting MyD88-Dependent Inflammation. Adv. Sci. 2022, 9, e2202590. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Han, X.-W.; Jiang, Y.-H.; Wang, Y.-L.; He, X.-L.; Liu, D.-H.; Huang, J.; Liu, H.-H.; Ye, T.-C.; Li, S.-J.; et al. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int. Immunopharmacol. 2023, 123, 110747. [Google Scholar] [CrossRef]
- Cai, X.; He, L.; Zhou, G.; Li, S.; Liao, X. Mogroside IIe Ameliorates Cardiomyopathy by Suppressing Cardiomyocyte Apoptosis in a Type 2 Diabetic Model. Front. Pharmacol. 2021, 12, 650193. [Google Scholar] [CrossRef]
- Ma, X.M.; Geng, K.; Law, B.Y.-K.; Wang, P.; Pu, Y.L.; Chen, Q.; Xu, H.W.; Tan, X.Z.; Jiang, Z.Z.; Xu, Y. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes. Cell Biol. Toxicol. 2022, 39, 277–299. [Google Scholar] [CrossRef]
- Prattichizzo, F.; De Nigris, V.; Sabbatinelli, J.; Giuliani, A.; Castaño, C.; Párrizas, M.; Crespo, I.; Grimaldi, A.; Baranzini, N.; Spiga, R.; et al. CD31+ Extracellular Vesicles From Patients With Type 2 Diabetes Shuttle a miRNA Signature Associated With Cardiovascular Complications. Diabetes 2020, 70, 240–254. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, Y.; Liang, J.; Ying, P.; Situ, Q.; Tan, X.; Zhu, J. Upregulation of NF-κB by USP24 aggravates ferroptosis in diabetic cardiomyopathy. Free. Radic. Biol. Med. 2023, 210, 352–366. [Google Scholar] [CrossRef]
- San, W.; Zhou, Q.; Shen, D.; Cao, D.; Chen, Y.; Meng, G. Roles of retinoic acid-related orphan receptor α in high glucose-induced cardiac fibroblasts proliferation. Front. Pharmacol. 2025, 16, 1539690. [Google Scholar] [CrossRef]
- Shimizu, M.; Umeda, K.; Sugihara, N.; Yoshio, H.; Ino, H.; Takeda, R.; Okada, Y.; Nakanishi, I. Collagen remodelling in myocardia of patients with diabetes. J. Clin. Pathol. 1993, 46, 32–36. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. TGF-β as a therapeutic target in the infarcted and failing heart: Cellular mechanisms, challenges, and opportunities. Expert Opin. Ther. Targets 2024, 28, 45–56. [Google Scholar] [CrossRef]
- Meng, L.; Lu, Y.; Wang, X.; Cheng, C.; Xue, F.; Xie, L.; Zhang, Y.; Sui, W.; Zhang, M.; Zhang, Y.; et al. NPRC deletion attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-β1/Smad pathways. Sci. Adv. 2023, 9, eadd4222. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, X.; Zhao, F.; Chen, Z.; Liu, M.; Wang, P.; Lu, P.; Wang, X. Tinglu Yixin granule inhibited fibroblast-myofibroblast transdifferentiation to ameliorate myocardial fibrosis in diabetic mice. J. Ethnopharmacol. 2024, 337, 118980. [Google Scholar] [CrossRef]
- Dugbartey, G.J.; Wonje, Q.L.; Alornyo, K.K.; Robertson, L.; Adams, I.; Boima, V.; Mensah, S.D. Combination Therapy of Alpha-Lipoic Acid, Gliclazide and Ramipril Protects Against Development of Diabetic Cardiomyopathy via Inhibition of TGF-β/Smad Pathway. Front. Pharmacol. 2022, 13, 850542. [Google Scholar] [CrossRef]
- Xiang, Q.; Geng, Z.-X.; Yi, X.; Wei, X.; Zhu, X.-H.; Jiang, D.-S. PANoptosis: A novel target for cardiovascular diseases. Trends Pharmacol. Sci. 2024, 45, 739–756. [Google Scholar] [CrossRef]
- Luo, B.; Li, B.; Wang, W.; Liu, X.; Xia, Y.; Zhang, C.; Zhang, M.; Zhang, Y.; An, F.; Bauer, P.M. NLRP3 Gene Silencing Ameliorates Diabetic Cardiomyopathy in a Type 2 Diabetes Rat Model. PLoS ONE 2014, 9, e104771. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.; Liu, H.; Zhang, M.; Liu, D.; Lu, L.; Tian, J.; Liu, M.; Jin, T.; An, F. AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model. Life Sci. 2019, 221, 249–258. [Google Scholar] [CrossRef]
- Li, X.; Guo, K.; Zhou, Q.; Hosyanto, F.F.; Zhou, G.; Zhang, Y.; Li, Y.; Yang, S. Cardiomyocyte-specific deletion of STING improves cardiac function, glucose homeostasis, and wound healing in diabetic mice. Life Sci. 2025, 366–367, 123470. [Google Scholar] [CrossRef]
- Yan, M.; Li, Y.; Luo, Q.; Zeng, W.; Shao, X.; Li, L.; Wang, Q.; Wang, D.; Zhang, Y.; Diao, H.; et al. Mitochondrial damage and activation of the cytosolic DNA sensor cGAS–STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice. Cell Death Discov. 2022, 8, 258. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, T.; Li, J.; Wang, Y.; Shi, H.; Yu, Y.; Ji, Q.; Shen, X.; Sun, T.; Shi, H.; et al. IL-37 ameliorates myocardial fibrosis by regulating mtDNA-enriched vesicle release in diabetic cardiomyopathy mice. J. Transl. Med. 2024, 22, 494. [Google Scholar] [CrossRef]
- He, Y.-Q.; Deng, J.-L.; Zhou, C.-C.; Jiang, S.-G.; Zhang, F.; Tao, X.; Chen, W.-S. Ursodeoxycholic acid alleviates sepsis-induced lung injury by blocking PANoptosis via STING pathway. Int. Immunopharmacol. 2023, 125, 111161. [Google Scholar] [CrossRef]
- Jin, L.; Geng, L.; Ying, L.; Shu, L.; Ye, K.; Yang, R.; Liu, Y.; Wang, Y.; Cai, Y.; Jiang, X.; et al. FGF21–Sirtuin 3 Axis Confers the Protective Effects of Exercise Against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation 2022, 146, 1537–1557. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, F.; Fan, J.; Wu, T.; Jia, S.; Li, J.; Chen, N.; Al-U’dAtt, D.G.F. Swimming alleviates myocardial fibrosis of type II diabetic rats through activating miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway. PLoS ONE 2024, 19, e0310136. [Google Scholar] [CrossRef]
- Ko, T.H.; Marquez, J.C.; Kim, H.K.; Jeong, S.H.; Lee, S.; Youm, J.B.; Song, I.S.; Seo, D.Y.; Kim, H.J.; Won, D.N.; et al. Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts. Pflügers Arch. Eur. J. Physiol. 2017, 470, 263–275. [Google Scholar] [CrossRef]
- Delfan, M.; Delphan, M.; Kordi, M.R.; Ravasi, A.A.; Safa, M.; Gorgani-Firuzjaee, S.; Fatemi, A.; Bandarian, F.; Nasli-Esfahani, E. High intensity interval training improves diabetic cardiomyopathy via miR-1 dependent suppression of cardiomyocyte apoptosis in diabetic rats. J. Diabetes Metab. Disord. 2020, 19, 145–152. [Google Scholar] [CrossRef]
- Zheng, L.; Rao, Z.; Guo, Y.; Chen, P.; Xiao, W. High-Intensity Interval Training Restores Glycolipid Metabolism and Mitochondrial Function in Skeletal Muscle of Mice With Type 2 Diabetes. Front. Endocrinol. 2020, 11, 561. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Q.; Zheng, L.; Shou, J.; Zhuang, S.; Xiao, W.; Chen, P. Depot-specific adaption of adipose tissue for different exercise approaches in high-fat diet/streptozocin-induced diabetic mice. Front. Physiol. 2023, 14, 1189528. [Google Scholar] [CrossRef]
- Zheng, L.; Qin, R.; Rao, Z.; Xiao, W. High-intensity interval training induces renal injury and fibrosis in type 2 diabetic mice. Life Sci. 2023, 324, 121740. [Google Scholar] [CrossRef]
- Huo, S.; Wang, Q.; Shi, W.; Peng, L.; Jiang, Y.; Zhu, M.; Guo, J.; Peng, D.; Wang, M.; Men, L.; et al. ATF3/SPI1/SLC31A1 Signaling Promotes Cuproptosis Induced by Advanced Glycosylation End Products in Diabetic Myocardial Injury. Int. J. Mol. Sci. 2023, 24, 1667. [Google Scholar] [CrossRef]
- Shi, X.; Liu, C.; Chen, J.; Zhou, S.; Li, Y.; Zhao, X.; Xing, J.; Xue, J.; Liu, F.; Li, F. Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury. Cardiovasc. Diabetol. 2023, 22, 216. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.K.; Nguyen, T.H.T.; Yi, J.M.; Kim, G.S.; Yun, H.R.; Kim, H.K.; Won, J.C. Evogliptin, a DPP-4 inhibitor, prevents diabetic cardiomyopathy by alleviating cardiac lipotoxicity in db/db mice. Exp. Mol. Med. 2023, 55, 767–778. [Google Scholar] [CrossRef]
- Qi, R.; Lin, E.; Song, J.; Wang, Y.; Lin, L. Proteomic Insights into Cardiac Fibrosis: From Pathophysiological Mechanisms to Therapeutic Opportunities. Molecules 2022, 27, 8784. [Google Scholar] [CrossRef]
- Chang, X.; Wang, B.; Zhao, Y.; Deng, B.; Liu, P.; Wang, Y. The role of IFI16 in regulating PANoptosis and implication in heart diseases. Cell Death Discov. 2024, 10, 204. [Google Scholar] [CrossRef]
- Xue, F.; Cheng, J.; Liu, Y.; Cheng, C.; Zhang, M.; Sui, W.; Chen, W.; Hao, P.; Zhang, Y.; Zhang, C. Cardiomyocyte-specific knockout of ADAM17 ameliorates left ventricular remodeling and function in diabetic cardiomyopathy of mice. Signal Transduct. Target. Ther. 2022, 7, 259. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Li, S.; Lv, J. Endothelial Dysfunction and Diabetic Cardiomyopathy. Front. Endocrinol. 2022, 13, 851941. [Google Scholar] [CrossRef]
- Ke, J.; Pan, J.; Lin, H.; Gu, J. Diabetic cardiomyopathy: A brief summary on lipid toxicity. ESC Hear. Fail. 2022, 10, 776–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Cui, H.; Fan, C.; Xue, Y.; Liu, H.; Li, H.; Li, J.; Li, H.; Sun, Y.; et al. Inhibition of fatty acid uptake by TGR5 prevents diabetic cardiomyopathy. Nat. Metab. 2024, 6, 1161–1177. [Google Scholar] [CrossRef]
- Wang, T.; Ning, M.; Mo, Y.; Tian, X.; Fu, Y.; Laher, I.; Li, S. Metabolomic Profiling Reveals That Exercise Lowers Biomarkers of Cardiac Dysfunction in Rats with Type 2 Diabetes. Antioxidants 2024, 13, 1167. [Google Scholar] [CrossRef]
- Fang, T.; Wang, J.; Sun, S.; Deng, X.; Xue, M.; Han, F.; Sun, B.; Chen, L. JinLiDa granules alleviates cardiac hypertrophy and inflammation in diabetic cardiomyopathy by regulating TP53. Phytomedicine 2024, 130, 155659. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Mao, M.; Diao, J.; Hou, Y.; Su, H.; Gan, Y.; Li, J.; Tong, X.; Wu, C.; Zuo, Z.; et al. Ectopic Overexpression of PPARγ2 in the Heart Determines Differences in Hypertrophic Cardiomyopathy After Treatment With Different Thiazolidinediones in a Mouse Model of Diabetes. Front. Pharmacol. 2021, 12, 683156. [Google Scholar] [CrossRef]
- Rami, M.; Hekmatikar, A.A.; Rahdar, S.; Marashi, S.S.; Daud, D.M.A. Highlighting the effects of high-intensity interval training on the changes associated with hypertrophy, apoptosis, and histological proteins of the heart of old rats with type 2 diabetes. Sci. Rep. 2024, 14, 7133. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, H.; Liu, Z.; Huang, Y.; Liu, Q.; Jin, L.; Zhu, M.; Zhang, L. Inflammation in diabetes complications: Molecular mechanisms and therapeutic interventions. Medcomm 2024, 5, e516. [Google Scholar] [CrossRef]
- Phang, R.J.; Ritchie, R.H.; Hausenloy, D.J.; Lees, J.G.; Lim, S.Y. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc. Res. 2022, 119, 668–690. [Google Scholar] [CrossRef]
- Wu, J.; Li, K.; Zhou, M.; Gao, H.; Wang, W.; Xiao, W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J. Pharm. Anal. 2024, 14, 100946. [Google Scholar] [CrossRef]
- Shabab, S.; Mahmoudabady, M.; Gholamnezhad, Z.; Fouladi, M.; Asghari, A.A. Diabetic cardiomyopathy in rats was attenuated by endurance exercise through the inhibition of inflammation and apoptosis. Heliyon 2023, 10, e23427. [Google Scholar] [CrossRef]
- Alexanian, M.; Padmanabhan, A.; Nishino, T.; Travers, J.G.; Ye, L.; Pelonero, A.; Lee, C.Y.; Sadagopan, N.; Huang, Y.; Auclair, K.; et al. Chromatin remodelling drives immune cell–fibroblast communication in heart failure. Nature 2024, 635, 434–443. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. The Extracellular Matrix in Ischemic and Nonischemic Heart Failure. Circ. Res. 2019, 125, 117–146. [Google Scholar] [CrossRef]
- Galeone, A.; Annicchiarico, A.; Buccoliero, C.; Barile, B.; Luciani, G.B.; Onorati, F.; Nicchia, G.P.; Brunetti, G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int. J. Mol. Sci. 2024, 25, 9481. [Google Scholar] [CrossRef]
- Hu, H.-H.; Chen, D.-Q.; Wang, Y.-N.; Feng, Y.-L.; Cao, G.; Vaziri, N.D.; Zhao, Y.-Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Interactions 2018, 292, 76–83. [Google Scholar] [CrossRef]
- Yue, Y.; Meng, K.; Pu, Y.; Zhang, X. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 2017, 133, 124–130. [Google Scholar] [CrossRef]
- Marino, F.; Salerno, N.; Scalise, M.; Salerno, L.; Torella, A.; Molinaro, C.; Chiefalo, A.; Filardo, A.; Siracusa, C.; Panuccio, G.; et al. Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2023, 24, 1132. [Google Scholar] [CrossRef] [PubMed]
- Veeranki, S.; Givvimani, S.; Kundu, S.; Metreveli, N.; Pushpakumar, S.; Tyagi, S.C. Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. J. Mol. Cell. Cardiol. 2016, 92, 163–173. [Google Scholar] [CrossRef]
- Yazdani, F.; Shahidi, F.; Karimi, P. The effect of 8 weeks of high-intensity interval training and moderate-intensity continuous training on cardiac angiogenesis factor in diabetic male rats. J. Physiol. Biochem. 2020, 76, 291–299. [Google Scholar] [CrossRef]
- Han, G.; Hu, K.; Luo, T.; Wang, W.; Zhang, D.; Ouyang, L.; Liu, X.; Liu, J.; Wu, Y.; Liang, J.; et al. Research progress of non-coding RNA regulating the role of PANoptosis in diabetes mellitus and its complications. Apoptosis 2025, 30, 516–536. [Google Scholar] [CrossRef]
- Qin, T.; Shi, M.; Zhang, C.; Wu, J.; Huang, Z.; Zhang, X.; Li, S.; Wu, Y.; Han, W.; Gao, B.; et al. The muscle–intervertebral disc interaction mediated by L-BAIBA modulates extracellular matrix homeostasis and PANoptosis in nucleus pulposus cells. Exp. Mol. Med. 2024, 56, 2503–2518. [Google Scholar] [CrossRef]
- Decout, A.; Katz, J.D.; Venkatraman, S.; Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 2021, 21, 548–569. [Google Scholar] [CrossRef]
- Oduro, P.K.; Zheng, X.; Wei, J.; Yang, Y.; Wang, Y.; Zhang, H.; Liu, E.; Gao, X.; Du, M.; Wang, Q. The cGAS–STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharm. Sin. B 2021, 12, 50–75. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, X.; Li, J.; Yuan, X.; Li, Y.; Zhang, X.; Kang, Z.; Ouyang, Z.; Zeng, J.; Hou, N.; et al. BRG1 Deficiency Promotes Cardiomyocyte Inflammation and Apoptosis by Activating the cGAS-STING Signaling in Diabetic Cardiomyopathy. Inflammation 2024, 48, 299–315. [Google Scholar] [CrossRef]
- Lu, L.; Shao, Y.; Xiong, X.; Ma, J.; Zhai, M.; Lu, G.; Jiang, L.; Jin, P.; Tang, J.; Yang, J.; et al. Irisin improves diabetic cardiomyopathy-induced cardiac remodeling by regulating GSDMD-mediated pyroptosis through MITOL/STING signaling. Biomed. Pharmacother. 2024, 171, 116007. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Duan, Y.; Liu, C.; Zhao, S.; Deng, J. LARP7 Contributes to Glucose-Induced Cardiac Dysfunction, Apoptosis and Fibrosis by Inhibiting the Degradation of STING. Front. Biosci. 2024, 29, 274. [Google Scholar] [CrossRef]
- Wang, S.; Tan, J.; Zhang, Q. Cytosolic Escape of Mitochondrial DNA Triggers cGAS-STING Pathway-Dependent Neuronal PANoptosis in Response to Intermittent Hypoxia. Neurochem. Res. 2024, 49, 2228–2248. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Zhu, J.-Y.; Mu, W.-J.; Luo, H.-Y.; Yan, L.-J.; Li, S.; Li, R.-Y.; Yin, M.-T.; Li, X.; et al. Exercise-induced adipokine Nrg4 alleviates MASLD by disrupting hepatic cGAS-STING signaling. Cell Rep. 2025, 44, 115251. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, Z.; Zhao, X.; Zhang, B. Aerobic exercise mitigates high-fat diet-induced cardiac dysfunction, pyroptosis, and inflammation by inhibiting STING-NLRP3 signaling pathway. Mol. Cell. Biochem. 2024, 479, 3459–3470. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer |
---|---|---|
IL-6 | TAGTCCTTCCTACCCCAATTTCC | TTGGTCCTTAGCCACTCCTTC |
IL-18 | GACTCTTGCGTCAACTTCAAGG | CAGGCTGTCTTTTGTCAACGA |
NF-κB | ATGGCAGACGATGATCCCTAC | CGGAATCGAAATCCCCTCTGTT |
TNF-α | CCTGTAGCCCACGTCGTAG | GGGAGTAGACAAGGTACAACCC |
MCP1 | AGGTCCCTGTCATGCTTCTG | TGGGATCATCTTGCTGGTG |
Nppa | TGGGATCATCTTGCTGGTG | GGGGGCATGACCTCATCTT |
Nppb | AGTCCTTCGGTCTCAAGGCA | CCGATCCGGTCTATCTTGTGC |
Myh7 | CCTGCGGAAGTCTGAGAAGG | CTCGGGACACGATCTTGGC |
Col1a1 | CTGGCGGTTCAGGTCCAAT | TTCCAGGCAATCCACGAGC |
Col3a1 | CTGTAACATGGAAACTGGGGAAA | CCATAGCTGAACTGAAAACCACC |
TGF-β1 | CTTCAATACGTCAGACATTCGGG | GTAACGCCAGGAATTGTTGCTA |
Smad2 | AAGCCATCACCACTCAGAATTG | CACTGATCTACCGTATTTGCTGT |
Smad3 | CATTCCATTCCCGAGAACACTAA | GCTGTGGTTCATCTGGTGGT |
Smad4 | ACACCAACAAGTAACGATGCC | GCAAAGGTTTCACTTTCCCCA |
cGAS | CAGGAAGGAACCGGACAAGC | CCGACTCCCGTTTCTGCATT |
STING | GGTCACCGCTCCAAATATGTAG | CAGTAGTCCAAGTTCGTGCGA |
TBK1 | TGCTGGGGTTTTGACCAGTT | TCTTATGCGCCGTCATGTGT |
IRF3 | TGGGTCAAGAGGCTTGTGAT | ATGTCCTCCACCAAGTCCTG |
AIM2 | GTCCTCAAGCTAAGCCTCAGA | CACCGTGACAACAAGTGGAT |
ZBP1 | GAAATGCCAAGTGCCCAAGAA | CCCGCCTATGCTCCATGTT |
Pyrin | TCATCTGCTAAACACCCTGGA | CCCCGTAGTAGGTTATCAGAAGG |
GSDMD | TTAATTGAGGCGGCAGACTT | TGGGCTGGTCCTGTAAAATC |
Caspase1 | ACAAGGCACGGGACCTATG | TCCCAGTCAGTCCTGGAAATG |
Caspase3 | TGGAGGCTGACTTCCTGTATGC | ATTCCGTTGCCACCTTCCTGTT |
Caspase8 | TGCTTGGACTACATCCCACAC | TGCAGTCTAGGAAGTTGACCA |
RIPK1 | GACAGACCTAGACAGCGGAG | CCAGTAGCTTCACCACTCGAC |
RIPK3 | CCAGAGAGCCAAGCCAAAGAG | AGCCACGGGGTCAGAAGATG |
MLKL | TTAGGCCAGCTCATCTATGAACA | TGCACACGGTTTCCTAGACG |
β-actin | CGTGCGTGACATCAAAGAGAA | GCTCGTTGCCAATAGTGATGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Gao, H.; Wang, Z.; Zhu, D.; Dai, W.; Wu, M.; Guo, Y.; Zhao, L.; Xiao, W. Beneficial Effects of Different Types of Exercise on Diabetic Cardiomyopathy. Biomolecules 2025, 15, 1223. https://doi.org/10.3390/biom15091223
Ma X, Gao H, Wang Z, Zhu D, Dai W, Wu M, Guo Y, Zhao L, Xiao W. Beneficial Effects of Different Types of Exercise on Diabetic Cardiomyopathy. Biomolecules. 2025; 15(9):1223. https://doi.org/10.3390/biom15091223
Chicago/Turabian StyleMa, Xiaotong, Haoyang Gao, Ze Wang, Danlin Zhu, Wei Dai, Mingyu Wu, Yifan Guo, Linlin Zhao, and Weihua Xiao. 2025. "Beneficial Effects of Different Types of Exercise on Diabetic Cardiomyopathy" Biomolecules 15, no. 9: 1223. https://doi.org/10.3390/biom15091223
APA StyleMa, X., Gao, H., Wang, Z., Zhu, D., Dai, W., Wu, M., Guo, Y., Zhao, L., & Xiao, W. (2025). Beneficial Effects of Different Types of Exercise on Diabetic Cardiomyopathy. Biomolecules, 15(9), 1223. https://doi.org/10.3390/biom15091223