Chinese Medicine-Derived Natural Compounds and Intestinal Regeneration: Mechanisms and Experimental Evidence
Abstract
1. Introduction
2. Mechanisms of Action of Natural Compounds in Intestinal Regeneration
2.1. Modulation of Intestinal Stem Cells and Epithelial Lineage Differentiation
2.2. Regulation of Inflammation and Immune Modulation
2.3. Improvement in Epithelial Barrier Function
2.4. Reduction in Oxidative Stress
2.5. The Modulation of the Gut Microbiota and Its Metabolites
3. Experimental Evidence from In Vitro and In Vivo Studies
3.1. In Vitro Models: Intestinal Organoids and Cell Cultures
3.2. In Vivo Studies: Animal Models of Intestinal Injury and Disease
4. Translational Challenges of Natural Compounds in Intestinal Therapy: Safety, Standardization, and Bioavailability
Compound | Key Pathways/Actions | Evidence Level | Clinical Trial Status |
---|---|---|---|
Curcumin (turmeric) | Inhibits NF-κB, TLR4/AP-1, and pro-inflammatory cytokines; activates Nrf2 antioxidant response; modulates gut microbiome (promotes SCFA-producing flora). | Extensive preclinical evidence (in vitro and animal models of colitis); multiple clinical trials in IBD and other GI disorders. | Completed: Several RCTs in ulcerative colitis showed symptom improvement and remission maintenance (approved for use as adjunct in IBD in some settings; further trials ongoing [61]). |
Quercetin (flavonoid) | Antioxidant (scavenges ROS and upregulates HO-1 via Nrf2); suppresses NF-κB and MAPK signaling (reduces IL-8 and TNF-α); stabilizes mast cells; helps restore tight junction proteins in gut epithelium. | Preclinical evidence from studies in vitro (cell protection) and in rodents (DSS colitis models); some human data (dietary intake correlational studies and small pilot trials). | Completed: A small RCT in ulcerative colitis reported reduced disease activity and inflammation with quercetin supplementation [62]. Ongoing: Further clinical studies in IBD and IBS are in early phases (exploratory). |
Berberine (Coptis alkaloid) | Activates AMPK; inhibits NF-κB/STAT3 and inflammasome pathways (IL-1β, IL-6, and TNF-α); modulates gut microbiota (antibacterial against harmful flora; promotes short-chain fatty acid producers); may enhance Wnt/β-catenin signaling for mucosal repair. | Strong preclinical evidence (multiple animal colitis studies showing improved mucosal healing); numerous clinical trials for metabolic and GI outcomes (diabetes, H. pylori, and diarrhea). | Completed: RCTs in ulcerative colitis and chronic diarrhea/IBS have shown benefit (e.g., berberine improved histological scores in UC [63]). Ongoing: Trials in IBD (phase II in China) and colon polyp prevention are in progress. |
Ginsenosides (Panax ginseng) | Multi-target immunomodulation. Attenuate NF-κB and MAPK signaling (inflammatory cytokines IL-1β and IL-17); some ginsenosides (Rg1 and Rb1) activate Wnt/β-catenin and EGFR pathways supporting epithelial regeneration. Antioxidative effects (reduce ROS, upregulate SOD, etc.); promote balance of Th17/Treg in gut. | Preclinical evidence only: in vitro studies on immune cells; several mouse colitis models with isolated ginsenosides (Rb1, Rg1, Rk3, etc.) showing reduced inflammation and faster mucosal healing [64,65]. | Not yet tested clinically for intestinal injury. (Ginseng extracts have been clinically studied for fatigue, metabolism, etc., but no clinical trials to date have focused on intestinal regeneration/IBD. Currently used as a supplement in humans and is not an established therapy for gut disease.) |
Astragalus Polysaccharide (APS) | Enhances intestinal stem cell (ISC) activation via HIF-1α signaling; promotes crypt cell survival and proliferation; immunomodulatory—reduces TNF-α, IL-1β, and IFN-γ levels in injured gut; regulates gut microbiota and increases SCFA production (butyrate), leading to improved tight junction integrity. | Preclinical evidence: robust evidence in animal models of intestinal injury (radiation enteropathy and DSS colitis [7]); organoid culture studies confirming ISC regeneration effects. | Not yet tested clinically. (Experimental stage—no human trials so far. Astragalus-based TCM remedies are used empirically for GI health, but APS as an isolated compound has not yet undergone clinical trials.) |
Lentinan (shiitake β-glucan) | Stimulates immune cells (macrophages and dendritic cells) via Dectin-1 and other pattern recognition receptors, inducing cytokines (IL-2 and TNF-α) that aid in tissue repair; may enhance IgA secretion and mucosal immunity; antioxidant and anti-apoptotic effects on epithelial cells reported. Indirectly supports gut barrier by fostering a protective immune microenvironment. | Preclinical evidence: in vitro immunological studies; animal models of infection and cancer (shows gut protection as side observation). In GI injury models, data are sparse, but related mushroom polysaccharides show decreased inflammation and oxidative damage. | Completed (other indications): Used clinically as an injected cancer adjuvant (extensive experience in humans for oncology). Not formally trialed for IBD or mucosal healing. (Only anecdotal or compassionate use in GI disorders; no RCTs in intestinal regeneration.) |
CSP-1 (sulfated polysaccharide fraction) | Anti-inflammatory and prebiotic: inhibits TLR4/MyD88/NF-κB signaling cascade, leading to reduced NF-κB activation; downregulates IL-23/IL-17 axis (fewer Th17 pro-inflammatory cells); helps restore tight junction proteins and barrier function (likely via its sulfate groups, binding gut mucins and modulating microbiota). | Preclinical evidence: early-stage studies in cell culture and rodent antibiotic-associated diarrhea models. Shown to stabilize gut barrier and lower inflammatory mediators in these models [59]. | Not yet tested clinically. (Research compound only—no human studies. Needs further animal validation before any clinical trials.) |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TCM | Traditional Chinese Medicine |
ICS | Intestinal Stem Cell |
IBD | Inflammatory Bowel Disease |
APS | Astragalus Polysaccharide |
LPLs | Lamina Propria Lymphocytes |
IL-22 | Interleukin-22 |
NF-κB | Nuclear Factor κB |
NLRP3 | NOD-Like Receptor Protein 3 |
MAPKs | Mitogen-Activated Protein Kinases |
DSS | Dextran Sulfate Sodium |
Nrf2 | Nuclear Factor Erythroid 2-Related Factor 2 |
WSBCW | WangshiBaochi Pill |
TJ | Tight Junction |
ZO-1 | Zonula Occludens-1 |
ROS | Reactive Oxygen Species |
BXD | Banxia Xiexin Decoction |
CSP-1 | Cereus Sinensis Polysaccharide |
AAD | Antibiotic-Associated Diarrhea |
SCFA | Short-Chain Fatty Acid |
GQD | Gegen-Qinlian Decoction |
PCNA | Proliferating Cell Nuclear Antigen |
References
- Barker, N. Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 2013, 15, 19–33. [Google Scholar] [CrossRef]
- Rees, W.D.; Tandun, R.; Yau, E.; Zachos, N.C.; Steiner, T.S. Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium? Front. Cell Dev. Biol. 2020, 8, 583919. [Google Scholar] [CrossRef]
- Bialkowska, A.B.; Yang, V.W.; Giarrizzo, M.; LaComb, J.F.; Orzechowska-Licari, E.J. Intestinal Epithelial Regeneration in Response to Ionizing Irradiation. J. Vis. Exp. 2022, e64028. [Google Scholar] [CrossRef]
- Kwon, S.J.; Khan, M.S.; Kim, S.G. Intestinal Inflammation and Regeneration–Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2024, 25, 1311. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiao, G.; Cheng, P.; Zeng, J.; Liu, Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023, 28, 6811. [Google Scholar] [CrossRef]
- Peng, J.; Li, H.; Olaolu, O.A.; Ibrahim, S.; Ibrahim, S.; Wang, S. Natural Products: A Dependable Source of Therapeutic Alternatives for Inflammatory Bowel Disease through Regulation of Tight Junctions. Molecules 2023, 28, 6293. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Zu, X.; Chen, W.; Xin, J.; Xu, X.; Lv, Y.; Wei, X.; Wang, J.; Wei, Y.; Li, Z.; et al. Astragalus polysaccharide promotes the regeneration of intestinal stem cells through HIF-1 signalling pathway. J. Cell. Mol. Med. 2023, 28, e18058. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, Y.; Li, M.; Wu, K.; Wei, S.; Zhao, Y.; Shen, J.; Du, F.; Chen, Y.; Deng, S.; et al. Organoid, organ-on-a-chip and traditional Chinese medicine. Chin. Med. 2025, 20, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Wang, H.-Y.; Li, Q.-M.; Zha, X.-Q.; Luo, J.-P. Dendrobium fimbriatum polysaccharide ameliorates DSS-induced intestinal mucosal injury by IL-22-regulated intestinal stem cell regeneration. Int. J. Biol. Macromol. 2023, 230, 123199. [Google Scholar] [CrossRef]
- Cai, Y.-J.; Lan, J.-H.; Li, S.; Feng, Y.-N.; Li, F.-H.; Guo, M.-Y.; Liu, R.-P. Sinisan, a compound Chinese herbal medicine, alleviates acute colitis by facilitating colonic secretory cell lineage commitment and mucin production. J. Integr. Med. 2025, 23, 429–444. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, H.; Li, Y.; Cheng, X.; Liu, Y.; Huang, S.; Cheng, J.; Chen, H.; Shao, P.; Jiang, B.; et al. Exosomes derived from mesenchymal stem cells containing berberine for ulcerative colitis therapy. J. Colloid. Interface Sci. 2024, 671, 354–373. [Google Scholar] [CrossRef]
- Wang, K.; Yin, J.; Chen, J.; Ma, J.; Si, H.; Xia, D. Inhibition of inflammation by berberine: Molecular mechanism and network pharmacology analysis. Phytomedicine 2024, 128, 155258. [Google Scholar] [CrossRef]
- Gangwar, T.; Poonia, N.; Subudhi, R.N.; Arora, V. Therapeutic potential and underlying mechanisms of phytoconstituents: Emphasizing on resveratol, curcumin, quercetin, berberine, and hesperidin in ulcerative colitis. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 6579–6596. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, H.; Bu, L.; Chen, C.; Ye, X. Review of the Effects and Mechanism of Curcumin in the Treatment of Inflammatory Bowel Disease. Front. Pharmacol. 2022, 13, 908077. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.L.; Liu, G.X.; Chen, X.; Yang, K.; Yang, Y.X.; Xie, Q.; Gan, H.K.; Huang, X.L.; Gan, H.T. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. Int. Immunopharmacol. 2013, 17, 314–320. [Google Scholar] [CrossRef]
- Jena, A.B.; Dash, U.C.; Duttaroy, A.K. An in silico investigation on the interactions of curcumin and epigallocatechin-3-gallate with NLRP3 Inflammasome complex. Biomed. Pharmacother. 2022, 156, 113890. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des. Dev. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Ding, W.; Wu, Y.; Chen, T.; Ruan, Z. Puerarin alleviates inflammation and pathological damage in colitis mice by regulating metabolism and gut microbiota. Front. Microbiol. 2023, 14, 1279029. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-D.; Lee, J.-H.; Lee, Y.-M.; Kim, D.-K. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed. Pharmacother. 2020, 124, 109847. [Google Scholar] [CrossRef]
- Li, Z.-L.; Yang, B.-C.; Gao, M.; Xiao, X.-F.; Zhao, S.-P.; Liu, Z.-L. Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR-21 axis. Mol. Ther. Nucleic Acids 2021, 25, 502–514. [Google Scholar] [CrossRef]
- Rahimi, K.; Hassanzadeh, K.; Khanbabaei, H.; Haftcheshmeh, S.M.; Ahmadi, A.; Izadpanah, E.; Mohammadi, A.; Sahebkar, A. Curcumin: A Dietary Phytochemical for Targeting the Phenotype and Function of Dendritic Cells. Curr. Med. Chem. 2021, 28, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- Varsha, K.K.; Nagarkatti, M.; Nagarkatti, P. Role of Gut Microbiota in Cannabinoid-Mediated Suppression of Inflammation. Adv. Drug Alcohol. Res. 2022, 2, 10550. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Sun, C.; Ji, Y.; Abdolmaleky, H.; Zhou, J.-R. Herbal medicine WangShiBaoChiWan improves gastrointestinal health in mice via modulation of intestinal tight junctions and gut microbiota and inhibition of inflammation. Biomed. Pharmacother. 2021, 138, 111426. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Su, L.; Zhang, P.; Yue, Q.; Zhao, C.; Sun, X.; Li, K.; Liu, X.; Zhang, S.; Zhao, L. Lentinan improves intestinal inflammation and gut dysbiosis in antibiotics-induced mice. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Cherian, I.V.; Vijukumar, A.; Islam, M.M.; Janvi; Vikal, A. Assessing the therapeutic potential of quercetin, a widely spread flavonoid, in the prevention and management of chronic and degenerative diseases through a modern Chinese medicine perspective. Pharmacol. Res. Mod. Chin. Med. 2025, 15, 100630. [Google Scholar] [CrossRef]
- Fan, J.; Li, B.-R.; Zhang, Q.; Zhao, X.-H.; Wang, L. Pretreatment of IEC-6 cells with quercetin and myricetin resists the indomethacin-induced barrier dysfunction via attenuating the calcium-mediated JNK/Src activation. Food Chem. Toxicol. 2021, 147, 111896. [Google Scholar] [CrossRef]
- Junyuan, Z.; Hui, X.; Chunlan, H.; Junjie, F.; Qixiang, M.; Yingying, L.; Lihong, L.; Xingpeng, W.; Yue, Z. Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38 MAPK and ERS inhibition. Pancreatology 2018, 18, 742–752. [Google Scholar] [CrossRef]
- Du, M.; Liu, X.; Ji, X.; Wang, Y.; Liu, X.; Zhao, C.; Jin, E.; Gu, Y.; Wang, H.; Zhang, F. Berberine alleviates enterotoxigenic Escherichia coli-induced intestinal mucosal barrier function damage in a piglet model by modulation of the intestinal microbiome. Front. Nutr. 2025, 11, 1494348. [Google Scholar] [CrossRef]
- Han, M.; Guo, Y.; Tang, S.; Li, D.; Wan, J.; Zhu, C.; Zuraini, Z.; Liang, J.; Gao, T.; Zhou, Z.; et al. Effects of berberine hydrochloride on antioxidant response and gut microflora in the Charybdis japonica infected with Aeromonas hydrophila. BMC Microbiol. 2024, 24, 1–14. [Google Scholar] [CrossRef]
- Obchoei, S.; Detarya, M.; Boonnate, P.; Saranaruk, P.; Vaeteewoottacharn, K.; Mahalapbutr, P.; Okada, S.; Wongkham, S. Low Dose Berberine Suppresses Cholangiocarcinoma Cell Progression as a Multi-Kinase Inhibitor. Asian Pac. J. Cancer Prev. 2022, 23, 3379–3386. [Google Scholar] [CrossRef]
- Che, S.-Y.; Yuan, J.-W.; Zhang, L.; Ruan, Z.; Sun, X.-M.; Lu, H. Puerarin prevents epithelial tight junction dysfunction induced by ethanol in Caco-2 cell model. J. Funct. Foods 2020, 73, 104079. [Google Scholar] [CrossRef]
- Li, Z.; Gao, M.; Yang, B.; Zhang, H.; Wang, K.; Liu, Z.; Xiao, X.; Yang, M. Naringin attenuates MLC phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ROCK pathway. Biomed. Pharmacother. 2018, 103, 50–58. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Y.; Si, X.; Jin, Y.; Jiang, D.; Dai, Z.; Wu, Z. Quercetin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes. Nutrients 2021, 13, 375. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lv, J.; Chen, X.; Li, T.; Shen, J.; Wang, Z.; Dai, C.; Hao, Z. Puerarin as a Phytochemical Modulator of Gastrointestinal Homeostasis in Livestock: Molecular Mechanisms and Translational Applications. Antioxidants 2025, 14, 756. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, Y.; Kang, C.; Zheng, Y.; Liu, X.; Liang, Z.; Yan, J. The pharmacological evidence of the chang-yan-ning formula in the treatment of colitis. Front. Pharmacol. 2022, 13, 1029088. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yang, Y.; Liu, M.; Teng, Z.; Ye, J.; Xu, Y.; Cai, X.; Cheng, X.; Yang, J.; Hu, C.; et al. Banxia xiexin decoction protects against dextran sulfate sodium-induced chronic ulcerative colitis in mice. J. Ethnopharmacol. 2015, 166, 149–156. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, X.; Peng, B.; Zou, H.; Li, S.; Wang, J.; Cao, J. Curcumin improves necrotising microscopic colitis and cell pyroptosis by activating SIRT1/NRF2 and inhibiting the TLR4 signalling pathway in newborn rats. Innate Immun. 2020, 26, 609–617. [Google Scholar] [CrossRef]
- Theriot, C.M.; Koenigsknecht, M.J.; Carlson, P.E., Jr.; Hatton, G.E.; Nelson, A.M.; Li, B.; Huffnagle, G.B.; Li, J.Z.; Young, V.B. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 2014, 5, 3114. [Google Scholar] [CrossRef]
- Duan, H.; Hu, J.; Deng, Y.; Zou, J.; Ding, W.; Peng, Q.; Duan, R.; Sun, J.; Zhu, J. Berberine Mediates the Production of Butyrate to Ameliorate Cerebral Ischemia via the Gut Microbiota in Mice. Nutrients 2023, 16, 9. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Zhang, Y.; Li, K.; Gao, X.-J.; Guo, M.-Y.; Fu, Y.; Liu, J. Berberine Depresses Inflammation and Adjusts Smooth Muscle to Ameliorate Ulcerative Colitis of Cats by Regulating Gut Microbiota. Microbiol. Spectr. 2022, 10, e0320722. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Y.; Elango, J.; Wu, J.; Liu, K.; Jin, Y. Cereus sinensis Polysaccharide Alleviates Antibiotic-Associated Diarrhea Based on Modulating the Gut Microbiota in C57BL/6 Mice. Front. Nutr. 2021, 8, 751992. [Google Scholar] [CrossRef]
- Zhang, C.; Shu, Y.; Li, Y.; Wang, F.; Gan, J.; Wang, Y.; Feng, X.; Guo, M. Chinese yam (Dioscorea) polysaccharide ameliorates ulcerative colitis in mice via modulating disorders of intestinal microecology and metabolism. Int. J. Biol. Macromol. 2025, 315, 144110. [Google Scholar] [CrossRef]
- Li, Q.; Cui, Y.; Xu, B.; Wang, Y.; Lv, F.; Li, Z.; Li, H.; Chen, X.; Peng, X.; Chen, Y.; et al. Main active components of Jiawei Gegen Qinlian decoction protects against ulcerative colitis under different dietary environments in a gut microbiota-dependent manner. Pharmacol. Res. 2021, 170, 105694. [Google Scholar] [CrossRef]
- Liu, C.-S.; Liang, X.; Wei, X.-H.; Jin, Z.; Chen, F.-L.; Tang, Q.-F.; Tan, X.-M. Gegen Qinlian Decoction Treats Diarrhea in Piglets by Modulating Gut Microbiota and Short-Chain Fatty Acids. Front. Microbiol. 2019, 10, 825. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, C.; Hu, Y.; Xia, T.; Zhang, B.; Chen, F.; Tan, X.; Zheng, Z. Gegen Qinlian decoction restores the intestinal barrier in bacterial diarrhea piglets by promoting Lactobacillus growth and inhibiting the TLR2/MyD88/NF-κB pathway. Biomed. Pharmacother. 2022, 155, 113719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhou, Y.; Chen, H.; Jiang, H.; Zhou, F.; Lv, B.; Xu, M.; Dominguez Perles, R. Curcumin Alleviates DSS-Induced Anxiety-Like Behaviors via the Microbial-Brain-Gut Axis. Oxidative Med. Cell. Longev. 2022, 2022, 6244757. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Li, Y.; Zhang, M.; Xiao, H.; Peng, Y.; Song, M.; Cao, Y.; Xiao, J. Engineering mucus-penetrating and enzyme-responsive nanostructured carriers for precision targeting of curcumin’s pharmacokinetics and colitis-alleviating pathways. Nano Today 2025, 61, 102602. [Google Scholar] [CrossRef]
- Jing, W.; Safarpour, Y.; Zhang, T.; Guo, P.; Chen, G.; Wu, X.; Fu, Q.; Wang, Y. Berberine Upregulates P-Glycoprotein in Human Caco-2 Cells and in an Experimental Model of Colitis in the Rat via Activation of Nrf2-Dependent Mechanisms. J. Pharmacol. Exp. Ther. 2018, 366, 332–340. [Google Scholar] [CrossRef]
- Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Nephrotoxicity Screening of Main Compound With Organ-on-a-Chip. Front. Pharmacol. 2018, 9, 1067. [Google Scholar] [CrossRef]
- Sadeghi, N.; Mansoori, A.; Shayesteh, A.; Hashemi, S.J. The effect of curcumin supplementation on clinical outcomes and inflammatory markers in patients with ulcerative colitis. Phytother. Res. 2019, 34, 1123–1133. [Google Scholar] [CrossRef]
- Liu, X.; Fan, Y.; Du, L.; Mei, Z.; Fu, Y. In Silico and In Vivo Studies on the Mechanisms of Chinese Medicine Formula (Gegen Qinlian Decoction) in the Treatment of Ulcerative Colitis. Front. Pharmacol. 2021, 12, 665102. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, J.; Sun, C.; Zhu, S.; Zhai, Y.; Dai, Y.; Wang, X.; Gao, X. Sishen Wan enhances intestinal barrier function via regulating endoplasmic reticulum stress to improve mice with diarrheal irritable bowel syndrome. Phytomedicine 2024, 129, 155541. [Google Scholar] [CrossRef]
- Ahn, H.-R.; Park, D.H.; Shin, M.-S.; Nguyen, Q.N.; Park, J.Y.; Kim, D.-W.; Kang, K.S.; Lee, H.L. The Ameliorating Effect of Lizhong-Tang on Antibiotic-Associated Imbalance in the Gut Microbiota in Mouse. Appl. Sci. 2022, 12, 6943. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, D.; Yong, J.; Li, Y.; Sun, Y.; Zhao, F.; Tang, D.; Xie, Y.; Bi, D. Baicalein and Berberine Inhibit the Growth and Virulence of Clostridioides difficile. Pathogens 2025, 14, 662. [Google Scholar] [CrossRef]
- Hassanzadeh, K.; Buccarello, L.; Dragotto, J.; Mohammadi, A.; Corbo, M.; Feligioni, M. Obstacles against the Marketing of Curcumin as a Drug. Int. J. Mol. Sci. 2020, 21, 6619. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Xu, Q.; Ma, J.; Li, X.; Yan, J.; Tian, Y.; Wen, Y.; Chen, T. Berberine and health outcomes: An umbrella review. Phytother. Res. 2023, 37, 2051–2066. [Google Scholar] [CrossRef] [PubMed]
- Coon, J.T.; Ernst, E. Panax ginseng: A systematic review of adverse effects and drug interactions. Drug Saf. 2002, 25, 323–344. [Google Scholar] [CrossRef]
- Liang, H.; Tao, S.; Wang, Y.; Zhao, J.; Yan, C.; Wu, Y.; Liu, N.; Qin, Y. Astragalus polysaccharide: Implication for intestinal barrier, anti-inflammation, and animal production. Front. Nutr. 2024, 11, 1364739. [Google Scholar] [CrossRef]
- Jiang, Y.; Liao, Y.; Liu, Z.; Zhou, M.; Wang, H.; Qi, H.; Sun, S.; Xi, S.; Tang, Y. The effects of Cordyceps polysaccharides on ischemic brain injury in rats via intervening with IL-23/IL-17 axis and the intestinal barrier. Int. J. Biol. Macromol. 2024, 283, 137526. [Google Scholar] [CrossRef]
- Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schafer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. [Google Scholar] [CrossRef]
- Peterson, C.T.; Vaughn, A.R.; Sharma, V.; Chopra, D.; Mills, P.J.; Peterson, S.N.; Sivamani, R.K. Effects of Turmeric and Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. J. Evid. Based Integr. Med. 2018, 23, 2515690 × 18790725. [Google Scholar] [CrossRef]
- Wang, T.; Lu, S.Y.; Dan, L.; Sun, Y.; Fu, T.; Tian, L.; Chen, J. Higher Dietary Quercetin Intake Is Associated with Lower Risk of Adverse Outcomes among Individuals with Inflammatory Bowel Disease in a Prospective Cohort Study. J. Nutr. 2024, 154, 1861–1868. [Google Scholar] [CrossRef]
- Xiong, X.; Cheng, Z.; Wu, F.; Hu, M.; Liu, Z.; Dong, R.; Chen, G. Berberine in the treatment of ulcerative colitis: A possible pathway through Tuft cells. Biomed. Pharmacother. 2021, 134, 111129. [Google Scholar] [CrossRef]
- Kang, Z.; Zhonga, Y.; Wu, T.; Huang, J.; Zhao, H.; Liu, D. Ginsenoside from ginseng: A promising treatment for inflammatory bowel disease. Pharmacol. Rep. 2021, 73, 700–711. [Google Scholar] [CrossRef]
- Yu, Z.L.; Gao, R.Y.; Lv, C.; Geng, X.L.; Ren, Y.J.; Zhang, J.; Ren, J.Y.; Wang, H.; Ai, F.B.; Wang, Z.Y.; et al. Notoginsenoside R1 promotes Lgr5(+) stem cell and epithelium renovation in colitis mice via activating Wnt/beta-Catenin signaling. Acta Pharmacol. Sin. 2024, 45, 1451–1465. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Zhang, S. Chinese Medicine-Derived Natural Compounds and Intestinal Regeneration: Mechanisms and Experimental Evidence. Biomolecules 2025, 15, 1212. https://doi.org/10.3390/biom15091212
Guo F, Zhang S. Chinese Medicine-Derived Natural Compounds and Intestinal Regeneration: Mechanisms and Experimental Evidence. Biomolecules. 2025; 15(9):1212. https://doi.org/10.3390/biom15091212
Chicago/Turabian StyleGuo, Fengbiao, and Shaoyi Zhang. 2025. "Chinese Medicine-Derived Natural Compounds and Intestinal Regeneration: Mechanisms and Experimental Evidence" Biomolecules 15, no. 9: 1212. https://doi.org/10.3390/biom15091212
APA StyleGuo, F., & Zhang, S. (2025). Chinese Medicine-Derived Natural Compounds and Intestinal Regeneration: Mechanisms and Experimental Evidence. Biomolecules, 15(9), 1212. https://doi.org/10.3390/biom15091212