Contribution and Regulation of HIF-1α in Testicular Injury Induced by Diabetes Mellitus
Abstract
1. Introduction
2. The Structure and Biological Function of HIF-1α
3. The Mechanism of Diabetic Testicular Injury
3.1. Diabetes-Induced Oxidative Stress
3.2. Decreased Testicular Blood Flow and Local Hypoxia
3.3. Diabetes-Caused Endocrine Disorders
3.4. The Dysregulation of Apoptosis and Autophagy
4. The Role of HIF-1α in Diabetes-Induced Testicular Injury
4.1. The Role of HIF-1α in Testicular Hypoxia Adaptation
4.2. The Role of HIF-1α in Oxidative Stress Response
4.3. The Role of HIF-1α in Testicular Angiogenesis
4.4. The Role of HIF-1α in Diabetic Testicular Cell Apoptosis
4.5. The Role of HIF-1α in Testicular Cell Functions
5. The Signaling Pathways of HIF-1α Regulating Diabetic Testicular Injury
5.1. PI-3K/Akt Signaling in Diabetic Testicular Injury
5.2. MAPK/ERK Signaling in Diabetic Testicular Injury
5.3. NF-κB Signaling in Diabetic Testicular Injury
6. Potential Therapeutic Targets and Clinical Applications of HIF-1α
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3β-Hsd2 | 3β-hydroxysteroid dehydrogenase 2 |
Akt/PKB | protein kinase B |
bHLH | basic helix-loop-helix |
BNIP3 | B-cell leukemia/lymphoma 2/adenovirus E1B interacting protein 3 |
cAMP | cyclic adenosine monophosphate |
CAT | catalase |
CBP | CREB-binding protein |
CCL2 | chemokine (C-C motif) ligand 2 |
Cyp11A1 | cytochrome P450 family 11 subfamily A polypeptide 1 |
EPO | erythropoietin |
ERK | extracellular signal-regulated kinase |
FSH | follicle-stimulating hormone |
GLUT-1 | glucose transporter-1 |
GPx | glutathione peroxidase |
HIF-1α | hypoxia-inducible factor-1α |
HPG | hypothalamic-pituitary-gonadal axis |
HRE | hypoxia response element |
IL-6 | interleukin-6 |
LC-3 | microtubule-associated proteins light chain 3 |
LDHA | lactate dehydrogenase A |
LH | luteinizing hormone |
MAPK | mitogen-activated protein kinase |
MCP-1 | monocyte chemoattractant protein 1 |
mTOR | mammalian target of rapamycin |
NF90/ILF3 | interleukin enhancer binding factor 3 |
NF-κB | nuclear factor-κB |
NIX | Nip-like protein X |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
OS | oxidative stress |
p300 | E1A binding protein p300 |
PARK7/DJ-1 | Parkinson disease protein 7 |
PAS | Per-ARNT-Sim domain |
PHD | prolyl hydroxylase |
PI-3K | phosphoinositide-3 kinase |
PKA | protein kinase A |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
StAR | steroidogenic acute regulatory protein |
TNF-α | tumor necrosis factor-α |
UCP2 | uncoupling protein 2 |
VEGF | vascular endothelial growth factor |
VHL | the von Hippel–Lindau protein |
References
- Chaurasia, P.P.; Dholariya, S.; Kotadiya, F.; Bhavsar, M. A new hope in type 2 diabetes mellitus management: Sodium-glucose cotransporter 2 inhibitors. Cureus 2021, 13, e18300. [Google Scholar] [CrossRef] [PubMed]
- Alam, U.; Asghar, O.; Azmi, S.; Malik, R.A. General aspects of diabetes mellitus. Handb. Clin. Neurol. 2014, 126, 211–222. [Google Scholar] [PubMed]
- Maresch, C.C.; Stute, D.C.; Ludlow, H.; Hammes, H.P.; de Kretser, D.M.; Hedger, M.P.; Linn, T. Hyperglycemia is associated with reduced testicular function and activin dysregulation in the Ins2Akita+/− mouse model of type 1 diabetes. Mol. Cell Endocrinol. 2017, 446, 91–101. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Yin, G.; Li, Q.Q.; Zeng, Q.; Duan, J. Diabetes mellitus causes male reproductive dysfunction: A review of the evidence and mechanisms. In Vivo 2021, 35, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.L.; Liu, Y.; Liu, M.E.; Pan, J.X.; Guo, M.X.; Sheng, J.Z.; Huang, H.F. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J. Androl. 2015, 17, 948–953. [Google Scholar] [CrossRef]
- Alyürük, B.; Yazir, Y.; Utkan Korun, Z.E.; Budak, Ö.; Yalçinkaya Kalyan, E.; Kiliç, K.C. Impacts of type 1 diabetes mellitus on male fertility and embryo quality in superovulated mice. Tissue Cell 2025, 95, 102941. [Google Scholar] [CrossRef] [PubMed]
- Musa, E.; El-Bashir, J.M.; Sani-Bello, F.; Bakari, A.G. Clinical and biochemical correlates of hypogonadism in men with type 2 diabetes mellitus. Pan Afr. Med. J. 2021, 38, 292. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Maggi, M. Effects of diabetes mellitus on sperm quality and fertility outcomes: Clinical evidence. Andrology 2023, 11, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Zhou, W.; Tang, Z. Pathogenesis of diabetic complications: Exploring hypoxic niche formation and HIF-1α activation. Biomed. Pharmacother. 2024, 172, 116202. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wang, F.; Zhang, Z.; Zhang, Y.; Tang, Y.; Bi, J.; Shi, C.; Wang, D.; Yang, H.; Wang, Z.; et al. Diabetes-induced autophagy dysregulation engenders testicular impairment via oxidative stress. Oxid. Med. Cell Longev. 2023, 2023, 4365895. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cheng, T.; Wang, Y.; Li, G.; Wang, Y.; Tian, W.; Feng, L.; Zhang, S.; Xu, Y.; Gao, Y.; et al. Syringaresinol alleviates early diabetic retinopathy by downregulating HIF-1α/VEGF via activating Nrf2 antioxidant pathway. Mol. Nutr. Food Res. 2024, 68, e2200771. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Davy, P.M.; Gardner, L.H.; Mathews, J.; Yamazaki, Y.; Allsopp, R.C. Hypoxia inducible factor 1 alpha is expressed in germ cells throughout the murine life cycle. PLoS ONE 2016, 11, e0154309. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.D.; Elshtein, R.; Forest, D.J.; Palladino, M.A. Stimulation of hypoxia-inducible factor-1 alpha (HIF-1alpha) protein in the adult rat testis following ischemic injury occurs without an increase in HIF-1alpha messenger RNA expression. Biol. Reprod. 2002, 67, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, X.P.; Liu, F.; Wang, W. Progressive deactivation of hydroxylases controls hypoxia-inducible factor-1α-coordinated cellular adaptation to graded hypoxia. Research 2025, 8, 0651. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Koohi-Moghadam, M.; Chen, Q.; Zhang, L.; Chopra, H.; Zhang, J.; Dissanayaka, W.L. HIF-1alpha stabilization boosts pulp regeneration by modulating cell metabolism. J. Dent. Res. 2022, 101, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, J.; Xi, Y.; Ren, J.; Zhu, Y.; Lu, Y.; Dong, D. Dl-3-n-butylphthalide exerts neuroprotective effects by modulating hypoxia-inducible factor 1-alpha ubiquitination to attenuate oxidative stress-induced apoptosis. Neural Regen. Res. 2023, 18, 2424–2428. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, Z.; Zhang, X. Resveratrol induces apoptosis in murine prostate cancer cells via hypoxia-inducible factor 1-alpha (HIF-1α)/reactive oxygen species (ROS)/P53 signaling. Med. Sci. Monit. 2018, 24, 8970–8976. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Zhou, P.; Jiang, R.; Li, X.P.; Huang, S.Y.; Li, D.Y.; Li, G.L.; Li, L.S.; Zhao, S.; Hu, L.; et al. Evodiamine inhibits vasculogenic mimicry in HCT116 cells by suppressing hypoxia-inducible factor 1-alpha-mediated angiogenesis. Anticancer Drugs 2021, 32, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Li, M.; Xu, S.; Niu, L.; Li, S.; Zhou, Y.; Cao, Z.; Cai, R.; He, B.; Guo, A.; et al. HIF-1α-induced astrocytic D-dopachrome tautomerase activates microglial inflammatory response following spinal cord injury. Am. J. Pathol. 2025. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Zhou, D.; Tao, K.; Lin, F.; Wang, H.; Sun, H.; Liu, R.; Li, Z. The role of microRNA-206 in the regulation of diabetic wound healing via hypoxia-inducible factor 1-alpha. Biochem. Genet. 2025, 63, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, M.; Wu, Y.; Sun, J.; Liu, L.; Pan, Z. Gentiopicroside targeting AKT1 activates HIF-1α/VEGF axis promoting diabetic ulcer wound healing. Front. Pharmacol. 2025, 16, 1506499. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Jiang, X.; Huang, D.; Jing, Y.; Yang, S.; Geng, L.; Yan, Y.; Zheng, F.; Cheng, F.; Zhang, W.; et al. Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner. Protein Cell 2024, 15, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Basheeruddin, M.; Qausain, S. Hypoxia-inducible factor 1-alpha (HIF-1α): An essential regulator in cellular metabolic Control. Cureus 2024, 16, e63852. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Huang, R.; Ma, H.; Zhao, X.; Wang, G. miRNA-411 regulates chondrocyte autophagy in osteoarthritis by targeting hypoxia-Inducible factor 1 alpha (HIF-1alpha). Med. Sci. Monit. 2020, 26, e921155. [Google Scholar] [PubMed]
- Thangwong, P.; Tocharus, C.; Tocharus, J. The bidirectional role of hypoxia-inducible factor 1 alpha in vascular dementia caused by chronic cerebral hypoperfusion. Mol. Neurobiol. 2025. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, D.; Xu, R.; Li, X.; Wang, Z.; Zhang, Y. The physiological functions and therapeutic potential of hypoxia-inducible factor-1α in vascular calcification. Biomolecules 2024, 14, 1592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yin, D.; Wang, Z. Contribution of hypoxia-inducible factor-1α to transcriptional regulation of vascular endothelial growth factor in bovine developing luteal cells. Anim. Sci. J. 2011, 82, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Shen, S.; Wang, D.; Ye, J.; Song, S.; Wang, Z.; Yue, Z. The role of HIF-1alpha-mediated autophagy in ionizing radiation-induced testicular injury. J. Mol. Histol. 2023, 54, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shi, C.; Wang, Z. Therapeutic effects and molecular mechanism of chlorogenic acid on polycystic ovarian syndrome: Role of HIF-1alpha. Nutrients 2023, 15, 2833. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhang, Z.; Xu, R.; Zhang, Y.; Wang, Z. Contribution of HIF-1alpha/BNIP3-mediated autophagy to lipid accumulation during irinotecan-induced liver injury. Sci. Rep. 2023, 13, 6528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, R.; Wang, Z. Contribution of oxidative stress to HIF-1-mediated profibrotic changes during the kidney damage. Oxid. Med. Cell Longev. 2021, 2021, 6114132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, Q.; Li, P.L.; Dhaduk, R.; Zhang, F.; Gehr, T.W.; Li, N. Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney.; one-clip rats. Am. J. Physiol. Renal Physiol. 2014, 306, F1236–F1242. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tang, L.; Zhu, Q.; Yi, F.; Zhang, F.; Li, P.L.; Li, N. Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int. 2011, 79, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Yang, S.; Yuan, Z.; Zhang, Z.; Ali, F.; Zhang, F.; Zhang, B. Diosmetin attenuates the ubiquitination of epidermal hypoxia-inducible factor 1 alpha by diminishing the formation of RhoBTB3/PHD2 complex in ultraviolet radiation-induced sunburn in mice. Phytomedicine 2025, 142, 156793. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, C.; Wei, X.; Chhetri, A.; Manandhar, L.; Jang, G.; Hwang, J.; Chinbold, B.; Chuluunbaatar, C.; Kwon, H.M.; et al. Golgi condensation causes intestinal lipid accumulation through HIF-1α-mediated GM130 ubiquitination by NEDD4. Exp. Mol. Med. 2025, 57, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, Q.; Xia, M.; Li, P.L.; Hinton, S.J.; Li, N. Hypoxia-inducible factor prolyl-hydroxylase 2 senses high-salt intake to increase hypoxia inducible factor 1alpha levels in the renal medulla. Hypertension 2010, 55, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Su, W.; Wei, X.; Pan, Y.; Xing, M.; Niu, L.; Feng, B.; Kong, W.; Ren, X.; Huang, F.; et al. Hypoxia inducible factor-1α drives cancer resistance to cuproptosis. Cancer Cell 2025, 43, 937–954.e9. [Google Scholar] [CrossRef] [PubMed]
- Basheeruddin, M.; Qausain, S. Hypoxia-inducible factor 1-alpha (HIF-1α) and cancer: Mechanisms of tumor hypoxia and therapeutic targeting. Cureus 2024, 16, e70700. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, R.; He, X.; Song, Y.; Fan, T.; Ma, J.; Xiang, G.; Ma, X. Discovery of potent hypoxia-inducible factor-1α (HIF-1α) degraders by proteolysis targeting chimera (PROTAC). Bioorg. Chem. 2024, 153, 107943. [Google Scholar] [CrossRef] [PubMed]
- Meng, K.; Liu, Q.; Qin, Y.; Qin, W.; Zhu, Z.; Sun, L.; Jiang, M.; Adu-Amankwaah, J.; Gao, F.; Tan, R.; et al. Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility. Chin. Med. J. 2025, 138, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tu, H.; Zhou, X.; Wang, B.; Guo, Y.; Situ, C.; Qi, Y.; Li, Y.; Guo, X. Quantitative phosphoproteomic profiling of mouse sperm maturation in epididymis revealed kinases important for sperm motility. Mol. Cell. Proteom. 2024, 23, 100810. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Miao, L.; Wang, P. Mitochondrial ribosome regulation drives spermatogenesis and male fertility. Biol. Cell 2025, 117, e12007. [Google Scholar] [CrossRef] [PubMed]
- Miyabayashi, K.; Shima, Y.; Inoue, M.; Sato, T.; Baba, T.; Ohkawa, Y.; Suyama, M.; Morohashi, K.I. Alterations in fetal leydig cell gene expression during fetal and adult development. Sex. Dev. 2017, 11, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Geetha, A.V.S.; Harithpriya, K.; Ganesan, K.; Ramkumar, K.M. Exploring the role of hypoxia and HIF-1α in the intersection of type 2 diabetes mellitus and endometrial cancer. Curr. Oncol. 2025, 32, 106. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Islam, R.; Nguyen, I.; Malik, H.; Pirzadah, H.; Shrestha, B.; Lentz, I.B.; Shekoohi, S.; Kaye, A.D. Diabetes mellitus and associated vascular disease: Pathogenesis, complications, and evolving treatments. Adv. Ther. 2025, 42, 2659–2678. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Fan, C.; Wei, C.; Yu, W.; Tang, J.; Ma, F.; Chen, Y.; Wu, B. Mitochondria fission accentuates oxidative stress in hyperglycemia-induced H9c2 cardiomyoblasts in vitro by regulating fatty acid oxidation. Cell Biol. Int. 2024, 48, 1378–1391. [Google Scholar] [CrossRef] [PubMed]
- Minas, A.; Camargo, M.; Alves, M.G.; Bertolla, R.P. Effects of diabetes-induced hyperglycemia on epigenetic modifications and DNA packaging and methylation during spermatogenesis; A narrative review. Iran. J. Basic. Med. Sci. 2024, 27, 3–11. [Google Scholar] [PubMed]
- Biasi, A.; Ambruosi, M.R.; Romano, M.Z.; Boccella, S.; Falvo, S.; Guida, F.; Aniello, F.; Maione, S.; Venditti, M.; Minucci, S. Impact of type 1 diabetes on testicular microtubule mynamics, sperm physiology, and male reproductive health in rat. Int. J. Mol. Sci. 2025, 26, 4579. [Google Scholar] [CrossRef] [PubMed]
- Kilarkaje, N.; Al-Hussaini, H.; Al-Bader, M.M. Diabetes-induced DNA damage and apoptosis are associated with poly (ADP ribose) polymerase 1 inhibition in the rat testis. Eur. J. Pharmacol. 2014, 737, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Iskender, H.; Dokumacioglu, E.; Sen, T.M.; Ince, I.; Kanbay, Y.; Saral, S. The effect of hesperidin and quercetin on oxidative stress.; NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomed. Pharmacother. 2017, 90, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; Song, S.; Wang, Y.; Bian, Y.; Wu, M.; Wu, H.; Shi, Y.; Duan, H. NAD(P)H: Quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. J. Transl. Med. 2022, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Mifune, Y.; Inui, A.; Nishimoto, H.; Yamaura, K.; Mukohara, S.; Shinohara, I.; Kuroda, R. Quercetin treatment protects the Achilles tendons of rats from oxidative stress induced by hyperglycemia. BMC Musculoskelet. Disord. 2022, 23, 563. [Google Scholar] [CrossRef] [PubMed]
- Goligorsky, M.S. Glomerular microcirculation: Implications for diabetes.; preeclampsia.; and kidney injury. Acta Physiol. 2023, 239, e14048. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, R.R.; Zaldumbide, A.; Taylor, C.T. Role of hypoxia-inducible factor 1 in type 1 diabetes. Trends Pharmacol. Sci. 2024, 45, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Alyami, N.M.; Alnakhli, Z.A.; Alshiban, N.M.; Maodaa, S.; Almuhaini, G.A.; Almeer, R.; Alshora, D.; Ibrahim, M. Oral administration of proniosomal glibenclamide formulation protects testicular tissue from hyperglycemia fluctuations and ROS via Nrf2/HO-1 pathway. Heliyon 2024, 10, e31283. [Google Scholar] [CrossRef] [PubMed]
- Bowker, R.M.; Yan, X.; De Plaen, I.G. Intestinal microcirculation and necrotizing enterocolitis: The vascular endothelial growth factor system. Semin. Fetal Neonatal Med. 2018, 23, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Qiu, H.; Cai, B.; Chen, N.; Lu, X.; Zheng, S.; Ye, X.; Li, Y. Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway. Oncotarget 2018, 9, 5321–5336. [Google Scholar] [CrossRef] [PubMed]
- Ilegems, E.; Bryzgalova, G.; Correia, J.; Yesildag, B.; Berra, E.; Ruas, J.L.; Pereira, T.S.; Berggren, P.O. HIF-1a inhibitor PX-478 preserves pancreatic b cell function in diabetes. Sci. Transl. Med. 2022, 14, eaba9112. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Sun, N.; Qu, J.; Chen, Q.; Han, C.; Yin, H.; Yuan, X.; Zhang, M. High glucose/ChREBP-induced Hif-1α transcriptional activation in CD4+ T cells reduces the risk of diabetic kidney disease by inhibiting the Th1 response. Diabetologia 2025, 68, 1044–1056. [Google Scholar] [CrossRef] [PubMed]
- Graziani, A.; Scafa, R.; Grande, G.; Ferlin, A. Diabetes and male fertility disorders. Mol. Asp. Med. 2024, 99, 101303. [Google Scholar] [CrossRef] [PubMed]
- Facondo, P.; Di Lodovico, E.; Delbarba, A.; Anelli, V.; Pezzaioli, L.C.; Filippini, E.; Cappelli, C.; Corona, G.; Ferlin, A. The impact of diabetes mellitus type 1 on male fertility: Systematic review and meta-analysis. Andrology 2022, 10, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Pelusi, C. The effects of the new therapeutic treatments for diabetes mellitus on the male reproductive axis. Front. Endocrinol. 2022, 13, 821113. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Twab, S.M.; Mohamed, H.M.; Mahmoud, A.M. Taurine and pioglitazone attenuate diabetes-induced testicular damage by abrogation of oxidative stress and up-regulation of the pituitary-gonadal axis. Can. J. Physiol. Pharmacol. 2016, 94, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Wagner, I.V.; Klöting, N.; Savchuk, I.; Eifler, L.; Kulle, A.; Kralisch-Jäcklein, S.; Dötsch, J.; Hiort, O.; Svechnikov, K.; Söder, O. Diabetes type 1 negatively influences leydig cell function in rats, which is partially reversible by insulin treatment. Endocrinology 2021, 162, bqab017. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.Y.; Yan, Y.S.; Lin, Z.L.; Liu, R.; Liu, X.Q.; Wu, H.Y.; Yu, J.E.; Huang, Y.T.; Sheng, J.Z.; Huang, H.F. Gestational diabetes mellitus suppresses fetal testis development in mice. Biol. Reprod. 2022, 107, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Dhole, B.; Gupta, S.; Kumar, A. Triiodothyronine stimulates steroid and VEGF production in murine Leydig cells via cAMP-PKA pathway. Andrologia 2021, 53, e13972. [Google Scholar] [CrossRef] [PubMed]
- Sui, A.; Yao, C.; Chen, Y.; Li, Y.; Yu, S.; Qu, J.; Wei, H.; Tang, J.; Chen, G. Polystyrene nanoplastics inhibit StAR expression by activating HIF-1α via ERK1/2 MAPK and AKT pathways in TM3 Leydig cells and testicular tissues of mice. Food Chem. Toxicol. 2023, 173, 113634. [Google Scholar] [CrossRef] [PubMed]
- Buhur, A.; Gürel, Ç.; Kuşçu, G.C.; Yiğittürk, G.; Oltulu, F.; Karabay Yavaşoğlu, N.Ü.; Uysal, A.; Yavaşoğlu, A. Is losartan a promising agent for the treatment of type 1 diabetes-induced testicular germ cell apoptosis in rats? Mol. Biol. Rep. 2023, 50, 2195–2205. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Qiu, Z.; Wang, Z.; Wang, X. The inhibitory effects of soybean isoflavones on testicular cell apoptosis in mice with type 2 diabetes. Exp. Ther. Med. 2018, 15, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Shoorei, H.; Khaki, A.; Khaki, A.A.; Hemmati, A.A.; Moghimian, M.; Shokoohi, M. The ameliorative effect of carvacrol on oxidative stress and germ cell apoptosis in testicular tissue of adult diabetic rats. Biomed. Pharmacother. 2019, 111, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xiao, Y.H.; Geng, T.; Sun, C.; Gu, J.; Tang, K.F.; Liu, B.; Liu, Y.M.; Sun, F. Clusterin suppresses spermatogenic cell apoptosis to alleviate diabetes-induced testicular damage by inhibiting autophagy via the PI3K/AKT/mTOR axis. Biol. Cell 2021, 113, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Tvrdá, E.; Kováč, J.; Benko, F.; Ďuračka, M.; Varga, A.; Uličná, O.; Almášiová, V.; Capcarová, M.; Chomová, M. Characterization of the structural.; oxidative.; and immunological features of testis tissue from Zucker diabetic fatty rats. Open Life Sci. 2022, 17, 1383–1397. [Google Scholar] [CrossRef] [PubMed]
- Naderi, R.; Pourheydar, B.; Moslehi, A. Tropisetron improved testicular inflammation in the streptozotocin-induced diabetic rats: The role of toll-like receptor 4 (TLR4) and mir146a. J. Biochem. Mol. Toxicol. 2023, 37, e23272. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, L.; Li, Q.; Lai, Y. HIF-1α protects osteoblasts from ROS-induced apoptosis. Free Radic. Res. 2022, 56, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wu, G.; Chen, M.; Lu, X.; Shen, M.; Li, H.; Liu, H. Lactate promotes hypoxic granulosa cells’ autophagy by activating the HIF-1α/BNIP3/Beclin-1 signaling axis. Genes 2024, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Abo El-Ella, D.M. Autophagy/apoptosis induced by geraniol through HIF-1α/BNIP3/Beclin-1 signaling pathway in A549 CoCl2 treated cells. Adv. Pharm. Bull. 2022, 12, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Liu, Z.; Yao, J.; Huang, S.; Ding, X.; Yu, H.; Lin, T.; Zhang, X.; Zhao, F. HIF-1α regulated GLUT1-mediated glycolysis enhances Treponema pallidum-induced cytokine responses. Cell Commun. Signal. 2025, 23, 219. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, X.; Feng, L.; Lin, Y.; Liang, S.; Zhu, Z.; Shi, S.; Dong, C. Carbonic anhydrase IX-targeted H-APBC nanosystem combined with phototherapy facilitates the efficacy of PI3K/mTOR inhibitor and resists HIF-1α-dependent tumor hypoxia adaptation. J. Nanobiotechnol. 2022, 20, 187. [Google Scholar] [CrossRef] [PubMed]
- Baset, M.A.; El Awdan, S.A.; Khattab, M.S.; El-Marasy, S.A. Involvement of hypoxia-inducible factor1-alpha in the protective effect of rivaroxaban against testicular ischemia-reperfusion in rats. Sci. Rep. 2025, 15, 27711. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, W.; Liu, J.; Wang, Y.; Yuan, C.; Zhang, F.; Jin, G.; Qin, Q. Effects of HIF-1alpha on spermatogenesis of varicocele rats by regulating VEGF/PI3K/Akt signaling pathway. Reprod. Sci. 2021, 28, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Lui, W.Y.; Cheng, C.Y. Regulation of cell junction dynamics by cytokines in the testis: A molecular and biochemical perspective. Cytokine Growth Factor Rev. 2007, 18, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Lui, W.Y.; Wong, E.W.; Guan, Y.; Lee, W.M. Dual transcriptional control of claudin-11 via an overlapping GATA/NF-Y motif: Positive regulation through the interaction of GATA, NF-YA, and CREB and negative regulation through the interaction of Smad, HDAC1, and mSin3A. J. Cell Physiol. 2007, 211, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Ma, C.; Yang, B.; Zhao, M.; Sun, L.; Zheng, N. Roxadustat improves diabetic myocardial injury by upregulating HIF-1α/UCP2 against oxidative stress. Cardiovasc. Diabetol. 2025, 24, 67. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Wang, Z.; Zhang, J.; Liu, Y.; Luo, Z. Effects of cannabidiol on AMPKalpha2 /HIF-1alpha/BNIP3/NIX signaling pathway in skeletal muscle injury. Front. Pharmacol. 2024, 15, 1450513. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Zhang, S.Y.; Mu, L.; Dong, Z.G.; Zhang, Y.J. Heyingwuzi formulation alleviates diabetic retinopathy by promoting mitophagy via the HIF-1α/BNIP3/NIX axis. World J. Diabetes 2024, 15, 1317–1339. [Google Scholar] [CrossRef] [PubMed]
- Michalak, K.P.; Michalak, A.Z. Understanding chronic inflammation: Couplings between cytokines, ROS, NO, Cai2+, HIF-1α, Nrf2 and autophagy. Front. Immunol. 2025, 16, 1558263. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Dai, X.; He, J.; Yan, X.; Yang, C.; Fan, X.; Sun, S.; Chen, J.; Xu, J.; Deng, Z.; et al. Endothelial overexpression of metallothionein prevents diabetes-induced impairment in ischemia angiogenesis through preservation of HIF-1α/SDF-1/VEGF signaling in endothelial progenitor cells. Diabetes 2020, 69, 1779–1792. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yin, W.; Liu, Z.; Lu, G.; Zhang, X.; Yang, J.; Huang, Y.; Hu, X.; Chen, C.; Shang, R.; et al. Exosomes derived from fibroblasts enhance skin wound angiogenesis by regulating HIF-1α/VEGF/VEGFR pathway. Burn. Trauma 2025, 13, tkae071. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zheng, L.; Zhou, Y.; Hu, S.; Ning, W.; Li, S.; Lin, Z.; Huang, S. Controllable adaptive molybdate-oligosaccharide nanoparticles regulate M2 macrophage mitochondrial function and promote angiogenesis via PI3K/HIF-1α/VEGF pathway to accelerate diabetic wound healing. Adv. Healthc. Mater. 2024, 13, e2302256. [Google Scholar] [CrossRef] [PubMed]
- Oda, H.; Nagamatsu, T.; Cabral, H.; Miyazaki, T.; Iriyama, T.; Kawana, K.; Fujii, T.; Osuga, Y. Thrombomodulin promotes placental function by up-regulating placental growth factor via inhibition of high-mobility-group box 1 and hypoxia-inducible factor 1α. Placenta 2021, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.W.; Wall, N.R.; Hsueh, C.T.; Kim, S.; Ferris, R.L.; Chen, C.S.; Mirshahidi, S. Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol. 2014, 50, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Tsakogiannis, D.; Nikolakopoulou, A.; Zagouri, F.; Stratakos, G.; Syrigos, K.; Zografos, E.; Koulouris, N.; Bletsa, G. Update overview of the role of angiopoietins in lung cancer. Medicina 2021, 57, 1191. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lash, G.E. Angiopoietin 2 in placentation and tumor biology: The yin and yang of vascular biology. Placenta 2017, 56, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Raica, M.; Cimpean, A.M. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 2010, 3, 572–599. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Avila, G.; Sommer, B.; Flores-Soto, E.; Aquino-Galvez, A. Hypoxic effects on matrix metalloproteinases’ expression in the tumor microenvironment and therapeutic perspectives. Int. J. Mol. Sci. 2023, 24, 16887. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Zhang, Q.; Jiang, L.; Wang, H.; Zhang, C.; Deng, J. Catalpol regulates apoptosis and proliferation of endothelial cell via activating HIF-1α/VEGF signaling pathway. Sci. Rep. 2024, 14, 28327. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Xu, M.; Zhang, W.; Che, X. Effects of sevoflurane pretreatment on myocardial ischemia-reperfusion injury through the Akt/hypoxia-inducible factor 1-alpha (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway. Med. Sci. Monit. 2019, 25, 3100–3107. [Google Scholar] [CrossRef] [PubMed]
- Li, H.S.; Zhou, Y.N.; Li, L.; Li, S.F.; Long, D.; Chen, X.L.; Zhang, J.B.; Feng, L.; Li, Y.P. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol. 2019, 25, 101109. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, T.; Xiong, L.; Liu, Z. Shen-fu Injection modulates HIF- 1α/BNIP3-mediated mitophagy to alleviate myocardial ischemia-reperfusion injury. Cardiovasc. Toxicol. 2025, 25, 898–914. [Google Scholar] [CrossRef] [PubMed]
- Piret, J.P.; Mottet, D.; Raes, M.; Michiels, C. Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem. Pharmacol. 2002, 64, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Chen, G.; Li, W.; Kepp, O.; Zhu, Y.; Chen, Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front. Cell Dev. Biol. 2020, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Rambold, A.S.; Lippincott-Schwartz, J. Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 2011, 10, 4032–4038. [Google Scholar] [CrossRef] [PubMed]
- Palladino, M.A.; Fasano, G.A.; Patel, D.; Dugan, C.; London, M. Effects of lipopolysaccharide-induced inflammation on hypoxia and inflammatory gene expression pathways of the rat testis. Basic Clin. Androl. 2018, 28, 14. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.I.; Liao, T.L.; Lin, J.F.; Lin, Y.C.; Lee, S.Y.; Lai, Y.C.; Kao, S.H. Low-dose testosterone treatment decreases oxidative damage in TM3 Leydig cells. Asian J. Androl. 2011, 13, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.F.; Shen, Y.F.; Gao, D.W.; Lin, D.F.; Ma, W.Z.; Chang, D.G. Metabolic pathways and male fertility: Exploring the role of Sertoli cells in energy homeostasis and spermatogenesis. Am. J. Physiol. Endocrinol. Metab. 2025, 329, E160–E178. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Di, Q.; Shan, D.; Xu, Q. Nonylphenol inhibited HIF-1alpha regulated aerobic glycolysis and induced ROS mediated apoptosis in rat Sertoli cells. Ecotoxicol. Environ. Saf. 2022, 241, 113822. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cui, J.; Cao, Y.; Zhang, Y.; Yang, J.; Zheng, L.; Zhao, F.; Liu, X.; Zhou, Z.; Liu, D.; et al. Adolescent exposure to organophosphate insecticide malathion induces spermatogenesis dysfunction in mice by activating the HIF-1/MAPK/PI3K pathway. Environ. Pollut. 2024, 363, 125209. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Fang, Z.; Liu, M.; Wang, Z.; Li, L.; Ming, S.; Lu, C.; Dong, H.; Zhang, W.; Wang, Q.; et al. Testosterone induces renal tubular epithelial cell death through the HIF-1alpha/BNIP3 pathway. J. Transl. Med. 2019, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wu, J.; Liu, X.; Zhang, Y.; Mo, L.; Liu, L.; Liu, S.; Ou, C.; He, Y. Hypoxia enhances autophagy level of human sperms. Sci. Rep. 2024, 14, 8465. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, S.; Gong, C.; Hu, Y.; Liu, J.; Wang, W.; Chen, Y.; Liao, Q.; He, B.; Huang, Y.; et al. Effects of environmental and pathological hypoxia on male fertility. Front. Cell Dev. Biol. 2021, 9, 725933. [Google Scholar] [CrossRef] [PubMed]
- Babaei, A.; Moradi, S.; Hoseinkhani, Z.; Rezazadeh, D.; Dokaneheifard, S.; Asadpour, R.; Sharma, G.; Mansouri, K. Expression of hypoxia-inducible factor1-alpha in varicocele disease: A comprehensive systematic review. Reprod. Sci. 2022, 29, 2731–2743. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Jiang, J.; Shu, Z.; Qiu, C.; Jiang, L.; Zhao, N.; Lin, X.; Qian, Y.; Liang, B.; Qiu, L. Fine particulate matter (PM2.5) induces testosterone disruption by triggering ferroptosis through SIRT1/HIF-1α signaling pathway in male mice. Free Radic. Biol. Med. 2024, 221, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Stanigut, A.M.; Pana, C.; Enciu, M.; Deacu, M.; Cimpineanu, B.; Tuta, L.A. Hypoxia-inducible factors and diabetic kidney disease-how deep can we go? Int. J. Mol. Sci. 2022, 23, 10413. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Zeng, T.; Roux, M.; Lazar, D.; Chen, L.; Tudzarova, S. The role of HIF1α-PFKFB3 pathway in diabetic retinopathy. J. Clin. Endocrinol. Metab. 2021, 106, 2505–2519. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Hou, T.; Wu, J.; Zhao, J.; Cao, H.; Masula, M.; Wang, J. Sevoflurane postconditioning attenuates cardiomyocytes hypoxia/reoxygenation injury via PI3K/AKT pathway mediated HIF-1α to regulate the mitochondrial dynamic balance. BMC Cardiovasc. Disord. 2024, 24, 280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiong, Z.; Wei, T.; Li, Q.; Tan, Y.; Ling, L.; Feng, X. Nuclear factor 90 promotes angiogenesis by regulating HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death Dis. 2018, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhou, C.; Lu, X.; Liu, Q.; Liu, M.; Chen, G.; Chen, W.; Wang, S.; Qiu, Y. DJ-1 promotes survival of human colon cancer cells under hypoxia by modulating HIF-1α expression through the PI3K-AKT pathway. Cancer Manag. Res. 2018, 10, 4615–4629. [Google Scholar] [CrossRef] [PubMed]
- An, T.Y.; Hu, Q.M.; Ni, P.; Hua, Y.Q.; Wang, D.; Duan, G.C.; Chen, S.Y.; Jia, B. N6-methyladenosine modification of hypoxia-inducible factor-1α regulates Helicobacter pylori-associated gastric cancer via the PI3K/AKT pathway. World J. Gastrointest. Oncol. 2024, 16, 3270–3283. [Google Scholar] [CrossRef] [PubMed]
- Patra, K.; Jana, S.; Sarkar, A.; Mandal, D.P.; Bhattacharjee, S. The inhibition of hypoxia-induced angiogenesis and metastasis by cinnamaldehyde is mediated by decreasing HIF-1α protein synthesis via PI3K/Akt pathway. Biofactors 2019, 45, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Haque, R.; Iuvone, P.M.; He, L.; Choi, K.S.C.; Ngo, A.; Gokhale, S.; Aseem, M.; Park, D. The MicroRNA-21 signaling pathway is involved in prorenin receptor (PRR) -induced VEGF expression in ARPE-19 cells under a hyperglycemic condition. Mol. Vis. 2017, 23, 251–262. [Google Scholar] [PubMed]
- Zhang, E.Y.; Gao, B.; Shi, H.L.; Huang, L.F.; Yang, L.; Wu, X.J.; Wang, Z.T. 20(S)-Protopanaxadiol enhances angiogenesis via HIF-1α-mediated VEGF secretion by activating p70S6 kinase and benefits wound healing in genetically diabetic mice. Exp. Mol. Med. 2017, 49, e387. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, T.; Hu, W.; Ji, Q.; Hu, F.; Wang, Q.; Yang, X.; Qi, D.; Chen, H.; Zhang, X. Hematopoietic cell kinase enhances osteosarcoma development via the MEK/ERK pathway. J. Cell Mol. Med. 2021, 25, 8789–8795. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zhou, W.; Yuan, X.; Liu, S.; He, Z. Mechanistic study of quercetin in the treatment of hepatocellular carcinoma with diabetes via MEK/ERK pathway. Int. Immunopharmacol. 2024, 142, 113194. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Qin, H.; Yu, F.; Zhou, Z.; Chen, Y.; Liu, P.; Zeng, H.; Weng, J. XLOC_015548 mitigates skeletal muscle atrophy via the Gadd45g/MEK/ERK pathway and redox regulation. Front. Biosci.-Landmark 2025, 30, 36233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, Y.; Zhang, J.; Liu, Z.; Lin, Q.; Wang, Z. Activation of NF-κB signaling pathway during HCG-induced VEGF expression in luteal cells. Cell Biol. Int. 2019, 43, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, M.; Sun, S.; Zhang, C.; Song, Y.; Li, J.; Song, B.; Lv, H.; Wang, S.; Jiang, W. Hypoxia-induced NLRP3 inflammasome activation via the HIF-1α/NF-κB signaling pathway in human dental pulp fibroblasts. BMC Oral Health 2024, 24, 1156. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Sun, Y.; He, J.; Wang, Z.; Li, W.; Wang, R. The mechanism of colon tissue damage mediated by HIF-1α/NF-κB/STAT1 in high-altitude environment. Front. Physiol. 2022, 13, 933659. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, M.; Gao, Y.; Wang, Z.; Jin, F. Tussilagone protects acute lung injury from PM2.5 via alleviating Hif-1α/NF-κB-mediated inflammatory response. Environ. Toxicol. 2022, 37, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.C.; Yang, Y.H.; Liao, C.C.; Lee, H.C. Xanthoxylin attenuates lipopolysaccharide-induced lung injury through modulation of Akt/HIF-1α/NF-κB and Nrf2 pathways. Int. J. Mol. Sci. 2024, 25, 8742. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, D.; Liu, Z.; Huang, X.; Liu, Q.; Kang, Y.; Chen, Z.; Guo, Y.; Zhu, H.; Sun, C. Combination of gemcitabine and erlotinib inhibits recurrent pancreatic cancer growth in mice via the JAK-STAT pathway. Oncol. Rep. 2018, 39, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A.; Lecarpentier, Y.; Vallée, J.N. The key role of the WNT/β-catenin pathway in metabolic reprogramming in cancers under normoxic conditions. Cancers 2021, 13, 5557. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Wu, T.; Zhang, H.W.; Lu, N.; Hu, R.; Wang, Y.J.; Zhao, L.; Chen, F.H.; Wang, X.T.; You, Q.D.; et al. HIF-1alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ. 2012, 19, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, M.; Cai, F.; Li, Y.; Shi, T.; Zhou, X.; Tian, S.; Huang, D. Roxadustat ameliorates vascular calcification in CKD rats by regulating HIF-2α/HIF-1α. Environ. Toxicol. 2024, 39, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.G.; Gao, Y.Y.; Yin, Z.Q.; Wang, X.R.; Meng, X.S.; Zou, T.F.; Duan, Y.J.; Chen, Y.L.; Liao, C.Z.; Xie, Z.L.; et al. Roxadustat alleviates nitroglycerin-induced migraine in mice by regulating HIF-1α/NF-κB/inflammation pathway. Acta Pharmacol. Sin. 2023, 44, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Sugahara, M.; Tanaka, S.; Tanaka, T.; Saito, H.; Ishimoto, Y.; Wakashima, T.; Ueda, M.; Fukui, K.; Shimizu, A.; Inagi, R.; et al. Prolyl hydroxylase domain inhibitor protects against metabolic disorders and associated kidney disease in obese type 2 diabetic mice. J. Am. Soc. Nephrol. 2020, 31, 560–577. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Suzuki, N.; van Ypersele de Strihou, C. Diabetic nephropathy: Are there new and potentially promising therapies targeting oxygen biology? Kidney Int. 2013, 84, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; van Ypersele de Strihou, C. Diabetic nephropathy: A disorder of oxygen metabolism? Nat. Rev. Nephrol. 2010, 6, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Choudhari, J.K.; Tripathi, A.; Singh, A.; Antony, A.; Chouhan, U. Artificial intelligence-based genome editing in CRISPR/Cas9. Methods Mol. Biol. 2025, 2952, 273–282. [Google Scholar] [PubMed]
- Saber, S.; Abdelhady, R.; Elhemely, M.A.; Elmorsy, E.A.; Hamad, R.S.; Abdel-Reheim, M.A.; El-Kott, A.F.; AlShehri, M.A.; Morsy, K.; Negm, S.; et al. Nanoscale systems for local activation of hypoxia-inducible factor-1 alpha: A new approach in diabetic wound management. Int. J. Nanomed. 2024, 19, 13735–13762. [Google Scholar] [CrossRef] [PubMed]
- Shokoohi, M.; Khaki, A.A.; Roshangar, L.; Nasr Esfahani, M.H.; Soltani, G.G.; Alihemmati, A. The impact of N-acetylcysteine on hypoxia-induced testicular apoptosis in male rats: TUNEL and IHC findings. Heliyon 2024, 10, e40097. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Godoy, L.C.; Thiantanawat, A.; Trudel, L.J.; Deen, W.M.; Wogan, G.N. Nitric oxide produced endogenously is responsible for hypoxia-induced HIF-1α stabilization in colon carcinoma cells. Chem. Res. Toxicol. 2012, 25, 2194–2202. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, B.K.; Bulut, S.; Bulut, S.; Baykam, M.M.; Ozden, C.; Senes, M.; Yücel, D.; Memiş, A. The effects of N-acetylcysteine on testicular damage in experimental testicular ischemia/reperfusion injury. Pediatr. Surg. Int. 2010, 26, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Inceu, A.I.; Neag, M.A.; Craciun, A.E.; Buzoianu, A.D. Gut molecules in cardiometabolic diseases: The mechanisms behind the story. Int. J. Mol. Sci. 2023, 24, 3385. [Google Scholar] [CrossRef] [PubMed]
- Crisóstomo, L.; Alves, M.G.; Gorga, A.; Sousa, M.; Riera, M.F.; Galardo, M.N.; Meroni, S.B.; Oliveira, P.F. Molecular mechanisms and signaling pathways involved in the nutritional support of spermatogenesis by Sertoli cells. Methods Mol. Biol. 2018, 1748, 129–155. [Google Scholar] [PubMed]
- Abd El-Fattah, E.E.; Saber, S.; Youssef, M.E.; Eissa, H.; El-Ahwany, E.; Amin, N.A.; Alqarni, M.; Batiha, G.E.; Obaidullah, A.J.; Kaddah, M.M.Y.; et al. Akt-AMPKα-mTOR-dependent HIF-1α activation is a new therapeutic target for cancer treatment: A novel approach to repositioning the antidiabetic drug sitagliptin for the management of hepatocellular carcinoma. Front. Pharmacol. 2022, 12, 720173. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhang, Z.; Xu, R.; Wang, Z. Contribution and Regulation of HIF-1α in Testicular Injury Induced by Diabetes Mellitus. Biomolecules 2025, 15, 1190. https://doi.org/10.3390/biom15081190
Wang D, Zhang Z, Xu R, Wang Z. Contribution and Regulation of HIF-1α in Testicular Injury Induced by Diabetes Mellitus. Biomolecules. 2025; 15(8):1190. https://doi.org/10.3390/biom15081190
Chicago/Turabian StyleWang, Defan, Zhenghong Zhang, Renfeng Xu, and Zhengchao Wang. 2025. "Contribution and Regulation of HIF-1α in Testicular Injury Induced by Diabetes Mellitus" Biomolecules 15, no. 8: 1190. https://doi.org/10.3390/biom15081190
APA StyleWang, D., Zhang, Z., Xu, R., & Wang, Z. (2025). Contribution and Regulation of HIF-1α in Testicular Injury Induced by Diabetes Mellitus. Biomolecules, 15(8), 1190. https://doi.org/10.3390/biom15081190