Expression of Reelin, Aβ1-42, Tau and FTH1 in Idiopathic Epiretinal Membranes: Exploring the Link Between Reelin and Neurodegenerative Biomarkers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and ERM Grading
2.2. Aqueous, Vitreous and ERM Management
2.3. Immunoprecipitation and SDS PAGE Analysis
2.4. Epifluorescent Analysis on ERMs
2.5. RNA, cDNA Synthesis and PCR Amplifications
2.6. Cell Cultures
2.7. Statistical Analysis and Integrated Optical Densitometric Analysis
3. Results
3.1. Reelin and Aβ1-42 Are Expressed in Ocular Fluids and iERMs at Different Stages
3.2. Expression of Reelin, Aβ1-42, FTH1 and TAU Transcripts in iERMs
3.3. Differential Expressions of Transcript Specific for Aβ1-42, FTH1, GFAP and TAU Occurred in Vitreal Cells
3.4. Astrocytes Selectively Respond to Vitreal Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
VLDLR | Very low density lipoprotein receptor |
IL-1β | Interleukin-1 beta |
ERM | Epiretinal membrane |
VEGF | Vascular endothelial growth factor |
IOP | Intraocular pressure |
Spectralis SD-OCT | Spectral domain optical coherence tomography |
PBS | Phosphate-buffered saline |
BSA | Bovine serum albumin |
FBS | Fetal bovine serum |
HBSS | Hank’s balanced sodium solution |
IntDen | Integrated optical density |
AMD | Age-related macular degeneration |
FTH1 | Ferritin |
GFAP | Glial fibrillary acidic protein |
RELN | Reelin |
CNS | Central nervous system |
RGC | Retinal ganglion cells |
TNF | Tumor necrosis factor alpha |
NO | Nitric oxide |
ROS | Reactive oxygen species |
HIF-1 | Hypoxia inducible factor-1 |
MIP-2 | Macrophage inflammatory protein 2 |
References
- Joly-Amado, A.; Kulkarni, N.; Nash, K.R. Reelin Signaling in Neurodevelopmental Disorders and Neurodegenerative Diseases. Brain Sci. 2023, 13, 1479. [Google Scholar] [CrossRef]
- D’Arcangelo, G. Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav. E&B 2006, 8, 81–90. [Google Scholar] [CrossRef]
- Wasser, C.R.; Herz, J. Reelin: Neurodevelopmental Architect and Homeostatic Regulator of Excitatory Synapses. J. Biol. Chem. 2017, 292, 1330–1338. [Google Scholar] [CrossRef]
- Reive, B.S.; Lau, V.; Sánchez-Lafuente, C.L.; Henri-Bhargava, A.; Kalynchuk, L.E.; Tremblay, M.È.; Caruncho, H.J. The Inflammation-Induced Dysregulation of Reelin Homeostasis Hypothesis of Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2024, 100, 1099–1119. [Google Scholar] [CrossRef]
- Yu, N.N.; Tan, M.S.; Yu, J.T.; Xie, A.M.; Tan, L. The Role of Reelin Signaling in Alzheimer’s Disease. Mol. Neurobiol. 2016, 53, 5692–5700. [Google Scholar] [CrossRef]
- Rajmohan, R.; Reddy, P.H. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons. J. Alzheimer’s Dis. 2017, 57, 975–999. [Google Scholar] [CrossRef]
- Dai, D.L.; Li, M.; Lee, E.B. Human Alzheimer’s disease reactive astrocytes exhibit a loss of homeostastic gene expression. Acta Neuropathol. Commun. 2023, 11, 127. [Google Scholar] [CrossRef]
- Miao, J.; Xu, F.; Davis, J.; Otte-Höller, I.; Verbeek, M.M.; Van Nostrand, W.E. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein. Am. J. Pathol. 2005, 167, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Palasz, E.; Wilkaniec, A.; Stanaszek, L.; Andrzejewska, A.; Adamczyk, A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int. J. Mol. Sci. 2023, 24, 6321. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Eisel, U.L.M. Microglia-Astrocyte Communication in Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2023, 95, 785–803. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef]
- Marmolejo-Martínez-Artesero, S.; Casas, C.; Romeo-Guitart, D. Endogenous Mechanisms of Neuroprotection: To Boost or Not to Boost. Cells 2021, 10, 370. [Google Scholar] [CrossRef]
- Müller, L.; Di Benedetto, S.; Müller, V. From Homeostasis to Neuroinflammation: Insights into Cellular and Molecular Interactions and Network Dynamics. Cells 2025, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The interplay between cytokines, inflammation, and antioxidants: Mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef] [PubMed]
- Ashok, A.; Singh, N.; Chaudhary, S.; Bellamkonda, V.; Kritikos, A.E.; Wise, A.S.; Rana, N.; McDonald, D.; Ayyagari, R. Retinal Degeneration and Alzheimer’s Disease: An Evolving Link. Int. J. Mol. Sci. 2020, 21, 7290. [Google Scholar] [CrossRef]
- Santos, F.M.; Ciordia, S.; Mesquita, J.; Cruz, C.; Sousa, J.P.C.E.; Passarinha, L.A.; Tomaz, C.T.; Paradela, A. Proteomics profiling of vitreous humor reveals complement and coagulation components, adhesion factors, and neurodegeneration markers as discriminatory biomarkers of vitreoretinal eye diseases. Front. Immunol. 2023, 14, 1107295. [Google Scholar] [CrossRef]
- Hammond, T.R.; Marsh, S.E.; Stevens, B. Immune Signaling in Neurodegeneration. Immunity 2019, 50, 955–974. [Google Scholar] [CrossRef]
- Balzamino, B.O.; Cacciamani, A.; Dinice, L.; Cecere, M.; Pesci, F.R.; Ripandelli, G.; Micera, A. Retinal Inflammation and Reactive Müller Cells: Neurotrophins’ Release and Neuroprotective Strategies. Biology 2024, 3, 1030. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- López-Cuenca, I.; Salobrar-García, E.; Gil-Salgado, I.; Sánchez-Puebla, L.; Elvira-Hurtado, L.; Fernández-Albarral, J.A.; Ramírez-Toraño, F.; Barabash, A.; de Frutos-Lucas, J.; Salazar, J.J.; et al. Characterization of Retinal Drusen in Subjects at High Genetic Risk of Developing Sporadic Alzheimer’s Disease: An Exploratory Analysis. J. Pers. Med. 2022, 12, 847. [Google Scholar] [CrossRef]
- Kanukollu, V.M.; Agarwal, P. Epiretinal Membrane. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Steel, D.H.; Lotery, A.J. Idiopathic vitreomacular traction and macular hole: A comprehensive review of pathophysiology, diagnosis, and treatment. Eye 2013, 27, S1–S21. [Google Scholar] [CrossRef]
- Minchiotti, S.; Stampachiacchiere, B.; Micera, A.; Lambiase, A.; Ripandelli, G.; Billi, B.; Bonini, S. Human idiopathic epiretinal membranes express NGF and NGF receptors. Retina 2008, 28, 628–637. [Google Scholar] [CrossRef]
- Govetto, A.; Lalane, R.A., 3rd; Sarraf, D.; Figueroa, M.S.; Hubschman, J.P. Insights Into Epiretinal Membranes: Presence of Ectopic Inner Foveal Layers and a New Optical Coherence Tomography Staging Scheme. Am. J. Ophthalmol. 2017, 175, 99–113. [Google Scholar] [CrossRef]
- Dinice, L.; Esposito, G.; Cacciamani, A.; Balzamino, B.O.; Cosimi, P.; Cafiero, C.; Ripandelli, G.; Micera, A. TLR2 and TLR4 Are Expressed in Epiretinal Membranes: Possible Links with Vitreous Levels of Complement Fragments and DAMP-Related Proteins. Int. J. Mol. Sci. 2024, 25, 7732. [Google Scholar] [CrossRef]
- Pal, A.; Cerchiaro, G.; Rani, I.; Ventriglia, M.; Rongioletti, M.; Longobardi, A.; Squitti, R. Iron in Alzheimer’s Disease: From Physiology to Disease Disabilities. Biomolecules 2022, 12, 1248. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, X.; Sun, Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis. 2021, 12, 529–551. [Google Scholar] [CrossRef]
- Baumann, B.; Sterling, J.; Song, Y.; Song, D.; Fruttiger, M.; Gillies, M.; Shen, W.; Dunaief, J.L. Conditional Müller Cell Ablation Leads to Retinal Iron Accumulation. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4223–4234. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, A.; Brighi, C.; Peruzzi, G.; Ragozzino, D.; Bonanni, V.; Limatola, C.; Ruocco, G.; Di Angelantonio, S. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis. 2018, 9, 685. [Google Scholar] [CrossRef] [PubMed]
- Sampani, K.; Ness, S.; Tuz-Zahra, F.; Aytan, N.; Spurlock, E.E.; Alluri, S.; Chen, X.; Siegel, N.H.; Alosco, M.L.; Xia, W.; et al. Neurodegenerative biomarkers in different chambers of the eye relative to plasma: An agreement validation study. Alzheimer’s Res. Ther. 2024, 16, 192. [Google Scholar] [CrossRef] [PubMed]
- Balzamino, B.O.; Esposito, G.; Marino, R.; Calissano, P.; Latina, V.; Amadoro, G.; Keller, F.; Cacciamani, A.; Micera, A. Morphological and biomolecular targets in retina and vitreous from Reelin-deficient mice (Reeler): Potential implications for age-related macular degeneration in Alzheimer’s dementia. Front. Aging Neurosci. 2022, 14, 1015359. [Google Scholar] [CrossRef]
- Durakoglugil, M.S.; Chen, Y.; White, C.L.; Kavalali, E.T.; Herz, J. Reelin signaling antagonizes beta-amyloid at the synapse. Proc. Natl. Acad. Sci. USA 2009, 106, 15938–15943. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Bermúdez, I.C.; Salazar-Henao, J.E.; Riera, M.; Caparros-Ruiz, D.; Schmidt, W. Protein and antibody purification followed by immunoprecipitation of MYB and GATA zinc finger-type maize proteins with magnetic beads. STAR Protoc. 2022, 3, 101449. [Google Scholar] [CrossRef]
- SenGupta, S.; Parent, C.A.; Bear, J.E. The principles of directed cell migration. Nature reviews. Mol. Cell Biol. 2021, 22, 529–547. [Google Scholar] [CrossRef]
- Garcia, D.W.; Jacquir, S. Astrocyte-mediated neuronal irregularities and dynamics: The complexity of the tripartite synapse. Biol. Cybern. 2024, 118, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mao, X. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. Int. J. Mol. Sci. 2021, 22, 2360. [Google Scholar] [CrossRef]
- Koronyo, Y.; Rentsendorj, A.; Mirzaei, N.; Regis, G.C.; Sheyn, J.; Shi, H.; Barron, E.; Cook-Wiens, G.; Rodriguez, A.R.; Medeiros, R.; et al. Retinal pathological features and proteome signatures of Alzheimer’s disease. Acta Neuropathol. 2023, 145, 409–438. [Google Scholar] [CrossRef]
- García-Bermúdez, M.Y.; Vohra, R.; Freude, K.; Wijngaarden, P.V.; Martin, K.; Thomsen, M.S.; Aldana, B.I.; Kolko, M. Potential Retinal Biomarkers in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 15834. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhao, N.; Wei, D.; Pu, N.; Hao, X.N.; Huang, J.M.; Peng, G.H.; Tao, Y. Ferroptosis in the ageing retina: A malevolent fire of diabetic retinopathy. Ageing Res. Rev. 2021, 93, 102142. [Google Scholar] [CrossRef]
- Pillai, J.A.; Maxwell, S.; Bena, J.; Bekris, L.M.; Rao, S.M.; Chance, M.; Lamb, B.T.; Leverenz, J.B.; Alzheimer’s Disease Neuroimaging Initiative. Key inflammatory pathway activations in the MCI stage of Alzheimer’s disease. Ann. Clin. Transl. Neurol. 2019, 6, 1248–1262. [Google Scholar] [CrossRef]
- Joshi, M.; Agrawal, S.; Christoforidis, J.B. Inflammatory mechanisms of idiopathic epiretinal membrane formation. Mediat. Inflamm. 2013, 2013, 192582. [Google Scholar] [CrossRef]
- Krishna Chandran, A.M.; Coltrini, D.; Belleri, M.; Rezzola, S.; Gambicorti, E.; Romano, D.; Morescalchi, F.; Calza, S.; Semeraro, F.; Presta, M. Vitreous from idiopathic epiretinal membrane patients induces glial-to-mesenchymal transition in Müller cells. Biochimica et biophysica acta. Mol. Basis Dis. 2021, 1867, 166181. [Google Scholar] [CrossRef]
- Micera, A.; Balzamino, B.O.; Cosimi, P.; Esposito, G.; Ripandelli, G.; Rossi, T. Short-Term Culture of Human Hyalocytes Retains Their Initial Phenotype and Displays Their Contraction Abilities. Cells 2024, 13, 1837. [Google Scholar] [CrossRef]
- Martín, J.C.M.; Sánchez, L.F.; Piñero, D.P.; Navarro, N.C. Immunohistochemical, functional, and anatomical evaluation of patients with idiopathic epiretinal membrane. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 1443–1453. [Google Scholar] [CrossRef]
- Tsotridou, E.; Loukovitis, E.; Zapsalis, K.; Pentara, I.; Koronis, S.; Tranos, P.; Asteriadis, S.; Balidis, M.; Sousouras, T.; Vakalis, T.; et al. Update on the cellular, genetic and cytokine basis of epiretinal membrane pathogenesis. J. Biol. Regul. Homeost. Agents 2019, 33, 1879–1884. [Google Scholar] [CrossRef] [PubMed]
- Balzamino, B.O.; Dinice, L.; Cacciamani, A.; Re, A.; Scarinci, F.; Bruno, L.; Cosimi, P.; Micera, A. Short-Term In Vitro ROS Detection and Oxidative Stress Regulators in Epiretinal Membranes and Vitreous from Idiopathic Vitreoretinal Diseases. BioMed Res. Int. 2022, 2022, 7497816. [Google Scholar] [CrossRef] [PubMed]
- Fiala, M.; Hammock, B.D.; Hwang, S.H.; Whitelegge, J.; Paul, K.; Kaczor-Urbanowicz, K.E.; Urbanowicz, A.; Kesari, S. Inhibitors of soluble epoxide hydrolase and cGAS/STING repair defects in amyloid-β clearance underlying vascular complications of Alzheimer’s disease. J. Alzheimer’s Dis. 2025, 104, 150–157. [Google Scholar] [CrossRef]
- Lia, A.; Di Spiezio, A.; Vitalini, L.; Tore, M.; Puja, G.; Losi, G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer’s Disease and Glioblastoma. Life 2023, 13, 2038. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, A. Macrophage activation contributes to diabetic retinopathy. J. Mol. Med. 2024, 102, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Micera, A.; Bruno, L.; Cacciamani, A.; Rongioletti, M.; Squitti, R. Alzheimer’s Disease and Retinal Degeneration: A Glimpse at Essential Trace Metals in Ocular Fluids and Tissues. Curr. Alzheimer Res. 2019, 16, 1073–1083. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front. Immunol. 2023, 14, 1320271. [Google Scholar] [CrossRef]
- Piccolo, M.; Ferraro, M.G.; Iazzetti, F.; Santamaria, R.; Irace, C. Insight into Iron, Oxidative Stress and Ferroptosis: Therapy Targets for Approaching Anticancer Strategies. Cancers 2024, 16, 1220. [Google Scholar] [CrossRef]
- Jossin, Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020, 10, 964. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kambhampati, S.P.; Bhutto, I.A.; McLeod, D.S.; Lutty, G.A.; Kannan, R.M. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Exp. Eye Res. 2021, 203, 108391. [Google Scholar] [CrossRef]
- Quesnel, M.J.; Labonté, A.; Picard, C.; Bowie, D.C.; Zetterberg, H.; Blennow, K.; Brinkmalm, A.; Villeneuve, S.; Poirier, J.; Alzheimer’s Disease Neuroimaging Initiative; et al. Osteopontin: A novel marker of pre-symptomatic sporadic Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2024, 20, 6008–6031. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Schardien, K.; Wigdahl, B.; Nonnemacher, M.R. Roles of neuropathology-associated reactive astrocytes: A systematic review. Acta Neuropathol. Commun. 2023, 11, 42. [Google Scholar] [CrossRef]
- Regmi, S.; Liu, D.D.; Shen, M.; Kevadiya, B.D.; Ganguly, A.; Primavera, R.; Chetty, S.; Yarani, R.; Thakor, A.S. Mesenchymal stromal cells for the treatment of Alzheimer’s disease: Strategies and limitations. Front. Mol. Neurosci. 2022, 15, 1011225. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Rajendran, R.L.; Muthu, S.; Jeyaraman, N.; Sharma, S.; Jha, S.K.; Muthukanagaraj, P.; Hong, C.M.; Furtado da Fonseca, L.; Santos Duarte Lana, J.F.; et al. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer’s disease. Heliyon 2023, 9, e17808. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Y.; Dong, X.; Meng, Z.; Ji, L.; Kang, Y.; Liu, M.; Zhou, W.; Song, W. Alpha-lipoic acid alleviates cognitive deficits in transgenic APP23/PS45 mice through a mitophagy-mediated increase in ADAM10 α-secretase cleavage of APP. Alzheimer’s Res. Ther. 2024, 16, 160. [Google Scholar] [CrossRef] [PubMed]
- Tondo, G.; De Marchi, F.; Bonardi, F.; Menegon, F.; Verrini, G.; Aprile, D.; Anselmi, M.; Mazzini, L.; Comi, C. Novel Therapeutic Strategies in Alzheimer’s Disease: Pitfalls and Challenges of Anti-Amyloid Therapies and Beyond. J. Clin. Med. 2024, 13, 3098. [Google Scholar] [CrossRef]
- Miao, J.; Ma, H.; Yang, Y.; Liao, Y.; Lin, C.; Zheng, J.; Yu, M.; Lan, J. Microglia in Alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci. 2023, 15, 1201982. [Google Scholar] [CrossRef]
- Alexander, A.; Herz, J.; Calvier, L. Reelin through the years: From brain development to inflammation. Cell Rep. 2023, 42, 112669. [Google Scholar] [CrossRef]
- Cuchillo-Ibáñez, I.; Balmaceda, V.; Botella-López, A.; Rabano, A.; Avila, J.; Sáez-Valero, J. Beta-amyloid impairs reelin signaling. PLoS ONE 2013, 8, e72297. [Google Scholar] [CrossRef]
- Cehlar, O.; Njemoga, S.; Horvath, M.; Cizmazia, E.; Bednarikova, Z.; Barrera, E.E. Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer’s Disease, Parkinson’s Disease and Prionopathies. Int. J. Mol. Sci. 2024, 25, 13049. [Google Scholar] [CrossRef]
- Katsuyama, Y.; Hattori, M. REELIN ameliorates Alzheimer’s disease, but how? Neurosci. Res. 2024, 208, 8–14. [Google Scholar] [CrossRef]
- Cuchillo-Ibañez, I.; Mata-Balaguer, T.; Balmaceda, V.; Arranz, J.J.; Nimpf, J.; Sáez-Valero, J. The β-amyloid peptide compromises Reelin signaling in Alzheimer’s disease. Sci. Rep. 2016, 6, 31646. [Google Scholar] [CrossRef] [PubMed]
- Folsom, T.D.; Fatemi, S.H. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013, 68, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Szeto, S.K.; Lai, T.Y.; Vujosevic, S.; Sun, J.K.; Sadda, S.R.; Tan, G.; Sivaprasad, S.; Wong, T.Y.; Cheung, C.Y. Optical coherence tomography in the management of diabetic macular oedema. Prog. Retin. Eye Res. 2024, 98, 101220. [Google Scholar] [CrossRef]
- Menon, M.; Mohammadi, S.; Davila-Velderrain, J.; Goods, B.A.; Cadwell, T.D.; Xing, Y.; Stemmer-Rachamimov, A.; Shalek, A.K.; Love, J.C.; Kellis, M.; et al. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat. Commun. 2019, 10, 4902. [Google Scholar] [CrossRef] [PubMed]
- Kocherhans, S.; Madhusudan, A.; Doehner, J.; Breu, K.S.; Nitsch, R.M.; Fritschy, J.M.; Knuesel, I. Reduced Reelin expression accelerates amyloid-beta plaque formation and tau pathology in transgenic Alzheimer’s disease mice. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 9228–9240. [Google Scholar] [CrossRef]
- Mirzaei, N.; Shi, H.; Oviatt, M.; Doustar, J.; Rentsendorj, A.; Fuchs, D.T.; Sheyn, J.; Black, K.L.; Koronyo, Y.; Koronyo-Hamaoui, M. Alzheimer’s Retinopathy: Seeing Disease in the Eyes. Front. Neurosci. 2020, 14, 921. [Google Scholar] [CrossRef]
- Hussain, A.; Sheikh, Z.; Subramanian, M. The Eye as a Diagnostic Tool for Alzheimer’s Disease. Life 2023, 13, 726. [Google Scholar] [CrossRef]
- Chiquita, S.; Rodrigues-Neves, A.C.; Baptista, F.I.; Carecho, R.; Moreira, P.I.; Castelo-Branco, M.; Ambrósio, A.F. The Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer’s Disease: Critical Aspects to Unravel. Mol. Neurobiol. 2019, 56, 5416–5435. [Google Scholar] [CrossRef] [PubMed]
- Handoko, M.; Grant, M.; Kuskowski, M.; Zahs, K.R.; Wallin, A.; Blennow, K.; Ashe, K.H. Correlation of specific amyloid-β oligomers with tau in cerebrospinal fluid from cognitively normal older adults. JAMA Neurol. 2013, 70, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Tobeh, N.S.; Bruce, K.D. Emerging Alzheimer’s disease therapeutics: Promising insights from lipid metabolism and microglia-focused interventions. Front. Aging Neurosci. 2023, 15, 1259012. [Google Scholar] [CrossRef] [PubMed]
Genes | Primer Sequence | Genebank (AN) | |
---|---|---|---|
Reference gene | |||
H3 | 5′-GCTTCGAGAGATTCGTCGTT | 3′-GAAACCTCAGGTCGGTTTTG | NM_005324 |
Target genes | |||
RELN | 5′-GGCATCTTGTCACCGAAGAG | 3′-CATTATCAATCGCCCAGGAA | U79716.1 |
IBA1 | 5′-GCTGAGCTATGAGCCAAACC | 3′-TCGCCATTTCCATTAAGGTC | D86438.1 |
GFAP | 5′-CCCAGCAACTCCAACTAACAAG | 3′-ACTCAAAGGCACAGTTCCCA | BC013596.1 |
CD11b | 5′-ACAGAGCTGCCTCTCGGTGGCCA | 3′-TTCCC1TCTGCCGGAGAGGCTACC | NM_000632 |
Aβ1–42 | 5′-GCCCTTCTCGTTCCTGACAA | 3′-GTCATCCTCCTCCGCATCAG | BC004369.1 |
TAU | 5′-ACCATGCACCAAGACCAAGA | 3′-TCCAGTCCCGTCTTTGCTTT | BC000558.2 |
FTH1 | 5′- GAGGTGGCCGAATCTTCCT | 3′-ATGGCTTTCACCTGCTCATTC | M11146.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balzamino, B.O.; Graziana, E.; Pamela, C.; Rosanna, S.; Giuseppina, A.; Valentina, L.; Guido, R.; Andrea, C.; Alessandra, M. Expression of Reelin, Aβ1-42, Tau and FTH1 in Idiopathic Epiretinal Membranes: Exploring the Link Between Reelin and Neurodegenerative Biomarkers. Biomolecules 2025, 15, 1187. https://doi.org/10.3390/biom15081187
Balzamino BO, Graziana E, Pamela C, Rosanna S, Giuseppina A, Valentina L, Guido R, Andrea C, Alessandra M. Expression of Reelin, Aβ1-42, Tau and FTH1 in Idiopathic Epiretinal Membranes: Exploring the Link Between Reelin and Neurodegenerative Biomarkers. Biomolecules. 2025; 15(8):1187. https://doi.org/10.3390/biom15081187
Chicago/Turabian StyleBalzamino, Bijorn Omar, Esposito Graziana, Cosimi Pamela, Squitti Rosanna, Amadoro Giuseppina, Latina Valentina, Ripandelli Guido, Cacciamani Andrea, and Micera Alessandra. 2025. "Expression of Reelin, Aβ1-42, Tau and FTH1 in Idiopathic Epiretinal Membranes: Exploring the Link Between Reelin and Neurodegenerative Biomarkers" Biomolecules 15, no. 8: 1187. https://doi.org/10.3390/biom15081187
APA StyleBalzamino, B. O., Graziana, E., Pamela, C., Rosanna, S., Giuseppina, A., Valentina, L., Guido, R., Andrea, C., & Alessandra, M. (2025). Expression of Reelin, Aβ1-42, Tau and FTH1 in Idiopathic Epiretinal Membranes: Exploring the Link Between Reelin and Neurodegenerative Biomarkers. Biomolecules, 15(8), 1187. https://doi.org/10.3390/biom15081187