Internalizing and Externalizing Traits During Adolescence: Using Epigenetics and Perinatal Risks to Differentiate Clusters of Symptoms
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Measures and Variables
2.3.1. Clinical Information
2.3.2. Environmental Risk Factors
2.3.3. Epigenetic Measures
- •
- A region within intron 1 of BDNF (chr11:27723077–27723244, 11 CpGs).
- •
- A region within intron 7 of FKBP5 (chr6:35558405–35558550, 3 CpGs).
- •
- IGF2 differentially methylated region (DMR, chr11:2169373–2169658, 5 CpGs).
- •
- Three regions of OXTR: one in the promoter (chr3:8811488–8811837, 7 of 9 CpGs analyzed), one in intron 1 (chr3:8810654–8810919, 13 CpGs), and one in exon 3 (chr3:8809340–8809530, 15 CpGs).
2.4. Data Analysis
2.4.1. Preliminary Procedures on Data and Descriptive Statistics
2.4.2. Unsupervised Machine Learning: Cluster Analysis on Clinical Measures
2.4.3. Analysis of Cluster Characteristics
3. Results
3.1. Unsupervised Machine Learning Results: Results of Cluster Analysis on Clinical Measures
3.2. Unsupervised Machine Learning Results: Results of Cluster Analysis on Demographics Measures, Environmental Factors, and Methylation Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBCL | Child Behavior Checklist/6-18 |
BDNF | Brain-derived neurotrophic factor |
FKBP5 | FK506-binding protein 5 |
IGF2 | Insulin-like growth factor-2 |
OXTR | Oxytocin receptor |
OXTR_PR | Oxytocin receptor promoter |
ASEBA | Achenbach System of Empirically Based Assessment |
SLEs | Stressful life events |
DAWBA | Development and Well-Being Assessment |
FMM | Finite mixture model |
BIC | Bayesian information criterion |
Appendix A. Methylation Protocol
Appendix B
Methylation Level | Chromosomal Positions (GRCh37/hg19) | Min (%) | Max (%) | Mean (%) | SD (%) |
---|---|---|---|---|---|
BDNF CpG1 | chr11: 27723218–27723219 | 0.50 | 3.54 | 1.68 | 0.47 |
BDNF CpG2 | chr11: 27723214–27723215 | 0.00 | 3.37 | 0.41 | 0.27 |
BDNF CpG3 | chr11: 27723203–27723204 | 0.03 | 1.65 | 0.41 | 0.19 |
BDNF CpG4 | chr11: 27723190–27723191 | 0.05 | 1.20 | 0.30 | 0.16 |
BDNF CpG5 | chr11: 27723161–27723162 | 0.06 | 2.37 | 0.50 | 0.22 |
BDNF CpG6 | chr11: 27723159–27723160 | 0.08 | 1.88 | 0.46 | 0.19 |
BDNF CpG7 | chr11: 27723143–27723144 | 0.04 | 4.22 | 0.49 | 0.32 |
BDNF CpG8 | chr11: 27723137–27723138 | 0.06 | 3.88 | 0.78 | 0.32 |
BDNF CpG9 | chr11: 27723128–27723129 | 0.08 | 1.55 | 0.64 | 0.24 |
BDNF CpG10 | chr11: 27723125–27723126 | 0.13 | 2.41 | 0.83 | 0.29 |
BDNF CpG11 | chr11: 27723095–27723096 | 0.09 | 1.20 | 0.51 | 0.18 |
FKBP5 CpG1 | chr6: 35558438–35558439 | 52.32 | 82.94 | 72.35 | 5.12 |
FKBP5 CpG2 | chr6: 35558488–35558489 | 74.46 | 98.11 | 92.82 | 3.87 |
FKBP5 CpG3 | chr6: 35558513–35558514 | 70.39 | 97.21 | 90.05 | 4.80 |
IGF2 CpG1 | chr11: 2169400–2169401 | 12.27 | 61.46 | 49.27 | 5.40 |
IGF2 CpG2 | chr11: 2169499–2169500 | 15.75 | 46.28 | 38.37 | 4.66 |
IGF2 CpG3 | chr11: 2169515–2169516 | 26.15 | 53.86 | 39.95 | 4.65 |
IGF2 CpG4 | chr11: 2169518–2169519 | 21.74 | 56.50 | 34.06 | 5.06 |
IGF2 CpG5 | chr11: 2169577–2169578 | 0.00 | 0.25 | 0.08 | 0.05 |
OXTR_E3 CpG1 | chr3: 8809364–8809365 | 0.11 | 24.93 | 7.94 | 3.23 |
OXTR_E3 CpG2 | chr3: 8809367–8809368 | 0.00 | 22.68 | 6.50 | 2.94 |
OXTR_E3 CpG3 | chr3: 8809369–8809370 | 0.11 | 19.25 | 4.68 | 2.38 |
OXTR_E3 CpG4 | chr3: 8809387–8809388 | 0.00 | 20.84 | 4.52 | 2.63 |
OXTR_E3 CpG5 | chr3: 8809394–8809395 | 0.06 | 9.84 | 1.99 | 1.31 |
OXTR_E3 CpG6 | chr3: 8809399–8809400 | 0.12 | 26.99 | 8.39 | 3.85 |
OXTR_E3 CpG7 | chr3: 8809413–8809414 | 0.00 | 21.53 | 5.90 | 3.04 |
OXTR_E3 CpG8 | chr3: 8809417–8809418 | 0.09 | 13.58 | 3.04 | 1.91 |
OXTR_E3 CpG9 | chr3: 8809422–8809423 | 0.12 | 20.26 | 5.32 | 2.93 |
OXTR_E3 CpG10 | chr3: 8809425–8809426 | 0.33 | 20.02 | 5.80 | 3.04 |
OXTR_E3 CpG11 | chr3: 8809428–8809429 | 0.24 | 23.89 | 5.75 | 3.42 |
OXTR_E3 CpG12 | chr3: 8809433–8809434 | 0.03 | 15.91 | 3.07 | 2.13 |
OXTR_E3 CpG13 | chr3: 8809437–8809438 | 0.06 | 23.02 | 4.96 | 3.29 |
OXTRE_3 CpG14 | chr3: 8809442–8809443 | 0.18 | 15.33 | 2.98 | 2.04 |
OXTR_E3 CpG15 | chr3: 8809464–8809465 | 0.32 | 17.75 | 4.13 | 2.42 |
OXTR_I1 CpG1 | chr3: 8810889–8810890 | 0.06 | 4.80 | 1.73 | 0.77 |
OXTR_I1 CpG2 | chr3: 8810874–8810875 | 0.06 | 6.71 | 2.75 | 1.02 |
OXTR_I1 CpG3 | chr3: 8810862–8810863 | 1.95 | 16.12 | 7.26 | 2.07 |
OXTR_I1 CpG4 | chr3: 8810855–8810856 | 0.84 | 17.28 | 2.84 | 1.43 |
OXTR_I1 CpG5 | chr3: 8810832–8810833 | 23.02 | 53.09 | 36.12 | 4.91 |
OXTR_I1 CpG6 | chr3: 8810807–8810808 | 15.10 | 57.52 | 38.50 | 5.58 |
OXTR_I1 CpG7 | chr3: 8810797–8810798 | 46.11 | 74.84 | 62.09 | 5.07 |
OXTR_I1 CpG8 | chr3: 8810774–8810775 | 28.89 | 57.48 | 43.52 | 4.90 |
OXTR_I1 CpG9 | chr3: 8810733–8810734 | 9.03 | 40.46 | 23.38 | 4.88 |
OXTR_I1 CpG10 | chr3: 8810708–8810709 | 0.07 | 15.68 | 8.27 | 2.44 |
OXTR_I1 CpG11 | chr3: 8810699–8810700 | 0.17 | 20.24 | 10.68 | 3.00 |
OXTR_I1 CpG12 | chr3: 8810681–8810682 | 0.07 | 25.62 | 12.08 | 3.60 |
OXTR_I1 CpG13 | chr3: 8810679–8810680 | 6.10 | 25.23 | 13.22 | 3.36 |
OXTR_PR CpG1 | chr3: 8811763–8811764 | 84.80 | 99.82 | 91.35 | 2.26 |
OXTR_PR CpG2 | chr3: 8811758–8811759 | 61.12 | 87.95 | 78.55 | 4.38 |
OXTR_PR CpG3 | chr3: 8811756–8811757 | 66.11 | 88.19 | 79.26 | 4.05 |
OXTR_PR CpG4 | chr3: 8811739–8811740 | 33.89 | 80.86 | 64.30 | 5.34 |
OXTR_PR CpG5 | chr3: 8811728–8811729 | 77.54 | 99.08 | 84.74 | 2.76 |
OXTR_PR CpG6 | chr3: 8811601–8811602 | 28.20 | 67.18 | 46.98 | 5.04 |
Number of Clusters | Spherical, Equal Volume Clusters (EII) | Spherical, Unequal Volume Clusters (VII) |
---|---|---|
1 | −2910.112 | −2910.112 |
2 | −2887.488 | −2892.799 |
3 | −2889.127 | −2898.691 |
4 | −2902.274 | −2916.547 |
5 | −2918.169 | −2933.301 |
6 | −2932.867 | −2951.756 |
7 | −2929.585 | −2947.264 |
8 | −2941.88 | −2982.887 |
9 | −2966.898 | −3001.052 |
References
- Frigerio, A.; Rucci, P.; Goodman, R.; Ammaniti, M.; Carlet, O.; Cavolina, P.; De Girolamo, G.; Lenti, C.; Lucarelli, L.; Mani, E.; et al. Prevalence and correlates of mental disorders among adolescents in Italy: The PrISMA study. Eur. Child Adolesc. Psychiatry 2009, 18, 217–226. [Google Scholar] [CrossRef]
- Gritti, A.; Bravaccio, C.; Signoriello, S.; Salerno, F.; Pisano, S.; Catone, G.; Gallo, C.; Pascotto, A. Epidemiological study on behavioural and emotional problems in developmental age: Prevalence in a sample of Italian children, based on parent and teacher reports. Ital. J. Pediatr. 2014, 40, 19. [Google Scholar] [CrossRef]
- Smorti, M.; Milone, A.; Gonzalez, J.G.; Rosati, G.V. Adolescent selfie: An Italian Society of Paediatrics survey of the lifestyle of teenagers. Ital. J. Pediatr. 2019, 45, 62. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, R.E.; Nagin, D.S.; SégUin, J.R.; Zoccolillo, M.; Zelazo, P.D.; Boivin, M.; PérUsse, D.; Japel, C. Physical aggression during early childhood: Trajectories and predictors. Pediatrics 2004, 114, e43–e50. [Google Scholar] [CrossRef] [PubMed]
- Muratori, P.; Paciello, M.; Castro, E.; Levantini, V.; Masi, G.; Milone, A.; Senese, V.P.; Pisano, S.; Catone, G. At-risk early adolescents profiles in the community: A cluster analysis using the strengths and difficulties questionnaire. Psychiatry Res. 2021, 305, 114209. [Google Scholar] [CrossRef]
- National Institute of Mental Health Website, Research Domain Criteria Section. Available online: https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc (accessed on 5 August 2022).
- Amendola, S.; Hengartner, M.P.; Spensieri, V.; Grillo, L.; Cerutti, R. Patterns of internalizing symptoms and disability functioning in children and adolescents. Eur. Child Adolesc. Psychiatry 2022, 31, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA School-Age Forms and Profiles; University of Vermont, Research Center for Children, Youth, and Families: Burlington, VT, USA, 2001. [Google Scholar]
- Tien, J.; Lewis, G.D.; Liu, J. Prenatal risk factors for internalizing and externalizing problems in childhood. World J. Pediatr. 2020, 16, 341–355. [Google Scholar] [CrossRef]
- Nees, F.; Deserno, L.; Holz, N.E.; Romanos, M.; Banaschewski, T. Prediction Along a Developmental Perspective in Psychiatry: How Far Might We Go? Front. Syst. Neurosci. 2021, 15, 670404. [Google Scholar] [CrossRef]
- Pinto, R.Q.; Soares, I.; Carvalho-Correia, E.; Mesquita, A.R. Gene-environment interactions in psychopathology throughout early childhood: A systematic review. Psychiatr. Genet. 2015, 25, 223–233. [Google Scholar] [CrossRef]
- Rutter, M.; Azis-Clauson, C. Biology of environmental effects, In Rutter’s Child and Adolescent Psychiatry, 6th ed.; Thapar, A., Daniel, S.P., Leckman, J.F., Scott, S., Snowling, M.J., Taylor, E.A., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Giannopoulou, I.; Pagida, M.A.; Briana, D.D.; Panayotacopoulou, M.T. Perinatal hypoxia as a risk factor for psychopathology later in life: The role of dopamine and neurotrophins. Hormones 2018, 17, 25–32. [Google Scholar] [CrossRef]
- Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Monk, C.; Lugo-Candelas, C.; Trumpff, C. Prenatal Developmental Origins of Future Psychopathology: Mechanisms and Pathways. Annu. Rev. Clin. Psychol. 2019, 15, 317–344. [Google Scholar] [CrossRef]
- Hughes, K.; Bellis, M.A.; Hardcastle, K.A.; Sethi, D.; Butchart, A.; Mikton, C.; Jones, L.; Dunne, M.P. The effect of multiple adverse childhood experiences on health: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e356–e366. [Google Scholar] [CrossRef] [PubMed]
- E Hyman, S. How adversity gets under the skin. Nat. Neurosci. 2009, 12, 241–243. [Google Scholar] [CrossRef]
- Provenzi, L.; Guida, E.; Montirosso, R. Preterm behavioral epigenetics: A systematic review. Neurosci. Biobehav. Rev. 2018, 84, 262–271. [Google Scholar] [CrossRef]
- Champagne, D.L.; Bagot, R.C.; van Hasselt, F.; Ramakers, G.; Meaney, M.J.; de Kloet, E.R.; Joëls, M.; Krugers, H. Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J. Neurosci. 2008, 28, 6037–6045. [Google Scholar] [CrossRef]
- Meaney, M.J. Epigenetics and the biological definition of gene x environment interactions. Child Dev. 2010, 81, 41–79. [Google Scholar] [CrossRef]
- Stevens, H.E.; Leckman, J.F.; Coplan, J.D.; Suomi, S.J. Risk and resilience: Early manipulation of macaque social experience and persistent behavioral and neurophysiological outcomes. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 114–127. [Google Scholar] [CrossRef]
- Beach, S.R.H.; Brody, G.H.; Todorov, A.A.; Gunter, T.D.; Philibert, R.A. Methylation at 5HTT mediates the impact of child sex abuse on women’s antisocial behavior: An examination of the Iowa adoptee sample. Psychosom. Med. 2011, 73, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Maud, C.; Ryan, J.; McIntosh, J.E.; Olsson, C.A. The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: A systematic narrative review. BMC Psychiatry 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Thaler, L.; Gauvin, L.; Joober, R.; Groleau, P.; de Guzman, R.; Ambalavanan, A.; Israel, M.; Wilson, S.; Steiger, H. Methylation of BDNF in women with bulimic eating syndromes: Associations with childhood abuse and borderline personality disorder. Prog. Neuro-Psychopharmacology Biol. Psychiatry 2014, 54, 43–49. [Google Scholar] [CrossRef]
- Binder, E.B. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 2009, 34 (Suppl. S1), S186–S195. [Google Scholar] [CrossRef]
- Mansell, T.; Novakovic, B.; Meyer, B.; Rzehak, P.; Vuillermin, P.; Ponsonby, A.-L.; Collier, F.; Burgner, D.; Saffery, R.; Ryan, J.; et al. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Transl. Psychiatry 2016, 6, e765. [Google Scholar] [CrossRef]
- Pardo, M.; Cheng, Y.; Sitbon, Y.; Lowell, J.; Grieco, S.; Worthen, R.; Desse, S.; Barreda-Diaz, A. Insulin growth factor 2 (IGF2) as an emergent target in psychiatric and neurological disorders. Review. Neurosci. Res. 2019, 149, 1–13. [Google Scholar] [CrossRef]
- Shamay-Tsoory, S.; Young, L.J. Understanding the oxytocin system and its relevance to psychiatry. Biol. Psychiatry 2016, 79, 150–152. [Google Scholar] [CrossRef]
- Unternaehrer, E.; Bolten, M.; Nast, I.; Staehli, S.; Meyer, A.H.; Dempster, E.; Hellhammer, D.H.; Lieb, R.; Meinlschmidt, G. Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation. Soc. Cogn. Affect. Neurosci. 2016, 11, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Zheleznyakova, G.Y.; Cao, H.; Schiöth, H.B. BDNF DNA methylation changes as a biomarker of psychiatric disorders: Literature review and open access database analysis. Behav. Brain Funct. 2016, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, M.; Gudsnuk, K.; Herbstman, J.B.; Tang, D.; Perera, F.P.; Champagne, F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc. Natl. Acad. Sci. USA 2015, 112, 6807–6813. [Google Scholar] [CrossRef] [PubMed]
- Nazzari, S.; Grumi, S.; Villa, M.; Mambretti, F.; Biasucci, G.; Decembrino, L.; Giacchero, R.; Magnani, M.L.; Nacinovich, R.; Prefumo, F.; et al. Sex-dependent association between variability in infants’ OXTR methylation at birth and negative affectivity at 3 months. Psychoneuroendocrinology 2022, 145, 105920. [Google Scholar] [CrossRef] [PubMed]
- Nazzari, S.; Grumi, S.; Mambretti, F.; Villa, M.; Giorda, R.; Bordoni, M.; Pansarasa, O.; Borgatti, R.; Provenzi, L. Sex-dimorphic pathways in the associations between maternal trait anxiety, infant BDNF methylation, and negative emotionality. Dev. Psychopathol. 2024, 36, 908–918. [Google Scholar] [CrossRef]
- Kumsta, R.; Heinrichs, M. Oxytocin, stress and social behavior: Neurogenetics of the human oxytocin system. Curr. Opin. Neurobiol. 2013, 23, 11–16. [Google Scholar] [CrossRef]
- Gouin, J.P.; Zhou, Q.Q.; Booij, L.; Boivin, M.; Côté, S.M.; Hébert, M.; Ouellet-Morin, I.; Szyf, M.; Tremblay, R.E.; Turecki, G.; et al. Associations among oxytocin receptor gene (OXTR) DNA methylation in adulthood, exposure to early life adversity, and childhood trajectories of anxiousness. Sci. Rep. 2017, 7, 7446. [Google Scholar] [CrossRef]
- Ziegler, C.; Dannlowski, U.; Bräuer, D.; Stevens, S.; Laeger, I.; Wittmann, H.; Kugel, H.; Dobel, C.; Hurlemann, R.; Reif, A.; et al. Oxytocin receptor gene methylation: Converging multilevel evidence for a role in social anxiety. Neuropsychopharmacology 2015, 40, 1528–1538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, C.I.; Kim, H.W.; Jeon, S.; Kang, J.I.; Kim, S.J. Reduced DNA methylation of the oxytocin receptor gene is associated with obsessive-compulsive disorder. Clin. Epigenetics 2020, 12, 101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lighten, A.D.; Hardy, K.; Winston, R.M.; Moore, G.E. IGF2 is parentally imprinted in human preimplantation embryos. Nat. Genet. 1997, 15, 122–123. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.K.; Erginer, E.; Huang, Z.; Visco, Z.; Hoyo, C. Genotype-Epigenotype Interaction at the IGF2 DMR. Genes 2015, 6, 777–789. [Google Scholar] [CrossRef]
- Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; et al. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci. 2013, 16, 33–41. [Google Scholar] [CrossRef]
- Paquette, A.G.; Lester, B.M.; Koestler, D.C.; Lesseur, C.; Armstrong, D.A.; Marsit, C.J. Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS cohort. PLoS ONE 2014, 9, e104913. [Google Scholar] [CrossRef] [PubMed]
- Bellina, M.; Brambilla, P.; Garzitto, M.; Negri, G.A.L.; Molteni, M.; Nobile, M. The ability of CBCL DSM-oriented scales to predict DSM-IV diagnoses in a referred sample of children and adolescents. Eur. Child Adolesc. Psychiatry 2013, 22, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Bellina, M.; Grazioli, S.; Garzitto, M.; Mauri, M.; Rosi, E.; Molteni, M.; Brambilla, P.; Nobile, M. Relationship between parenting measures and parents and child psychopathological symptoms: A cross-sectional study. BMC Psychiatry 2020, 20, 377. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bianchi, V.; Brambilla, P.; Garzitto, M.; Colombo, P.; Fornasari, L.; Bellina, M.; Bonivento, C.; Tesei, A.; Piccin, S.; Conte, S.; et al. Latent classes of emotional and behavioural problems in epidemiological and referred samples and their relations to DSM-IV diagnoses. Eur. Child Adolesc. Psychiatry 2017, 26, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Maggioni, E.; Pigoni, A.; Fontana, E.; Delvecchio, G.; Bonivento, C.; Bianchi, V.; Mauri, M.; Bellina, M.; Girometti, R.; Agarwal, N.; et al. Right frontal cingulate cortex mediates the effect of prenatal complications on youth internalizing behaviors. Mol. Psychiatry 2024, 29, 2074–2083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nobile, M.; Maggioni, E.; Mauri, M.; Garzitto, M.; Piccin, S.; Bonivento, C.; Giorda, R.; Girometti, R.; Tomasino, B.; Molteni, M.; et al. Brain Anatomical Mediators of GRIN2B Gene Association with Attention/Hyperactivity Problems: An Integrated Genetic-Neuroimaging Study. Genes 2021, 12, 1193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goodman, R.; Ford, T.; Richards, H.; Gatward, R.; Meltzer, H. The development and well-being assessment: Description and initial validation of an integrated assessment of child and adolescent psychopathology. J. Child Psychol. Psychiatry 2000, 41, 645–655. [Google Scholar] [CrossRef]
- Smith, T.F.; Waterman, M.S. Identification of Common Molecular Subsequences. J. Mol. Biol. 1981, 147, 195–197. [Google Scholar] [CrossRef]
- Van der Loo, M.; De Jonge, E. Statistical Data Cleaning with Applications in R; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Harrell, F., Jr. Hmisc: Harrell Miscellaneous. R package Version 5.1-2. 2024. Available online: https://hbiostat.org/R/Hmisc/ (accessed on 5 August 2022).
- Scrucca, L.; Fraley, C.; Murphy, T.B.; Raftery, A.E. Model-Based Clustering, Classification, and Density Estimation Using Mclust in R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2023; ISBN 978-1032234953. Available online: https://mclust-org.github.io/book/ (accessed on 5 August 2022).
- Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R J. 2016, 8, 289–317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bianchi, V.; Rescorla, L.; Rosi, E.; Grazioli, S.; Mauri, M.; Frigerio, A.; Achenbach, T.M.; Ivanova, M.Y.; Csemy, L.; Decoster, J.; et al. Emotional Dysregulation in Adults from 10 World Societies: An Epidemiological Latent Class Analysis of the Adult-Self-Report. Int. J. Clin. Heal Psychol. 2022, 22, 100301. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef]
- Nobile, M.; Giorda, R.; Marino, C.; Carlet, O.; Pastore, V.; Vanzin, L.; Bellina, M.; Molteni, M.; Battaglia, M. Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Dev. Psychopathol. 2007, 19, 1147–1160. [Google Scholar] [CrossRef]
- Dick, D.M. Gene-environment interaction in psychological traits and disorders. Annu. Rev. Clin. Psychol. 2011, 7, 383–409. [Google Scholar] [CrossRef] [PubMed]
- Mansur, R.B.; Cunha, G.R.; Asevedo, E.; Zugman, A.; Rios, A.C.; Salum, G.A.; Pan, P.M.; Gadelha, A.; Levandowski, M.L.; Belangero, S.I.; et al. Perinatal complications, lipid peroxidation, and mental health problems in a large community pediatric sample. Eur. Child Adolesc. Psychiatry 2017, 26, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.B.; Szyszkowicz, J.K.; Luheshi, G.N.; Lutz, P.-E.; Turecki, G. Plasticity of the epigenome during early-life stress. Semin. Cell Dev. Biol. 2018, 77, 115–132. [Google Scholar] [CrossRef]
- Perroud, N.; Salzmann, A.; Prada, P.; Nicastro, R.; Hoeppli, M.-E.; Furrer, S.; Ardu, S.; Krejci, I.; Karege, F.; Malafosse, A. Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene. Transl. Psychiatry 2013, 3, e207. [Google Scholar] [CrossRef] [PubMed]
- Boulle, F.; van den Hove, D.L.A.; Jakob, S.B.; Rutten, B.P.; Hamon, M.; van Os, J.; Lesch, K.-P.; Lanfumey, L.; Steinbusch, H.W.; Kenis, G. Epigenetic regulation of the BDNF gene: Implications for psychiatric disorders. Mol. Psychiatry 2012, 17, 584–596. [Google Scholar] [CrossRef]
- Bouwland-Both, M.I.; van Mil, N.H.; Stolk, L.; Eilers, P.H.C.; Verbiest, M.M.P.J.; Heijmans, B.T.; Tiemeier, H.; Hofman, A.; Steegers, E.A.P.; Jaddoe, V.W.V.; et al. DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth: The generation R study. PLoS ONE 2013, 8, e81731. [Google Scholar] [CrossRef]
- Rijlaarsdam, J.; Cecil, C.A.M.; Walton, E.; Mesirow, M.S.C.; Relton, C.L.; Gaunt, T.R.; McArdle, W.; Barker, E.D. Prenatal unhealthy diet, insulin-like growth factor 2 gene (IGF2) methylation, and attention deficit hyperactivity disorder symptoms in youth with early-onset conduct problems. J. Child Psychol. Psychiatry 2017, 58, 19–27. [Google Scholar] [CrossRef]
- Vangeel, E.B.; Izzi, B.; Hompes, T.; Vansteelandt, K.; Lambrechts, D.; Freson, K.; Claes, S. DNA methylation in imprinted genes IGF2 and GNASXL is associated with prenatal maternal stress. Genes Brain Behav. 2015, 14, 573–582. [Google Scholar] [CrossRef]
- Dadds, M.R.; Moul, C.; Cauchi, A.; Dobson-Stone, C.; Hawes, D.J.; Brennan, J.; Ebstein, R.E. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev. Psychopathol. 2014, 26, 33–40. [Google Scholar] [CrossRef]
- Behnia, F.; Parets, S.E.; Kechichian, T.; Yin, H.; Dutta, E.H.; Saade, G.R.; Smith, A.K.; Menon, R. Fetal DNA methylation of autism spectrum disorders candidate genes: Association with spontaneous preterm birth. Am. J. Obstet. Gynecol. 2015, 212, 533.e1–533.e9. [Google Scholar] [CrossRef]
- Kumsta, R.; Hummel, E.; Chen, F.S.; Heinrichs, M. Epigenetic regulation of the oxytocin receptor gene: Implications for behavioral neuroscience. Front. Neurosci. 2013, 7, 83. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liang, Y.; Jiang, X.; Xu, J.; Sun, Y.; Wang, Z.; Lin, L.; Niu, Y.; Song, S.; Zhang, H.; et al. Maternal Diabetes-Induced Suppression of Oxytocin Receptor Contributes to Social Deficits in Offspring. Front Neurosci. 2021, 15, 634781. [Google Scholar] [CrossRef]
- Simons, R.L.; Lei, M.K.; Beach, S.R.H.; Cutrona, C.E.; Philibert, R.A. Methylation of the oxytocin receptor gene mediates the effect of adversity on negative schemas and depression. Dev. Psychopathol. 2017, 29, 725–736. [Google Scholar] [CrossRef]
- Reiner, I.; Van Ijzendoorn, M.; Bakermans-Kranenburg, M.; Bleich, S.; Beutel, M.; Frieling, H. Methylation of the oxytocin receptor gene in clinically depressed patients compared to controls: The role of OXTR rs53576 genotype. J. Psychiatr. Res. 2015, 65, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Alisch, R.S.; Van Hulle, C.; Chopra, P.; Bhattacharyya, A.; Zhang, S.-C.; Davidson, R.J.; Kalin, N.H.; Goldsmith, H.H. A multi-dimensional characterization of anxiety in monozygotic twin pairs reveals susceptibility loci in humans. Transl. Psychiatry 2017, 7, 1282. [Google Scholar] [CrossRef]
- Goodman, S.J.; Roubinov, D.S.; Bush, N.R.; Park, M.; Farré, P.; Emberly, E.; Hertzman, C.; Essex, M.J.; Kobor, M.S.; Boyce, W.T. Children’s biobehavioral reactivity to challenge predicts DNA methylation in adolescence and emerging adulthood. Dev. Sci. 2019, 22, e12739. [Google Scholar] [CrossRef]
- Thomas, M.; Knoblich, N.; Wallisch, A.; Glowacz, K.; Becker-Sadzio, J.; Gundel, F.; Brückmann, C.; Nieratschker, V. Increased BDNF methylation in saliva, but not blood, of patients with borderline personality disorder. Clin. Epigenetics 2018, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Langie, S.A.S.; Moisse, M.; Declerck, K.; Koppen, G.; Godderis, L.; Vanden Berghe, W.; Drury, S.; De Boever, P. Salivary DNA Methylation Profiling: Aspects to Consider for Biomarker Identification. Basic Clin. Pharmacol. Toxicol. 2017, 121, 93–101. [Google Scholar] [CrossRef]
- Nishitani, S.; Parets, S.E.; Haas, B.W.; Smith, A.K. DNA methylation analysis from saliva samples for epidemiological studies. Epigenetics 2018, 13, 352–362. [Google Scholar] [CrossRef]
- Hirschhorn, J.N.; Lohmueller, K.; Byrne, E.; Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 2002, 4, 45–61. [Google Scholar] [CrossRef] [PubMed]
Cluster LOW | Cluster HIGH | Statistical Value | p | |
---|---|---|---|---|
N (%) | 102 (51%) | 98 (49%) | - | - |
Age (Mean ± SD) | 14.5 ± 2.02 | 14.4 ± 2.31 | −0.59 a | 0.554 |
Sex (Male/Female) | 76:26 | 77:21 | 0.45 b | 0.498 |
SES (Mean ± SD) | 50.8 ± 20.3 | 47.0 ± 18.3 | −1.37 a | 0.172 |
Clinical variables (Mean ± SD) | ||||
Internalizing | 51.0 ± 6.91 | 63.7 ± 5.97 | 13.97 a | <0.001 |
Externalizing | 47.1 ± 6.51 | 58.9 ± 7.10 | 12.24 a | <0.001 |
Environmental risk | ||||
SLEs | Present: 37% | Present: 48% | 1.93 b | 0.165 |
Perinatal risk factors | Present: 46% | Present: 66% | 7.51 b | 0.006 |
Methylation level (%) (Mean ± SD) | ||||
BDNF CpG1 | 1.71 ± 0.51 | 1.65 ± 0.44 | −0.81 a | 0.420 |
BDNF CpG2 | 0.40 ± 0.32 | 0.41 ± 0.18 | 0.14 a | 0.889 |
BDNF CpG3 | 0.40 ± 0.20 | 0.42 ± 0.17 | −0.76 a | 0.449 |
BDNF CpG4 | 0.33 ± 0.14 | 0.28 ± 0.17 | 2.19 a | 0.030 |
BDNF CpG5 | 0.54 ± 0.25 | 0.46 ± 0.16 | −2.90 a | 0.004 |
BDNF CpG6 | 0.47 ± 0.17 | 0.46 ± 0.21 | −0.35 a | 0.727 |
BDNF CpG7 | 0.53 ± 0.41 | 0.46 ± 0.18 | −1.52 a | 0.131 |
BDNF CpG8 | 0.79 ± 0.36 | 0.77 ± 0.25 | −0.47 a | 0.640 |
BDNF CpG9 | 0.63 ± 0.27 | 0.65 ± 0.27 | 0.59 a | 0.560 |
BDNF CpG10 | 0.83 ± 0.29 | 0.83 ± 0.29 | −0.07 a | 0.944 |
BDNF CpG11 | 0.59 ± 0.19 | 0.51 ± 0.15 | −0.45 a | 0.660 |
FKBP5 CpG1 | 72.38 ± 4.66 | 72.32 ± 5.59 | −0.08 a | 0.935 |
FKBP5 CpG2 | 92.87 ± 3.81 | 92.76 ± 3.95 | −0.20 a | 0.844 |
FKBP5 CpG3 | 90.22 ± 4.59 | 89.89 ± 5.03 | −0.51 a | 0.614 |
IGF2 CpG1 | 49.58 ± 5.73 | 48.95 ± 5.04 | −0.83 a | 0.409 |
IGF2 CpG2 | 39.05 ± 3.86 | 37.65 ± 5.29 | −2.14 a | 0.034 |
IGF2 CpG3 | 40.42 ± 4.60 | 39.47 ± 4.67 | −1.44 a | 0.152 |
IGF2 CpG4 | 34.61 ± 4.92 | 33.48 ± 5.16 | −1.58 a | 0.115 |
IGF2 CpG5 | 0.08 ± 0.05 | 0.08 ± 0.05 | 0.20 a | 0.840 |
OXTR_E3 CpG1 | 7.94 ± 3.38 | 7.93 ± 3.10 | −0.03 a | 0.980 |
OXTR_E3 CpG2 | 6.56 ± 3.01 | 6.44 ± 2.87 | −0.31 a | 0.759 |
OXTR_E3 CpG3 | 4.65 ± 2.59 | 4.70 ± 2.14 | 0.15 a | 0.884 |
OXTR_E3 CpG4 | 4.48 ± 2.83 | 4.56 ± 2.42 | 0.22 a | 0.826 |
OXTR_E3 CpG5 | 2.01 ± 1.42 | 1.98 ± 1.19 | −0.20 a | 0.840 |
OXTR_E3 CpG6 | 8.30 ± 3.72 | 8.49 ± 3.98 | 0.33 a | 0.747 |
OXTR_E3 CpG7 | 5.86 ± 3.12 | 5.93 ± 2.96 | 0.16 a | 0.872 |
OXTR_E3 CpG8 | 2.95 ± 1.93 | 3.12 ± 1.89 | 0.62 a | 0.535 |
OXTR_E3 CpG9 | 5.24 ± 3.02 | 5.40 ± 2.85 | 0.40 a | 0.690 |
OXTR_E3 CpG10 | 5.80 ± 3.16 | 5.81 ± 2.92 | 0.02 a | 0.981 |
OXTR_E3 CpG11 | 5.67 ± 3.51 | 5.84 ± 3.34 | 0.36 a | 0.718 |
OXTR_E3 CpG12 | 3.04 ± 2.24 | 3.09 ± 2.01 | 0.15 a | 0.877 |
OXTR_E3 CpG13 | 4.82 ± 3.43 | 5.10 ± 3.15 | 0.58 a | 0.558 |
OXTR_E3 CpG14 | 3.02 ± 2.09 | 2.93 ± 1.98 | −0.30 a | 0.764 |
OXTR_E3 CpG15 | 4.26 ± 2.51 | 3.40 ± 2.33 | −0.77 a | 0.440 |
OXTR_I1 CpG1 | 1.76 ± 0.73 | 1.69 ± 0.81 | −0.69 a | 0.492 |
OXTR_I1 CpG2 | 2.76 ± 0.94 | 2.73 ± 1.10 | −0.23 a | 0.822 |
OXTR_I1 CpG3 | 7.36 ± 2.04 | 7.15 ± 2.09 | −0.71 a | 0.476 |
OXTR_I1 CpG4 | 2.92 ± 1.71 | 2.75 ± 1.06 | −0.81 a | 0.417 |
OXTR_I1 CpG5 | 36.33 ± 4.87 | 35.89 ± 4.97 | −0.64 a | 0.522 |
OXTR_I1 CpG6 | 38.70 ± 5.60 | 38.29 ± 5.58 | −0.53 a | 0.597 |
OXTR_I1 CpG7 | 62.71 ± 4.91 | 61.45 ± 5.17 | −1.77 a | 0.078 |
OXTR_I1 CpG8 | 43.77 ± 4.57 | 43.25 ± 5.24 | −0.76 a | 0.446 |
OXTR_I1 CpG9 | 23.43 ± 5.00 | 23.32 ± 4.79 | −0.16 a | 0.868 |
OXTR_I1 CpG10 | 8.55 ± 2.58 | 7.97 ± 2.25 | −1.68 a | 0.093 |
OXTR_I1 CpG11 | 10.92 ± 2.99 | 10.44 ± 3.00 | −1.14 a | 0.257 |
OXTR_I1 CpG12 | 12.37 ± 3.97 | 11.77 ± 3.15 | −1.17 a | 0.243 |
OXTR_I1 CpG13 | 13.40 ± 3.45 | 13.03 ± 3.26 | −0.79 a | 0.430 |
OXTR_PR CpG1 | 91.63 ± 2.29 | 91.05 ± 2.20 | −1.80 a | 0.072 |
OXTR_PR CpG2 | 78.71 ± 4.09 | 78.39 ± 4.68 | −0.50 a | 0.615 |
OXTR_PR CpG3 | 79.64 ± 4.13 | 78.87 ± 3.94 | −1.36 a | 0.175 |
OXTR_PR CpG4 | 64.66 ± 5.94 | 63.93 ± 4.64 | −0.97 a | 0.335 |
OXTR_PR CpG5 | 85.13 ± 2.81 | 84.34 ± 2.65 | −2.01 a | 0.044 |
OXTR_PR CpG6 | 47.53 ± 5.07 | 46.42 ± 4.96 | −1.57 a | 0.118 |
OXTR_PR CpG7 | 71.09 ± 4.92 | 70.19 ± 3.78 | −1.46 a | 0.147 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauri, M.; Grazioli, S.; Bonivento, C.; Crippa, A.; Giorda, R.; Maggioni, E.; Mambretti, F.; Rosi, E.; Squarcina, L.; Tizzoni, F.; et al. Internalizing and Externalizing Traits During Adolescence: Using Epigenetics and Perinatal Risks to Differentiate Clusters of Symptoms. Biomolecules 2025, 15, 1142. https://doi.org/10.3390/biom15081142
Mauri M, Grazioli S, Bonivento C, Crippa A, Giorda R, Maggioni E, Mambretti F, Rosi E, Squarcina L, Tizzoni F, et al. Internalizing and Externalizing Traits During Adolescence: Using Epigenetics and Perinatal Risks to Differentiate Clusters of Symptoms. Biomolecules. 2025; 15(8):1142. https://doi.org/10.3390/biom15081142
Chicago/Turabian StyleMauri, Maddalena, Silvia Grazioli, Carolina Bonivento, Alessandro Crippa, Roberto Giorda, Eleonora Maggioni, Fabiana Mambretti, Eleonora Rosi, Letizia Squarcina, Federica Tizzoni, and et al. 2025. "Internalizing and Externalizing Traits During Adolescence: Using Epigenetics and Perinatal Risks to Differentiate Clusters of Symptoms" Biomolecules 15, no. 8: 1142. https://doi.org/10.3390/biom15081142
APA StyleMauri, M., Grazioli, S., Bonivento, C., Crippa, A., Giorda, R., Maggioni, E., Mambretti, F., Rosi, E., Squarcina, L., Tizzoni, F., Brambilla, P., & Nobile, M. (2025). Internalizing and Externalizing Traits During Adolescence: Using Epigenetics and Perinatal Risks to Differentiate Clusters of Symptoms. Biomolecules, 15(8), 1142. https://doi.org/10.3390/biom15081142