Association of 17q12-q21 Asthma Risk Locus with Clinical Severity of Infant Respiratory Syncytial Virus Infection
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Population
2.3. Acute Respiratory Illness Visits and Nasal Wash Sample Collection (INSPIRE)
2.4. Acute Respiratory Infection Severity (INSPIRE)
2.5. Respiratory Viral Detection and Viral Load (INSPIRE)
2.6. Genotyping (INSPIRE and TCRI)
2.7. Statistical Analysis
2.8. Integrating Previously Published Single-Cell and Bulk Gene Expression Data for Significant Genes
3. Results
3.1. Demographics of the Study Population
3.2. Association of 17q12-q21 Locus SNPs and Infant RSV Infection Severity
3.3. Association of 17q12–21 Locus SNPs and RSV Viral Load
3.4. Replication of Results in the TCRI Cohort
3.5. LungMAP Single-Cell Data and Differential Gene Expression Data of PGAP3 and GSMDA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jartti, T.; Gern, J.E. Role of viral infections in the development and exacerbation of asthma in children. J. Allergy Clin. Immunol. 2017, 140, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Wittig, H.J.; Glaser, J. The relationship between bronchiolitis and childhood asthma; a follow-up study of 100 cases of bronchiolitis. J. Allergy 1959, 30, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Zar, H.J.; Cacho, F.; Kootbodien, T.; Mejias, A.; Ortiz, J.R.; Stein, R.T.; Hartert, T.V. Early-life respiratory syncytial virus disease and long-term respiratory health. Lancet Respir. Med. 2024, 12, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.N.; Wu, P.; Gebretsadik, T.; Griffin, M.R.; Dupont, W.D.; Mitchel, E.F.; Hartert, T.V. The severity-dependent relationship of infant bronchiolitis on the risk and morbidity of early childhood asthma. J. Allergy Clin. Immunol. 2009, 123, 1055–1061.e1. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, A.J.; Arshad, S.H.; Bont, L.; Brunwasser, S.M.; Cherian, T.; Englund, J.A.; Fell, D.B.; Hammitt, L.L.; Hartert, T.V.; Innis, B.L.; et al. Does respiratory syncytial virus lower respiratory illness in early life cause recurrent wheeze of early childhood and asthma? Critical review of the evidence and guidance for future studies from a World Health Organization-sponsored meeting. Vaccine 2020, 38, 2435–2448. [Google Scholar] [CrossRef] [PubMed]
- Brunwasser, S.M.; Snyder, B.M.; Driscoll, A.J.; Fell, D.B.; Savitz, D.A.; Feikin, D.R.; Skidmore, B.; Bhat, N.; Bont, L.J.; Dupont, W.D.; et al. Assessing the strength of evidence for a causal effect of respiratory syncytial virus lower respiratory tract infections on subsequent wheezing illness: A systematic review and meta-analysis. Lancet Respir. Med. 2020, 8, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Hartert, T.V. Evidence for a causal relationship between respiratory syncytial virus infection and asthma. Expert Rev. Anti-Infect. Ther. 2011, 9, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.M.; Thompson, E.E.; Schoettler, N.; Helling, B.A.; Magnaye, K.M.; Stanhope, C.; Igartua, C.; Morin, A.; Washington, C.; Nicolae, D.; et al. A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. J. Allergy Clin. Immun. 2018, 142, 749–764.e3. [Google Scholar] [CrossRef] [PubMed]
- Torgerson, D.G.; Ampleford, E.J.; Chiu, G.Y.; Gauderman, W.J.; Gignoux, C.R.; Graves, P.E.; Himes, B.E.; Levin, A.M.; Mathias, R.A.; Hancock, D.B.; et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 2011, 43, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Brehm, J.; Pino-Yanes, M.; Forno, E.; Lin, J.; Oh, S.S.; Acosta-Perez, E.; Laurie, C.C.; Cloutier, M.M.; Raby, B.A.; et al. A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. Eur. Respir. J. 2017, 49, 1601505. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.O.C.M.; et al. A Large-Scale, Consortium-Based Genomewide Association Study of Asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Nicolae, D.L.; Gamazon, E.; Zhang, W.; Duan, S.; Dolan, M.E.; Cox, N.J. Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS. PLoS Genet. 2010, 6, e1000888. [Google Scholar] [CrossRef] [PubMed]
- Jakwerth, C.A.; Weckmann, M.; Illi, S.; Charles, H.; Zissler, U.M.; Oelsner, M.; Guerth, F.; Omony, J.; Nemani, S.S.P.; Grychtol, R.; et al. 17q21 Variants Disturb Mucosal Host Defense in Childhood Asthma. Am. J. Respir. Crit. Care Med. 2024, 209, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Hao, Y.; Zhang, L.; Croteau-Chonka, D.C.; Thibault, D.; Kothari, P.; Li, L.; Levy, B.D.; Zhou, X.; Raby, B.A. Asthma Susceptibility Gene ORMDL3 Promotes Autophagy in Human Bronchial Epithelium. Am. J. Respir. Cell Mol. Biol. 2022, 66, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Çalışkan, M.; Bochkov, Y.A.; Kreiner-Møller, E.; Bønnelykke, K.; Stein, M.M.; Du, G.; Bisgaard, H.; Jackson, D.J.; Gern, J.E.; Lemanske, R.F.; et al. Rhinovirus Wheezing Illness and Genetic Risk of Childhood-Onset Asthma. N. Engl. J. Med. 2013, 368, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Song, J.Y.; Shin, J.; Choi, S.H.; Han, M.Y.; Lee, K.S. The Association Between Respiratory Viruses and Asthma Exacerbation in Children Visiting Pediatric Emergency Department: A Retrospective Cohort Study. J. Clin. Med. 2025, 14, 1311. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Uribe, V.; Hernandez-Zarate, L.; Gomez-Nuñez, A.; Mojica-Gonzalez, Z.; Berber, A.; Navarro, B.D.R. The post-pandemic has modified viral infections that lead to asthma exacerbations in children. Ann. Allergy Asthma Immunol. 2024, 133, S39. [Google Scholar] [CrossRef]
- Gereige, J.D.; Morin, A.; Calatroni, A.; Visness, C.M.; Wood, R.A.; Kattan, M.; Bacharier, L.B.; Becker, P.; Altman, M.C.; Gern, J.E.; et al. 17q12-q21 variants interact with early-life exposures to modify asthma risk in Black children. Clin. Exp. Allergy 2022, 52, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, S.; Rui, X.; Cao, Y.; Hecker, J.; Guo, F.; Zhang, Y.; Gong, L.; Zhou, Y.; Yu, Y.; et al. Gasdermin B, an asthma-susceptibility gene, promotes MAVS-TBK1 signalling and airway inflammation. Eur. Respir. J. 2024, 63, 2301232. [Google Scholar] [CrossRef] [PubMed]
- Verlaan, D.J.; Berlivet, S.; Hunninghake, G.M.; Madore, A.M.; Lariviere, M.; Moussette, S.; Grundberg, E.; Kwan, T.; Ouimet, M.; Ge, B.; et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am. J. Hum. Genet. 2009, 85, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Schmiedel, B.J.; Seumois, G.; Samaniego-Castruita, D.; Cayford, J.; Schulten, V.; Chavez, L.; Ay, F.; Sette, A.; Peters, B.; Vijayanand, P. 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells. Nat. Commun. 2016, 7, 13426. [Google Scholar] [CrossRef] [PubMed]
- Larkin, E.K.; Gebretsadik, T.; Moore, M.L.; Anderson, L.J.; Dupont, W.D.; Chappell, J.D.; Minton, P.A.; Peebles, R.S., Jr.; Moore, P.E.; Valet, R.S.; et al. Objectives, design and enrollment results from the Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure Study (INSPIRE). BMC Pulm. Med. 2015, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Iwane, M.K.; Chaves, S.S.; Szilagyi, P.G.; Edwards, K.M.; Hall, C.B.; Staat, M.A.; Brown, C.J.; Griffin, M.R.; Weinberg, G.A.; Poehling, K.A.; et al. Disparities between black and white children in hospitalizations associated with acute respiratory illness and laboratory-confirmed influenza and respiratory syncytial virus in 3 US counties—2002–2009. Am. J. Epidemiol. 2013, 177, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Honcoop, A.C.; Poitevien, P.; Kerns, E.; Alverson, B.; McCulloh, R.J. Racial and ethnic disparities in bronchiolitis management in freestanding children’s hospitals. Acad. Emerg. Med. 2021, 28, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.A.K.; Mitra, A.K.; Malone, S. Racial Disparities and Common Respiratory Infectious Diseases in Children of the United States: A Systematic Review and Meta-Analysis. Diseases 2023, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.C.; Chandran, A.; Havstad, S.; Li, X.; McEvoy, C.T.; Ownby, D.R.; Litonjua, A.A.; Karagas, M.R.; Camargo, C.A., Jr.; Gern, J.E.; et al. US Childhood Asthma Incidence Rate Patterns From the ECHO Consortium to Identify High-risk Groups for Primary Prevention. JAMA Pediatr. 2021, 175, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Hartert, T.V.; Carroll, K.; Gebretsadik, T.; Woodward, K.; Minton, P.; the Vanderbilt Center for Asthma and Environmental Health Research Investigators and Collaborators. The Tennessee Children’s Respiratory Initiative: Objectives, design and recruitment results of a prospective cohort study investigating infant viral respiratory illness and the development of asthma and allergic diseases. Respirology 2010, 15, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Feldman, A.S.; Hartert, T.V.; Gebretsadik, T.; Carroll, K.N.; Minton, P.A.; Woodward, K.B.; Larkin, E.K.; Miller, E.K.; Valet, R.S. Respiratory Severity Score Separates Upper Versus Lower Respiratory Tract Infections and Predicts Measures of Disease Severity. Pediatr. Allergy Immunol. Pulmonol. 2015, 28, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Turi, K.N.; Shankar, J.; Anderson, L.J.; Rajan, D.; Gaston, K.; Gebretsadik, T.; Das, S.R.; Stone, C.; Larkin, E.K.; Rosas-Salazar, C.; et al. Infant Viral Respiratory Infection Nasal Immune-Response Patterns and Their Association with Subsequent Childhood Recurrent Wheeze. Am. J. Respir. Crit. Care Med. 2018, 198, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Ober, C.; McKennan, C.G.; Magnaye, K.M.; Altman, M.C.; Washington, C.; Stanhope, C.; Naughton, K.A.; Rosasco, M.G.; Bacharier, L.B.; Billheimer, D.; et al. Expression quantitative trait locus fine mapping of the 17q12-21 asthma locus in African American children: A genetic association and gene expression study. Lancet Resp. Med. 2020, 8, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Kitzmiller, J.A.; Sridharan, A.; Perl, A.K.; Bridges, J.P.; Misra, R.S.; Pryhuber, G.S.; Mariani, T.J.; Bhattacharya, S.; Guo, M.; et al. Lung Gene Expression Analysis (LGEA): An integrative web portal for comprehensive gene expression data analysis in lung development. Thorax 2017, 72, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Ardini-Poleske, M.E.; Clark, R.F.; Ansong, C.; Carson, J.P.; Corley, R.A.; Deutsch, G.H.; Hagood, J.S.; Kaminski, N.; Mariani, T.J.; Potter, S.S.; et al. LungMAP: The Molecular Atlas of Lung Development Program. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2017, 313, L733–L740. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, P.J.; Pujato, M.; Roskin, K.M.; Weirauch, M.T. VExD: A curated resource for human gene expression alterations following viral infection. G3 (Bethesda) 2023, 13, jkad176. [Google Scholar] [CrossRef] [PubMed]
- Anantharaman, R.; Andiappan, A.K.; Nilkanth, P.P.; Suri, B.K.; Wang, D.Y.; Chew, F.T. Genome-wide association study identifies PERLD1 as asthma candidate gene. BMC Med. Genet. 2011, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- Sio, Y.Y.; Anantharaman, R.; Lee, S.Q.E.; Matta, S.A.; Ng, Y.T.; Chew, F.T. The Asthma-associated PER1-like domain-containing protein 1 (PERLD1) Haplotype Influences Soluble Glycosylphosphatidylinositol Anchor Protein (sGPI-AP) Levels in Serum and Immune Cell Proliferation. Sci. Rep. 2020, 10, 715. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Umemura, M.; Yoko-o, T.; Jigami, Y. PER1 is required for GPI-phospholipase A(2) activity and involved in lipid remodeling of GPI-anchored proteins. Mol. Biol. Cell 2006, 17, 5253–5264. [Google Scholar] [CrossRef] [PubMed]
- Deckert, M.; Ticchioni, M.; Mari, B.; Mary, D.; Bernard, A. The Glycosylphosphatidylinositol-Anchored Cd59 Protein Stimulates Both T-Cell Receptor Zeta/Zap-70-Dependent and Zeta/Zap-70-Independent Signaling Pathways in T-Cells. Eur. J. Immunol. 1995, 25, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Antal-Szalmas, P. Evaluation of CD14 in host defence. Eur. J. Clin. Investig. 2000, 30, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Morita, S.; Sato, A.; Hayakawa, H.; Ihara, H.; Urano, T.; Takada, Y.; Takada, A. Cancer cells overexpress mRNA of urokinase-type plasminogen activator, its receptor and inhibitors in human non-small-cell lung cancer tissue: Analysis by Northern blotting and in situ hybridization. Int. J. Cancer 1998, 78, 286–292. [Google Scholar] [CrossRef]
- Schutt, C. Cd14. Int. J. Biochem. Cell Biol. 1999, 31, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Watanabe, T.; Sakurai, S.; Ohtake, K.; Kinoshita, T.; Araki, A.; Fujita, T.; Takei, H.; Takeda, Y.; Sato, Y.; et al. A novel glycosylphosphatidyl inositol-anchored protein on human leukocytes: A possible role for regulation of neutrophil adherence and migration. J. Immunol. 1999, 162, 4277–4284. [Google Scholar] [CrossRef] [PubMed]
- Loertscher, R.; Lavery, P. The role of glycosyl phosphatidyl inositol (GPI)-anchored cell surface proteins in T-cell activation. Transpl. Immunol. 2002, 9, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.; Miller, M.; Lafuze, A.; Svyatskaya, S.; Choi, G.S.; Kennedy, J.L.; Huang, Y.A.; Doherty, T.A.; Broide, D.H. PGAP3 is expressed at increased levels in asthmatic ASM and is associated with increased ASM proliferation, contractility, and expression of GATA3 and ALOX5. PLoS ONE 2025, 20, e0320427. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.; Nawadkar, R.; Ojha, H.; Kumar, J.; Sahu, A. Complement Evasion Strategies of Viruses: An Overview. Front. Microbiol. 2017, 8, 1117. [Google Scholar] [CrossRef] [PubMed]
- Favoreel, H.W.; Van de Walle, G.R.; Nauwynck, H.J.; Pensaert, M.B. Virus complement evasion strategies. J. Gen. Virol. 2003, 84, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Breun, S.; Salmons, B.; Gunzburg, W.H.; Baumann, J.G. Protection of MLV vector particles from human complement. Biochem. Biophys. Res. Commun. 1999, 264, 1–5. [Google Scholar] [CrossRef] [PubMed]
- El Saleeby, C.M.; Bush, A.J.; Harrison, L.M.; Aitken, J.A.; DeVincenzo, J.P. Respiratory Syncytial Virus Load, Viral Dynamics, and Disease Severity in Previously Healthy Naturally Infected Children. J. Infect. Dis. 2011, 204, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Feikin, D.R.; Fu, W.; Park, D.E.; Shi, Q.Y.; Higdon, M.M.; Baggett, H.C.; Brooks, W.A.; Knoll, M.D.; Hammitt, L.L.; Howie, S.R.C.; et al. Is Higher Viral Load in the Upper Respiratory Tract Associated with Severe Pneumonia? Findings from the PERCH Study. Clin. Infect. Dis. 2017, 64, S337–S346. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Jartti, T.; Mansbach, J.M.; Laham, F.R.; Jewell, A.M.; Espinola, J.A.; Piedra, P.A.; Camargo, C.A. Respiratory Syncytial Virus Genomic Load and Disease Severity Among Children Hospitalized with Bronchiolitis: Multicenter Cohort Studies in the United States and Finland. J. Infect. Dis. 2015, 211, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Rajan, D.; Gaston, K.A.; McCracken, C.E.; Erdman, D.D.; Anderson, L.J. Response to rhinovirus infection by human airway epithelial cells and peripheral blood mononuclear cells in an in vitro two-chamber tissue culture system. PLoS ONE 2013, 8, e66600. [Google Scholar] [CrossRef] [PubMed]
- Dhariwal, J.; Cameron, A.; Wong, E.; Paulsen, M.; Trujillo-Torralbo, M.B.; Del Rosario, A.; Bakhsoliani, E.; Kebadze, T.; Almond, M.; Farne, H.; et al. Pulmonary Innate Lymphoid Cell Responses during Rhinovirus-induced Asthma Exacerbations In Vivo: A Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 1259–1273. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kang, M.J.; Kim, B.J.; Kwon, J.W.; Song, Y.H.; Choi, W.A.; Shin, Y.J.; Hong, S.J. Polymorphisms in GSDMA and GSDMB are associated with asthma susceptibility, atopy and BHR. Pediatr. Pulmonol. 2011, 46, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Lluis, A.; Schedel, M.; Liu, J.; Illi, S.; Depner, M.; von Mutius, E.; Kabesch, M.; Schaub, B. Asthma-associated polymorphisms in 17q21 influence cord blood ORMDL3 and GSDMA gene expression and IL-17 secretion. J. Allergy. Clin. Immun. 2011, 127, 1587–1596.e6. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Lin, H.Y.; Kuo, C.C.; Yang, L.T. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. J. Biomed. Sci. 2015, 22, 44. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J.; Sun, H.; Wang, D.C.; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016, 535, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Bai, Y.; Deng, F.; Pan, Y.; Mei, S.; Zheng, Z.; Min, R.; Wu, Z.; Li, W.; Miao, R.; et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 2022, 602, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Vance, R.E.; Isberg, R.R.; Portnoy, D.A. Patterns of Pathogenesis: Discrimination of Pathogenic and Nonpathogenic Microbes by the Innate Immune System. Cell Host Microbe 2009, 6, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Broz, P.; Pelegrin, P.; Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 2020, 20, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Bedient, L.; Pokharel, S.M.; Chiok, K.R.; Mohanty, I.; Beach, S.S.; Miura, T.A.; Bose, S. Lytic Cell Death Mechanisms in Human Respiratory Syncytial Virus-Infected Macrophages: Roles of Pyroptosis and Necroptosis. Viruses 2020, 12, 932. [Google Scholar] [CrossRef] [PubMed]
- Beckwith, K.S.; Beckwith, M.S.; Ullmann, S.; Saetra, R.S.; Kim, H.; Marstad, A.; Asberg, S.E.; Strand, T.A.; Haug, M.; Niederweis, M.; et al. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat. Commun. 2020, 11, 2270. [Google Scholar] [CrossRef] [PubMed]
RSV LRTI (n = 68) | RSV URTI (n = 91) | Missing (n = 4) | Total (n = 163) | p-Value * | |
---|---|---|---|---|---|
Sex | 0.81 | ||||
Male | 35 (51.5%) | 51 (56.0%) | 2 (50.0%) | 89 (54.3%) | |
Female | 33 (48.5%) | 40 (44.0%) | 2 (50.0%) | 75 (45.7%) | |
Days since illness onset (days) | 0.34 | ||||
Mean (SD) | 3.48 (1.68) | 3.10 (1.56) | 3.50 (1.00) | 3.27 (1.60) | |
Median [Min, Max] | 3.00 [0, 7.00] | 3.00 [0, 7.00] | 4.00 [2.00, 4.00] | 3.00 [0, 7.00] | |
Missing | 1 (1.5%) | 0 (0%) | 0 (0%) | 1 (0.6%) | |
Age at illness (Months) | 0.45 | ||||
Mean (SD) | 4.01 (1.84) | 4.29 (2.16) | NA (NA) | 4.16 (2.03) | |
Median [Min, Max] | 4.00 [0, 8.00] | 4.00 [0, 9.00] | NA [NA, NA] | 4.00 [0, 9.00] | |
Missing | 0 (0%) | 0 (0%) | 4 (100%) | 4 (2.4%) | |
Viral load (RSV PCR Ct) | 0.05 | ||||
Mean (SD) | 24.1 (4.77) | 24.9 (5.30) | 30.4 (6.54) | 24.7 (5.16) | |
Median [Min, Max] | 23.3 [14.6, 38.0] | 24.5 [16.4, 37.6] | 30.8 [22.9, 37.0] | 24.0 [14.6, 38.0] | |
RSV Illness Severity Score | |||||
Mean (SD) | 3.71 (1.82) | 2.28 (1.25) | NA (NA) | 2.89 (1.67) | <0.001 |
Median [Min, Max] | 3.00 [1.00, 10.0] | 2.00 [0, 6.00] | NA [NA, NA] | 3.00 [0, 10.0] | |
Missing | 3 (4.4%) | 4 (4.4%) | 4 (100%) | 11 (6.7%) | |
Secondhand smoke exposure | 0.19 | ||||
Exposed | 34 (50.0%) | 34 (37.4%) | 1 (25.0%) | 69 (42.1%) | |
Not exposed | 34 (50.0%) | 57 (62.6%) | 3 (75.0%) | 95 (57.9%) | |
Any breastfeeding | 0.20 | ||||
Yes | 49 (72.1%) | 76 (83.5%) | 3 (75.0%) | 129 (78.7%) | |
No | 19 (27.9%) | 15 (16.5%) | 1 (25.0%) | 35 (21.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turi, K.N.; McKennan, C.; Rosas-Salazar, C.; Gebretsedik, T.; Newcomb, D.C.; Thompson, E.E.; Gern, J.; Chappell, J.; Anderson, L.; Ober, C.; et al. Association of 17q12-q21 Asthma Risk Locus with Clinical Severity of Infant Respiratory Syncytial Virus Infection. Biomolecules 2025, 15, 1056. https://doi.org/10.3390/biom15081056
Turi KN, McKennan C, Rosas-Salazar C, Gebretsedik T, Newcomb DC, Thompson EE, Gern J, Chappell J, Anderson L, Ober C, et al. Association of 17q12-q21 Asthma Risk Locus with Clinical Severity of Infant Respiratory Syncytial Virus Infection. Biomolecules. 2025; 15(8):1056. https://doi.org/10.3390/biom15081056
Chicago/Turabian StyleTuri, Kedir N., Christopher McKennan, Christian Rosas-Salazar, Tebeb Gebretsedik, Dawn C. Newcomb, Emma E. Thompson, James Gern, James Chappell, Larry Anderson, Carole Ober, and et al. 2025. "Association of 17q12-q21 Asthma Risk Locus with Clinical Severity of Infant Respiratory Syncytial Virus Infection" Biomolecules 15, no. 8: 1056. https://doi.org/10.3390/biom15081056
APA StyleTuri, K. N., McKennan, C., Rosas-Salazar, C., Gebretsedik, T., Newcomb, D. C., Thompson, E. E., Gern, J., Chappell, J., Anderson, L., Ober, C., & Hartert, T. (2025). Association of 17q12-q21 Asthma Risk Locus with Clinical Severity of Infant Respiratory Syncytial Virus Infection. Biomolecules, 15(8), 1056. https://doi.org/10.3390/biom15081056