Physiologically Based Pharmacokinetic Modeling for Predicting Drug Levels After Bariatric Surgery: Vardenafil Exposure Before vs. After Gastric Sleeve/Bypass
Abstract
1. Introduction
2. Methods
2.1. Materials
2.2. In Vitro Solubility
2.3. Ex Vivo Solubility
2.4. In Vitro Dissolution
2.5. Analytic Method
2.6. Physiologically Based Pharmacokinetic (PBPK) Simulations
Vardenafil | ||
---|---|---|
Parameter | Value | Source/Ref |
Molecular weight (g/mol) | 488.61 | / |
LogP/LogD | 1.97 | predicted using ADMET Predictor® module |
Solubility at 37 °C (mg/mL) | 30 (pH 1); 30 (pH 3); 27.4 (pH 5); 0.05 (pH 7) | Experimental |
pKa (s) | 4.24 (base); 7.76 (base); 8.68 (acid) | predicted using ADMET Predictor® module |
Solubility factors | 720.8; 577.0; 393.9 | fitted by the software integrated option (based on the pH-solubility profile) |
Human effective permeability, Peff (cm/s) | 5.00 × 10−4 | optimized a |
Diffusion coefficient (cm2/s) | 0.5913 × 10−5 | software calculated (based on drug molecular weight) |
Particle diameter (µm) | 100 | Approximated |
Mean precipitation time (s) | 900 | software default |
Drug dose (mg) (dosage form) | 10 b, 20 (tablet) | / |
Volume of fluid taken with drug (mL) | 250 (pre-surgery); 50 (post-surgery) | software default or decreased by 80% to comply with the decreased gastric volume [52] and limited volume of fluid the bariatric patient can ingest |
Blood/plasma concentration ratio | 0.83 | predicted using ADMET Predictor® module |
Plasma fraction unbound (%) | 5 | [59,62,63] |
First pass effect, FPE (%) | 83 | optimized to comply with the literature-reported values [62,64] |
Clearance, CL (L/h/kg) | 0.925 | estimated using PKPlusTM module, based on the in vivo data for IV and oral drug doses [59] and then optimized while keeping the optimized values within the range reported in the literature [62,63,64] |
Volume of distribution, Vd (L/kg) | 0.800 | |
Distribution constant k12 (1/h) | 3.090 | |
Distribution constant k21 (1/h) | 2.100 | |
Distribution constant k13 (1/h) | 0.448 | |
Distribution constant k31 (1/h) | 0.250 | |
Elimination half-life, t1/2 (h) | 4.43 | software calculated; complies with the reported data [62,64] |
3. Results
3.1. In Vitro Solubility
3.2. Ex Vivo Solubility
3.3. In Vitro Dissolution
3.4. Physiologically Based Pharmacokinetic (PBPK) Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.S.; Xia, P.F.; Ma, M.N.; Li, Y.; Geng, T.T.; Zhang, Y.B.; Tu, Z.Z.; Jiang, L.; Zhou, L.R.; Zhang, B.F.; et al. Trends in the Prevalence of Metabolically Healthy Obesity Among US Adults, 1999–2018. JAMA Netw. Open 2023, 6, e232145. [Google Scholar] [CrossRef]
- Chitaley, K.; Kupelian, V.; Subak, L.; Wessells, H. Diabetes, obesity and erectile dysfunction: Field overview and research priorities. J. Urol. 2009, 182, S45–S50. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Karabakan, M.; Aktas, B.K.; Bozkurt, A.; Ozgur, E.G.; Akdogan, N.; Yaris, M. Visceral adiposity index is useful for evaluating obesity effect on erectile dysfunction. Andrologia 2019, 51, e13282. [Google Scholar] [CrossRef] [PubMed]
- Malczak, P.; Wysocki, M.; Pisarska-Adamczyk, M.; Strojek, J.; Rodak, H.; Lastovetskyi, I.; Pedziwiatr, M.; Major, P. Influence of Bariatric Surgery on Erectile Dysfunction-a Systematic Review and Meta-Analysis. Obes. Surg. 2023, 33, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, W.; Wang, T.; Wang, S.; Liu, J.; Jiang, H. Effect of weight loss on erectile function in men with overweight or obesity: A meta-analysis of randomised controlled trials. Andrologia 2022, 54, e14250. [Google Scholar] [CrossRef]
- Mora, M.; Aranda, G.B.; de Hollanda, A.; Flores, L.; Puig-Domingo, M.; Vidal, J. Weight loss is a major contributor to improved sexual function after bariatric surgery. Surg. Endosc. 2013, 27, 3197–3204. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, A.; Abdeldaiem, H.; Abdelsattar, M.; Aboyoussif, T.; Assem, A.; Zahran, A.; Elgebaly, O. Impact of Bariatric Surgery on Sexual Dysfunction in Obese Men. Sex. Med. 2021, 9, 100322. [Google Scholar] [CrossRef]
- Nimbi, F.M.; Virginia, C.; Cinzia, D.M.; Michela, D.T.; Gianfranco, S.; Emanuela, P. The relation between sexuality and obesity: The role of psychological factors in a sample of obese men undergoing bariatric surgery. Int. J. Impot. Res. 2022, 34, 203–214. [Google Scholar] [CrossRef]
- Wang, C.M.; Wu, B.R.; Xiang, P.; Xiao, J.; Hu, X.C. Management of male erectile dysfunction: From the past to the future. Front. Endocrinol. 2023, 14, 1148834. [Google Scholar] [CrossRef]
- Mykoniatis, I.; Pyrgidis, N.; Sokolakis, I.; Ouranidis, A.; Sountoulides, P.; Haidich, A.B.; van Renterghem, K.; Hatzichristodoulou, G.; Hatzichristou, D. Assessment of Combination Therapies vs Monotherapy for Erectile Dysfunction: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e2036337. [Google Scholar] [CrossRef]
- Moncada, I.; Martinez-Salamanca, J.; Ruiz-Castane, E.; Romero, J. Combination therapy for erectile dysfunction involving a PDE5 inhibitor and alprostadil. Int. J. Impot. Res. 2018, 30, 203–208. [Google Scholar] [CrossRef]
- Dahan, A.; Beig, A.; Lindley, D.; Miller, J.M. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Adv. Drug Deliv. Rev. 2016, 101, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.N.; Amidon, G.L. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J. Clin. Pharmacol. 2002, 42, 620–643. [Google Scholar] [CrossRef]
- Dvorackova, E.; Pilkova, A.; Matoulek, M.; Slanar, O.; Hartinger, J.M. Bioavailability of Orally Administered Drugs After Bariatric Surgery. Curr. Obes. Rep. 2024, 13, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidou, S.K.; Argyrakopoulou, G.; Dalamaga, M.; Kokkinos, A. The Effects of Bariatric Surgery on Pharmacokinetics of Drugs: A Review of Current Evidence. Curr. Nutr. Rep. 2023, 12, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Porat, D.; Dahan, A. Pharmacokinetics after bariatric surgery: Adverse effects and drug safety issues in bariatric patients. Expert Rev. Clin. Pharmacol. 2025, 18, 101–108. [Google Scholar] [CrossRef]
- Porat, D.; Vaynshtein, J.; Gibori, R.; Avramoff, O.; Shaked, G.; Dukhno, O.; Czeiger, D.; Sebbag, G.; Dahan, A. Stomach pH before vs. after different bariatric surgery procedures: Clinical implications for drug delivery. Eur. J. Pharm. Biopharm. 2021, 160, 152–157. [Google Scholar] [CrossRef]
- Steenackers, N.; Vanuytsel, T.; Augustijns, P.; Tack, J.; Mertens, A.; Lannoo, M.; Van der Schueren, B.; Matthys, C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol. Hepatol. 2021, 6, 225–237. [Google Scholar] [CrossRef]
- Azran, C.; Wolk, O.; Zur, M.; Fine-Shamir, N.; Shaked, G.; Czeiger, D.; Sebbag, G.; Kister, O.; Langguth, P.; Dahan, A. Oral drug therapy following bariatric surgery: An overview of fundamentals, literature and clinical recommendations. Obes. Rev. 2016, 17, 1050–1066. [Google Scholar] [CrossRef]
- Porat, D.; Dahan, A. Medication Management after Bariatric Surgery: Providing Optimal Patient Care. J. Clin. Med. 2020, 9, 1511. [Google Scholar] [CrossRef]
- Petrinovic, M.; Majetic, D.; Bakula, M.; Pecin, I.; Fabris-Vitkovic, D.; Deskin, M.; Tesanovic Perkovic, D.; Bakula, M.; Gradiser, M.; Curcic, I.B.; et al. Molecular Mechanisms Affecting Statin Pharmacokinetics after Bariatric Surgery. Int. J. Mol. Sci. 2024, 25, 10375. [Google Scholar] [CrossRef] [PubMed]
- Porat, D.; Azran, C.; Kais, H.; Dahan, A. Managing the Unpredictable: Mechanistic Analysis and Clinical Recommendations for Lamotrigine Treatment after Bariatric Surgery. J. Clin. Med. 2021, 10, 5627. [Google Scholar] [CrossRef] [PubMed]
- Azran, C.; Porat, D.; Fine-Shamir, N.; Hanhan, N.; Dahan, A. Oral levothyroxine therapy postbariatric surgery: Biopharmaceutical aspects and clinical effects. Surg. Obes. Relat. Dis. 2019, 15, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Porat, D.; Dukhno, O.; Cvijic, S.; Dahan, A. The Complexity of Bariatric Patient’s Pharmacotherapy: Sildenafil Biopharmaceutics and Pharmacokinetics before vs. after Gastric Sleeve/Bypass. Pharmaceutics 2023, 15, 2795. [Google Scholar] [CrossRef]
- Zucchi, A.; Costantini, E.; Scroppo, F.I.; Silvani, M.; Kopa, Z.; Illiano, E.; Petrillo, M.G.; Cari, L.; Nocentini, G. The first-generation phosphodiesterase 5 inhibitors and their pharmacokinetic issue. Andrology 2019, 7, 804–817. [Google Scholar] [CrossRef]
- Abou-Taleb, H.A.; Mustafa, W.W.; Makram, T.S.; Abdelaty, L.N.; Salem, H.; Abdelkader, H. Vardenafil Oral Dispersible Films (ODFs) with Advanced Dissolution, Palatability, and Bioavailability. Pharmaceutics 2022, 14, 517. [Google Scholar] [CrossRef]
- Montanha, M.C.; Diniz, A.; Silva, N.; Kimura, E.; Paixao, P. Physiologically-Based Pharmacokinetic Model on the Oral Drug Absorption in Roux-en-Y Gastric Bypass Bariatric Patients: Amoxicillin Tablet and Suspension. Mol. Pharm. 2019, 16, 5025–5034. [Google Scholar] [CrossRef]
- Reig-Lopez, J.; Merino-Sanjuan, M.; Mangas-Sanjuan, V.; Prado-Velasco, M. A multilevel object-oriented modelling methodology for physiologically-based pharmacokinetics (PBPK): Evaluation with a semi-mechanistic pharmacokinetic model. Comput. Methods Programs Biomed. 2020, 189, 105322. [Google Scholar] [CrossRef]
- Choi, S.; Han, S.; Lee, S.J.; Lim, B.; Bae, S.H.; Han, S.; Yim, D.S. DallphinAtoM: Physiologically based pharmacokinetics software predicting human PK parameters based on physicochemical properties, in vitro and animal in vivo data. Comput. Methods Programs Biomed. 2022, 216, 106662. [Google Scholar] [CrossRef]
- Cuquerella-Gilabert, M.; Reig-Lopez, J.; Serna, J.; Rueda-Ferreiro, A.; Merino-Sanjuan, M.; Mangas-Sanjuan, V.; Sanchez-Herrero, S. Phys-DAT: A physiologically-based pharmacokinetic model for unraveling the dissolution, transit and absorption processes using PhysPK(R). Comput. Methods Programs Biomed. 2024, 243, 107929. [Google Scholar] [CrossRef]
- Savoca, A.; van Heusden, K.; Manca, D.; Ansermino, J.M.; Dumont, G.A. The effect of cardiac output on the pharmacokinetics and pharmacodynamics of propofol during closed-loop induction of anesthesia. Comput. Methods Programs Biomed. 2020, 192, 105406. [Google Scholar] [CrossRef]
- Porat, D.; Dukhno, O.; Cvijic, S.; Dahan, A. Erectile Dysfunction Therapy of Bariatric Patients: Tadalafil Biopharmaceutics and Pharmacokinetics Before vs. After Gastric Sleeve/Bypass. AAPS J. 2024, 26, 114. [Google Scholar] [CrossRef] [PubMed]
- Porat, D.; Dukhno, O.; Partook-Maccabi, M.; Vainer, E.; Cvijic, S.; Dahan, A. Selective COX-2 inhibitors after bariatric surgery: Celecoxib, etoricoxib and etodolac post-bariatric solubility/dissolution and pharmacokinetics. Int. J. Pharm. 2023, 645, 123347. [Google Scholar] [CrossRef] [PubMed]
- Porat, D.; Dukhno, O.; Vainer, E.; Cvijic, S.; Dahan, A. Antiallergic Treatment of Bariatric Patients: Potentially Hampered Solubility/Dissolution and Bioavailability of Loratadine, but Not Desloratadine, Post-Bariatric Surgery. Mol. Pharm. 2022, 19, 2922–2936. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.F.; Chan, L.N.; Lin, Y.S. PBPK modeling of CYP3A and P-gp substrates to predict drug-drug interactions in patients undergoing Roux-en-Y gastric bypass surgery. J. Pharmacokinet. Pharmacodyn. 2020, 47, 493–512. [Google Scholar] [CrossRef]
- Pippa, L.F.; Vozmediano, V.; Mitrov-Winkelmolen, L.; Touw, D.; Soliman, A.; Cristofoletti, R.; Salgado Junior, W.; de Moraes, N.V. Impact of obesity and roux-en-Y gastric bypass on the pharmacokinetics of (R)- and (S)-omeprazole and intragastric pH. CPT Pharmacomet. Syst. Pharmacol. 2024, 13, 1528–1541. [Google Scholar] [CrossRef]
- Avvari, S.K.; Cusumano, J.A.; Jogiraju, V.K.; Manchandani, P.; Taft, D.R. PBPK Modeling of Azithromycin Systemic Exposure in a Roux-en-Y Gastric Bypass Surgery Patient Population. Pharmaceutics 2023, 15, 2520. [Google Scholar] [CrossRef]
- Beig, A.; Miller, J.M.; Dahan, A. The interaction of nifedipine with selected cyclodextrins and the subsequent solubility-permeability trade-off. Eur. J. Pharm. Biopharm. 2013, 85, 1293–1299. [Google Scholar] [CrossRef]
- Beig, A.; Agbaria, R.; Dahan, A. The use of captisol (SBE7-beta-CD) in oral solubility-enabling formulations: Comparison to HPbetaCD and the solubility-permeability interplay. Eur. J. Pharm. Sci. 2015, 77, 73–78. [Google Scholar] [CrossRef]
- Porat, D.; Azran, C.; Mualem, Y.; Vainer, E.; Gibori, R.; Vaynshtein, J.; Dukhno, O.; Dahan, A. Lamotrigine therapy in patients after bariatric surgery: Potentially hampered solubility and dissolution. Int. J. Pharm. 2022, 612, 121298. [Google Scholar] [CrossRef]
- Fassihi, A.R.; Munday, D.L. Dissolution of theophylline from film-coated slow release mini-tablets in various dissolution media. J. Pharm. Pharmacol. 1989, 41, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Silva, O.S.; Souza, C.R.; Oliveira, W.P.; Rocha, S.C. In vitro dissolution studies of sodium diclofenac granules coated with Eudragit L-30D-55 by fluidized-bed system. Drug Dev. Ind. Pharm. 2006, 32, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Sugano, K. Biopharmaceutics Modeling and Simulations: Theory, Practice, Methods, and Applications; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Seaman, J.S.; Bowers, S.P.; Dixon, P.; Schindler, L. Dissolution of common psychiatric medications in a Roux-en-Y gastric bypass model. Psychosomatics 2005, 46, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Yska, J.P.; Punter, R.J.; Woerdenbag, H.J.; Emous, M.; Frijlink, H.W.; Wilffert, B.; van Roon, E.N. A gastrointestinal simulation system for dissolution of oral solid dosage forms before and after Roux-en-Y gastric bypass. Eur. J. Hosp. Pharm. 2019, 26, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Agoram, B.; Woltosz, W.S.; Bolger, M.B. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev. 2001, 50 (Suppl. S1), S41–S67. [Google Scholar] [CrossRef]
- Lin, L.; Wong, H. Predicting Oral Drug Absorption: Mini Review on Physiologically-Based Pharmacokinetic Models. Pharmaceutics 2017, 9, 41. [Google Scholar] [CrossRef]
- Jereb, R.; Opara, J.; Bajc, A.; Petek, B. Evaluating the Impact of Physiological Properties of the Gastrointestinal Tract On Drug In Vivo Performance Using Physiologically Based Biopharmaceutics Modeling and Virtual Clinical Trials. J. Pharm. Sci. 2021, 110, 3069–3081. [Google Scholar] [CrossRef]
- Mudie, D.M.; Murray, K.; Hoad, C.L.; Pritchard, S.E.; Garnett, M.C.; Amidon, G.L.; Gowland, P.A.; Spiller, R.C.; Amidon, G.E.; Marciani, L. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol. Pharm. 2014, 11, 3039–3047. [Google Scholar] [CrossRef]
- Murray, K.; Hoad, C.L.; Mudie, D.M.; Wright, J.; Heissam, K.; Abrehart, N.; Pritchard, S.E.; Al Atwah, S.; Gowland, P.A.; Garnett, M.C.; et al. Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans. Mol. Pharm. 2017, 14, 2629–2638. [Google Scholar] [CrossRef]
- Schiller, C.; Frohlich, C.P.; Giessmann, T.; Siegmund, W.; Monnikes, H.; Hosten, N.; Weitschies, W. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 2005, 22, 971–979. [Google Scholar] [CrossRef]
- Elbanna, H.; Emile, S.; El-Hawary, G.E.; Abdelsalam, N.; Zaytoun, H.A.; Elkaffas, H.; Ghanem, A. Assessment of the Correlation Between Preoperative and Immediate Postoperative Gastric Volume and Weight Loss After Sleeve Gastrectomy Using Computed Tomography Volumetry. World J. Surg. 2019, 43, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Almukainzi, M.; Lukacova, V.; Löbenberg, R. Modelling the Absorption of Metformin with Patients Post Gastric Bypass Surgery. J. Diabetes Metab. 2014, 5, 2. [Google Scholar]
- Dahan, A.; Porat, D.; Markovic, M.; Zur, M.; Kister, O.; Langguth, P. Optimized In Silico Modeling of Drug Absorption after Gastric Bypass: The Case of Metformin. Pharmaceutics 2021, 13, 1873. [Google Scholar] [CrossRef]
- Darwich, A.S.; Pade, D.; Rowland-Yeo, K.; Jamei, M.; Asberg, A.; Christensen, H.; Ashcroft, D.M.; Rostami-Hodjegan, A. Evaluation of an In Silico PBPK Post-Bariatric Surgery Model through Simulating Oral Drug Bioavailability of Atorvastatin and Cyclosporine. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e47. [Google Scholar] [CrossRef] [PubMed]
- Steenackers, N.; Vanuytsel, T.; Augustijns, P.; Deleus, E.; Deckers, W.; Deroose, C.M.; Falony, G.; Lannoo, M.; Mertens, A.; Mols, R.; et al. Effect of sleeve gastrectomy and Roux-en-Y gastric bypass on gastrointestinal physiology. Eur. J. Pharm. Biopharm. 2023, 183, 92–101. [Google Scholar] [CrossRef]
- Lajeunesse-Trempe, F.; Okroj, D.; Ostarijas, E.; Ramalho, A.; Tremblay, E.J.; Llewellyn, D.; Harlow, C.; Chandhyoke, N.; Chew, N.W.S.; Vincent, R.P.; et al. Medication and supplement pharmacokinetic changes following bariatric surgery: A systematic review and meta-analysis. Obes. Rev. 2024, 25, e13759. [Google Scholar] [CrossRef]
- Lu, A.T.; Frisella, M.E.; Johnson, K.C. Dissolution modeling: Factors affecting the dissolution rates of polydisperse powders. Pharm. Res. 1993, 10, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Parekh, A. Levitra, New Drug Application Filing and Review Form. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-400_levitra_biopharmr_p2.pdf (accessed on 8 June 2025).
- Abduljalil, K.; Cain, T.; Humphries, H.; Rostami-Hodjegan, A. Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: An analysis based on in vivo observations. Drug Metab. Dispos. 2014, 42, 1478–1484. [Google Scholar] [CrossRef]
- Puttrevu, S.K.; Arora, S.; Polak, S.; Patel, N.K. Physiologically Based Pharmacokinetic Modeling of Transdermal Selegiline and Its Metabolites for the Evaluation of Disposition Differences between Healthy and Special Populations. Pharmaceutics 2020, 12, 942. [Google Scholar] [CrossRef]
- FDA. Levitra (Vardenafil HCl) Tablets. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021400s010lbl.pdf (accessed on 8 June 2025).
- Mano, Y.; Sugiyama, Y.; Ito, K. Use of a Physiologically Based Pharmacokinetic Model for Quantitative Prediction of Drug-Drug Interactions via CYP3A4 and Estimation of the Intestinal Availability of CYP3A4 Substrates. J. Pharm. Sci. 2015, 104, 3183–3193. [Google Scholar] [CrossRef]
- Gupta, M.; Kovar, A.; Meibohm, B. The clinical pharmacokinetics of phosphodiesterase-5 inhibitors for erectile dysfunction. J. Clin. Pharmacol. 2005, 45, 987–1003. [Google Scholar] [CrossRef] [PubMed]
- Medsafe. Classification of Analogues of Sildenafil, Vardenafil and Tadalafil. Available online: https://www.medsafe.govt.nz/profs/class/Agendas/agen41-PDE5inhibitors.pdf (accessed on 8 June 2025).
- Eros, D.; Szantai-Kis, C.; Kiss, R.; Keri, G.; Hegymegi-Barakonyi, B.; Kovesdi, I.; Orfi, L. Structure-activity relationships of PDE5 inhibitors. Curr. Med. Chem. 2008, 15, 1570–1585. [Google Scholar] [CrossRef]
- Angeles, P.C.; Robertsen, I.; Seeberg, L.T.; Krogstad, V.; Skattebu, J.; Sandbu, R.; Asberg, A.; Hjelmesaeth, J. The influence of bariatric surgery on oral drug bioavailability in patients with obesity: A systematic review. Obes. Rev. 2019, 20, 1299–1311. [Google Scholar] [CrossRef]
- Product Monograph Levitra®; Bayer Inc.: Leverkusen, Germany, 2024.
- Liu, S.; Cao, D.; Ren, Z.; Li, J.; Peng, L.; Zhang, Q.; Cheng, B.; Cheng, Z.; Ai, J.; Zheng, X.; et al. The relationships between bariatric surgery and sexual function: Current evidence based medicine. BMC Urol. 2020, 20, 150. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Porat, D.; Azran, C.; Mualem, Y.; Sakran, N.; Abu-Abeid, S. Lithium Toxicity with Severe Bradycardia Post Sleeve Gastrectomy: A Case Report and Review of the Literature. Obes. Surg. 2019, 29, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Porat, D.; Markovic, M.; Zur, M.; Fine-Shamir, N.; Azran, C.; Shaked, G.; Czeiger, D.; Vaynshtein, J.; Replyanski, I.; Sebbag, G.; et al. Increased Paracetamol Bioavailability after Sleeve Gastrectomy: A Crossover Pre- vs. Post-Operative Clinical Trial. J. Clin. Med. 2019, 8, 1949. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.; Chan, P.; Mercado, A.; Wang, J.; Wang, Z.; Ibrahim, H.; Gogineni, H.; Huang, Y. Impact of bariatric surgery on cytochrome P 450 enzyme activity. Front. Pharmacol. 2024, 15, 1372950. [Google Scholar] [CrossRef]
- Kvitne, K.E.; Robertsen, I.; Skovlund, E.; Christensen, H.; Krogstad, V.; Wegler, C.; Angeles, P.C.; Wollmann, B.M.; Hole, K.; Johnson, L.K.; et al. Short- and long-term effects of body weight loss following calorie restriction and gastric bypass on CYP3A-activity—A non-randomized three-armed controlled trial. Clin. Transl. Sci. 2022, 15, 221–233. [Google Scholar] [CrossRef]
- Porat, D.; Margolin, N.; Lavon, O.; Dahan, A. Carbamazepine Therapy After Bariatric Surgery: Eight Sleeve Gastrectomy Cases and Review of the Literature. Obes. Surg. 2022, 32, 3481–3486. [Google Scholar] [CrossRef]
Drug | Column | Mobile Phase | Flow Rate (mL/min) | Injection Volume (µL) | Total Run Time (min) | Retention Time (min) | Detection Wavelength (nm) |
---|---|---|---|---|---|---|---|
Vardenafil | Waters XBridge C8, 3.5 µm, 4.6 × 150 mm | Water: Acetonitrile (+0.1% trifluoroacetic acid), 90:10 to 15:85 (v/v), gradient | 1.0 | 20 | 5.0 | 3.6 | 245 |
Parameter/Property | Healthy | SG | OAGB |
---|---|---|---|
Stomach volume | 50 mL | 10 mL | 10 mL |
Volume of fluid taken with drug (average) | 250 mL | 50 mL | 50 mL |
Stomach pH | 1.3 | 5.0 | 7.0 |
Stomach transit time (fasted) | 0.25 h | 0.12 h | 0.12 h |
Intestinal segments available for absorption | default | default | bypassed duodenum and jejunum |
Patient | Age | Gender | BMI | Procedure | Pre-Surg pH | Post-Surg pH |
---|---|---|---|---|---|---|
1 | 49 | Male | 43 | RYGB | 2.7 | 6.8 |
2 | 51 | Female | 39 | OAGB | 1.5 | 7.2 |
3 | 25 | Male | 71 | SG | 2.0 | 7.0 |
10 mg | Observed a | Predicted | Fold Error | R2 Value |
---|---|---|---|---|
Cmax (ng/mL) | 7.20 | 7.78 | 1.08 | 0.9750 |
Tmax (h) | 0.95 | 0.80 | 0.84 | |
AUC0−inf (ng h/mL) | 27.29 | 26.25 | 0.96 | |
20 mg | Observed a | Predicted | Fold error | |
Cmax (ng/mL) | 16.30 | 15.57 | 0.95 | |
Tmax (h) | 0.78 | 0.80 | 1.03 | |
AUC0−inf (ng h/mL) | 41.86 | 52.51 | 1.25 |
20 mg | Post-SG (Gastric pH = 5) | Post-OAGB (Gastric pH = 7) |
---|---|---|
Cmax | −10.85 | 30.12 |
Tmax | 20.00 | −40.00 |
AUC0−inf | 0.00 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porat, D.; Dukhno, O.; Cvijić, S.; Dahan, A. Physiologically Based Pharmacokinetic Modeling for Predicting Drug Levels After Bariatric Surgery: Vardenafil Exposure Before vs. After Gastric Sleeve/Bypass. Biomolecules 2025, 15, 975. https://doi.org/10.3390/biom15070975
Porat D, Dukhno O, Cvijić S, Dahan A. Physiologically Based Pharmacokinetic Modeling for Predicting Drug Levels After Bariatric Surgery: Vardenafil Exposure Before vs. After Gastric Sleeve/Bypass. Biomolecules. 2025; 15(7):975. https://doi.org/10.3390/biom15070975
Chicago/Turabian StylePorat, Daniel, Oleg Dukhno, Sandra Cvijić, and Arik Dahan. 2025. "Physiologically Based Pharmacokinetic Modeling for Predicting Drug Levels After Bariatric Surgery: Vardenafil Exposure Before vs. After Gastric Sleeve/Bypass" Biomolecules 15, no. 7: 975. https://doi.org/10.3390/biom15070975
APA StylePorat, D., Dukhno, O., Cvijić, S., & Dahan, A. (2025). Physiologically Based Pharmacokinetic Modeling for Predicting Drug Levels After Bariatric Surgery: Vardenafil Exposure Before vs. After Gastric Sleeve/Bypass. Biomolecules, 15(7), 975. https://doi.org/10.3390/biom15070975