The Genetic Puzzle of the Stress-Induced Cardiomyopathy (Takotsubo Syndrome): State of Art and Future Perspectives
Abstract
1. Introduction
2. Methodology
3. Result and Discussion
3.1. The Genetic Approach to Adrenergic Receptor Pathways
- •
- ADH5 encodes S-nitrosoglutathione reductase (GSNOR), a modulator of vascular tone and contractility. A missense mutation (Val346Glu) was associated with impaired responses to adrenergic stimulation [41]. Actually, in experimental models Adh5-deficiency provokes reduced inotropy and persistent systemic vasodilation in responses to beta-adrenergic stimulation [42].
- •
- •
- •
- PRKCA, encoding protein kinase C alpha, regulates cardiomyocyte contractility by directly targeting protein phosphatase inhibitor-1, G protein-coupled receptor ki-nase (GRK)-2, myofilament components, and L-type calcium channels [45]. The V344L variant may affect calcium handling and contribute to contractile dysfunction [41].
3.2. Sex-Linked Genetics Differences in TS Susceptibility
3.3. Inflammation and Oxidative Stress Genes
3.4. Heart Brain Interaction and TS: Genetic and Epigenetic Markers of Susceptibility
3.5. The Genetic Approach to (Micro) Vascular and Endothelial Damage Hypothesis
3.6. Genome-Wide Association Studies (GWASs) on TS
- •
- GRM7 (rs113154180): Encodes the metabotropic glutamate receptor 7, previously implicated in mood disorders and autism spectrum conditions, suggesting a neuropsychiatric link [113].
- •
- RBFOX1 (rs12444925): Involved in RNA splicing and regulation of cytoskeletal genes in cardiomyocytes; downregulation is associated with heart failure progression [114].
- •
- •
- •
- •
- •
- •
- Some variants were located in non-coding RNAs or regions with regulating functions:
- •
- LINC02625 (rs7070797): A long intergenic non-coding RNA potentially interacting with apoptotic regulators [129].
- •
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADAM10 | Adam Metallopeptidase Domain 10 |
ADAMTS5 | Adam Metallopeptidase with Thrombospondin Type 1 Motif 5 |
ADH5 | Alcohol Dehydrogenase 5 |
ADRA | Adrenergic Receptor Alpha |
ADRB | Adrenergic Receptor Beta |
AMI | Acute Myocardial Infarction |
AMPK | Adenosin Monophosphate Kinase |
ANP | Atrial Natriuretic Peptide |
AR | Adrenergic Receptor |
BAG3 | BCL2-Associated Athanogene 3 |
BLC3 | B-cell lymphoma 3 |
BNP | Brain Natriuretic Peptide |
BTN2A2 | Butyrophilin Subfamily 2 Member A2 |
CACNG1 | Calcium Channel Gamma-1 |
cAMP | Cyclic Adenosine 3,5-Monophosphate |
CCL2 | CC Motif Chemokine 2 |
CCL20 | CC Motif Chemokine 20 |
CCL5 | CC Motif Chemokine 5 |
CD | Cluster Of Differentiation |
CNGB3 | Cyclic Nucleotide-Gated Ion Channel |
CNS | Central Nervous System |
CRP | C-Reactive Protein |
CXCL1 | CXC Motif Chemokine 1 |
DAMPs | Damage Associated Molecular Patterns |
EDN1 | Endothelin-1 |
EGF | Endothelial Growth Factor |
eNOS | Endothelial Nitric Oxide Synthase |
EPHA4 | Ephrin Type-A Receptor 4 |
ESC | European Society of Cardiology |
ESR1 -2 | Estrogen Receptor-1 -2 |
ET-1 | Endothelin-1 |
FMR1 | Fragile X Messenger Ribonucleoprotein 1 |
GNB1 | Guanine Nucleotide-Binding Protein Beta-1 |
GPER | G Protein-Coupled Estrogen Receptor |
GRK | G Protein Coupled Receptor Kinase |
GRM7 | Glutamate Metabotropic Receptor 7 |
GSNOR | S-Nitrosoglutathione Reductase |
GWAS | Genome-Wide Association Studies |
Gαi | Inhibitory G-Protein |
Gαs | G-Protein-Activated |
HCMECs | Human Endothelial Cells from Microvascular Vessels |
HDL | High density lipoprotein |
HO-1 | Heme Oxygenase-1 |
HPA | hypothalamic–pituitary–adrenal |
IFN | Interferon |
IL | Interleukin |
KCNA5 | Potassium Voltage-Gated Channel, Member 5 |
KCNMA1 | Big Conductance Calcium-Activated Potassium Channel |
KCNN1-4 | Calcium-Activated Potassium Channel Type 1–4 |
Kv1.5 | Potassium Voltage-Gated Channel |
LDL | Low density Lipoprotein |
LDS | Loeys-Dietz Syndrome |
LINC02625 | Long Intergenic Non-Protein Coding RNA 2625 |
LY86-AS1 | LY86 Antisense RNA 1 |
miR | MicroRNA |
mTOR | Mechanistic Target of Rapamycin |
NADP | n-adenil Diphosphate |
NLRP3 | NOD-Like Receptor Pyrin Domain-Containing 3 |
NO | Nitric Oxide |
NOX | NADPH Oxidase |
Nrf2 | Nuclear Factor [Erythroid-Derived 2]-Like 2 |
OSM | Oncostatin M |
PAMPs | Pathogen Associated Molecular Patterns) |
PIWIL2 | Piwi Like RNA-Mediated Gene Silencing 2 |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PRKCA | Protein Kinase C, Alpha |
RBFOX1 | RNA Binding Fox-1 Homolog 1 |
RGS | G Protein-Signaling |
ROS | Reactive Oxygen Species |
rs | Reference SNP |
SAA-1 -2 | Serum Amyloid A-1 -2 |
SCN5A | Sodium Channel Protein Type 5 Subunit Alpha |
SEMA3D | Semaphorin 3D |
SLC5A7 | Solute Carrier Family 5 Member 7 |
SmgGDS | GTP-Binding Protein GDP Dissociation Stimulator |
SNP | Single Nucleotide Polymorphism |
SOCS | Suppressor of cytokine signaling |
SOD | Superoxide Dismutase |
STAT5A | Signal Transducer and Activator of Transcription 5A |
STEMI | ST-Elevation Myocardial Infarction |
TGF-β | Transforming Growth Factor-β |
TLR | Toll-Like Receptor |
TNF | Tumor Necrosis Factor |
TS | Takotsubo Syndrome |
VEFG | Vascular Endothelial Growth Factor |
References
- Abe, Y.; Kondo, M. Apical ballooning of the left ventricle: A distinct entity? Heart 2003, 89, 974–976. [Google Scholar] [CrossRef] [PubMed]
- Shufelt, C.L.; Pacheco, C.; Tweet, M.S.; Miller, V.M. Sex-Specific Physiology and Cardiovascular Disease. Adv. Exp. Med. Biol. 2018, 1065, 433–454. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xiong, T.; Yang, Y.; Chen, X.; Ma, Z.; Zuo, B.; Ning, D.; Zhou, B.; Song, R.; Liu, X.; et al. Estradiol-mediated small GTP-binding protein GDP dissociation stimulator induction contributes to sex differences in resilience to ferroptosis in takotsubo syndrome. Redox Biol. 2023, 68, 102961. [Google Scholar] [CrossRef]
- Dias, A.; Gil, I.J.N.; Santoro, F.; Madias, J.E.; Pelliccia, F.; Brunetti, N.D.; Salmoirago-Blotcher, E.; Sharkey, S.W.; Eitel, I.; Akashi, Y.J.; et al. Takotsubo syndrome: State-of-the-art review by an expert panel—Part 1. Cardiovasc. Revasc. Med. 2019, 20, 70–79. [Google Scholar] [CrossRef]
- El-Battrawy, I.; Santoro, F.; Núñez-Gil, I.J.; Pätz, T.; Arcari, L.; Abumayyaleh, M.; Guerra, F.; Novo, G.; Musumeci, B.; Cacciotti, L.; et al. Age-Related Differences in Takotsubo Syndrome: Results from the Multicenter GEIST Registry. J. Am. Heart Assoc. 2024, 13, e030623. [Google Scholar] [CrossRef]
- Moscatelli, S.; Montecucco, F.; Carbone, F.; Valbusa, A.; Massobrio, L.; Porto, I.; Brunelli, C.; Rosa, G.M. An Emerging Cardiovascular Disease: Takotsubo Syndrome. BioMed Res. Int. 2019, 2019, 6571045. [Google Scholar] [CrossRef] [PubMed]
- Omerovic, E.; Citro, R.; Bossone, E.; Redfors, B.; Backs, J.; Bruns, B.; Ciccarelli, M.; Couch, L.S.; Dawson, D.; Grassi, G.; et al. Pathophysiology of Takotsubo syndrome—A joint scientific statement from the Heart Failure Association Takotsubo Syndrome Study Group and Myocardial Function Working Group of the European Society of Cardiology—Part 1: Overview and the central role for catecholamines and sympathetic nervous system. Eur. J. Heart Fail. 2022, 24, 257–273. [Google Scholar] [CrossRef]
- Omerovic, E.; Citro, R.; Bossone, E.; Redfors, B.; Backs, J.; Bruns, B.; Ciccarelli, M.; Couch, L.S.; Dawson, D.; Grassi, G.; et al. Pathophysiology of Takotsubo syndrome—A joint scientific statement from the Heart Failure Association Takotsubo Syndrome Study Group and Myocardial Function Working Group of the European Society of Cardiology—Part 2: Vascular pathophysiology, gender and sex hormones, genetics, chronic cardiovascular problems and clinical implications. Eur. J. Heart Fail. 2022, 24, 274–286. [Google Scholar] [CrossRef]
- Redfors, B.; Shao, Y.; Lyon, A.R.; Omerovic, E. Diagnostic criteria for takotsubo syndrome: A call for consensus. Int. J. Cardiol. 2014, 176, 274–276. [Google Scholar] [CrossRef]
- Ghadri, J.R.; Cammann, V.L.; Jurisic, S.; Seifert, B.; Napp, L.C.; Diekmann, J.; Bataiosu, D.R.; D’Ascenzo, F.; Ding, K.J.; Sarcon, A.; et al. A novel clinical score (InterTAK Diagnostic Score) to differentiate takotsubo syndrome from acute coronary syndrome: Results from the International Takotsubo Registry. Eur. J. Heart Fail. 2017, 19, 1036–1042. [Google Scholar] [CrossRef]
- Akhtar, M.M.; Cammann, V.L.; Templin, C.; Ghadri, J.R.; Lüscher, T.F. Takotsubo syndrome: Getting closer to its causes. Cardiovasc. Res. 2023, 119, 1480–1494. [Google Scholar] [CrossRef] [PubMed]
- Scally, C.; Abbas, H.; Ahearn, T.; Srinivasan, J.; Mezincescu, A.; Rudd, A.; Spath, N.; Yucel-Finn, A.; Yuecel, R.; Oldroyd, K.; et al. Myocardial and Systemic Inflammation in Acute Stress-Induced (Takotsubo) Cardiomyopathy. Circulation 2019, 139, 1581–1592. [Google Scholar] [CrossRef]
- Dong, F.; Yin, L.; Sisakian, H.; Hakobyan, T.; Jeong, L.S.; Joshi, H.; Hoff, E.; Chandler, S.; Srivastava, G.; Jabir, A.R.; et al. Takotsubo syndrome is a coronary microvascular disease: Experimental evidence. Eur. Heart J. 2023, 44, 2244–2253. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, D.M.; Rasmussen, S.G.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Vriz, O.; Minisini, R.; Zito, C.; Boccato, E.; Fimiani, F.; Pirisi, M.; Facciolo, C.; Limongelli, G.; Bossone, E.; Calabrò, P. Can apical ballooning cardiomyopathy and anterior STEMI be differentiated based on β1 and β2-adrenergic receptors polymorphisms? Int. J. Cardiol. 2015, 199, 189–192. [Google Scholar] [CrossRef]
- Dias, A.; Gil, I.J.N.; Santoro, F.; Madias, J.E.; Pelliccia, F.; Brunetti, N.D.; Salmoirago-Blotcher, E.; Sharkey, S.W.; Eitel, I.; Akashi, Y.J.; et al. Takotsubo syndrome: State-of-the-art review by an expert panel—Part 2. Cardiovasc. Revasc. Med. 2019, 20, 153–166. [Google Scholar] [CrossRef]
- Y-Hassan, S. Plasma Epinephrine Level and its Causal Link to Takotsubo Syndrome Revisited: Critical Review with a Diverse Conclusion. Cardiovasc. Revasc. Med. 2019, 20, 907–914. [Google Scholar] [CrossRef]
- Diaz, B.; Elkbuli, A.; Ehrhardt, J.D., Jr.; McKenney, M.; Boneva, D.; Hai, S. Pheochromocytoma-related cardiomyopathy presenting as broken heart syndrome: Case report and literature review. Int. J. Surg. Case Rep. 2019, 55, 7–10. [Google Scholar] [CrossRef]
- Ali, N.A.; Calissendorff, J.; Falhammar, H. Sex differences in presentation of pheochromocytoma and paraganglioma. Front. Endocrinol. 2025, 16, 1463945. [Google Scholar] [CrossRef]
- Amar, J.; Brunel, J.; Bauters, C.C.; Jacques, V.; Delmas, C.; Odou, M.F.; Savagner, F. Genetic biomarkers of life-threatening pheochromocytoma-induced cardiomyopathy. Endocr. Relat. Cancer 2022, 29, 267–272. [Google Scholar] [CrossRef]
- Hiestand, T.; Hänggi, J.; Klein, C.; Topka, M.S.; Jaguszewski, M.; Ghadri, J.R.; Lüscher, T.F.; Jäncke, L.; Templin, C. Takotsubo Syndrome Associated with Structural Brain Alterations of the Limbic System. J. Am. Coll. Cardiol. 2018, 71, 809–811. [Google Scholar] [CrossRef] [PubMed]
- Bergami, M.; Fabin, N.; Cenko, E.; Bugiardini, R.; Manfrini, O. MicroRNAs as Potential Biomarkers in Coronary Artery Disease. Curr. Top. Med. Chem. 2023, 23, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Ferradini, V.; Vacca, D.; Belmonte, B.; Mango, R.; Scola, L.; Novelli, G.; Balistreri, C.R.; Sangiuolo, F. Genetic and Epigenetic Factors of Takotsubo Syndrome: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 9875. [Google Scholar] [CrossRef] [PubMed]
- Pison, L.; De Vusser, P.; Mullens, W. Apical ballooning in relatives. Heart 2004, 90, e67. [Google Scholar] [CrossRef]
- Cherian, J.; Angelis, D.; Filiberti, A.; Saperia, G. Can takotsubo cardiomyopathy be familial? Int. J. Cardiol. 2007, 121, 74–75. [Google Scholar] [CrossRef]
- Kumar, G.; Holmes, D.R., Jr.; Prasad, A. “Familial” apical ballooning syndrome (Takotsubo cardiomyopathy). Int. J. Cardiol. 2010, 144, 444–445. [Google Scholar] [CrossRef]
- Subban, V.; Ramachandran, S.; Victor, S.M.; Gnanaraj, A.; Ajit, M.S. Apical ballooning syndrome in first degree relatives. Indian Heart J. 2012, 64, 607–609. [Google Scholar] [CrossRef]
- Ikutomi, M.; Yamasaki, M.; Matsusita, M.; Watari, Y.; Arashi, H.; Endo, G.; Yamaguchi, J.; Ohnishi, S. Takotsubo cardiomyopathy in siblings. Heart Vessels 2014, 29, 119–122. [Google Scholar] [CrossRef]
- Caretta, G.; Robba, D.; Vizzardi, E.; Bonadei, I.; Raddino, R.; Metra, M. Tako-tsubo cardiomyopathy in two sisters: A chance finding or familial predisposition? Clin. Res. Cardiol. 2015, 104, 614–616. [Google Scholar] [CrossRef]
- Ekenbäck, C.; Tornvall, P.; Spaak, J. Takotsubo twins. BMJ Case Rep. 2019, 12, e227885. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Sharkey, S.W.; Maron, B.J.; Nelson, P.; Parpart, M.; Maron, M.S.; Bristow, M.R. Adrenergic receptor polymorphisms in patients with stress (tako-tsubo) cardiomyopathy. J. Cardiol. 2009, 53, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Handy, A.D.; Prasad, A.; Olson, T.M. Investigating genetic variation of adrenergic receptors in familial stress cardiomyopathy (apical ballooning syndrome). J. Cardiol. 2009, 54, 516–517. [Google Scholar] [CrossRef]
- Vriz, O.; Minisini, R.; Citro, R.; Guerra, V.; Zito, C.; De Luca, G.; Pavan, D.; Pirisi, M.; Limongelli, G.; Bossone, E. Analysis of beta1 and beta2-adrenergic receptors polymorphism in patients with apical ballooning cardiomyopathy. Acta Cardiol. 2011, 66, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Novo, G.; Giambanco, S.; Guglielmo, M.; Arvigo, L.; Sutera, M.R.; Giambanco, F.; Evola, S.; Vaccarino, L.; Bova, M.; Lio, D.; et al. G-protein-coupled receptor kinase 5 polymorphism and Takotsubo cardiomyopathy. J. Cardiovasc. Med. 2015, 16, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Figtree, G.A.; Bagnall, R.D.; Abdulla, I.; Buchholz, S.; Galougahi, K.K.; Yan, W.; Tan, T.; Neil, C.; Horowitz, J.D.; Semsarian, C.; et al. No association of G-protein-coupled receptor kinase 5 or β-adrenergic receptor polymorphisms with Takotsubo cardiomyopathy in a large Australian cohort. Eur. J. Heart Fail. 2013, 15, 730–733. [Google Scholar] [CrossRef]
- Franco, A.; Sorriento, D.; Gambardella, J.; Pacelli, R.; Prevete, N.; Procaccini, C.; Matarese, G.; Trimarco, B.; Iaccarino, G.; Ciccarelli, M. GRK2 moderates the acute mitochondrial damage to ionizing radiation exposure by promoting mitochondrial fission/fusion. Cell Death Discov. 2018, 4, 25. [Google Scholar] [CrossRef]
- Nakano, T.; Onoue, K.; Nakada, Y.; Nakagawa, H.; Kumazawa, T.; Ueda, T.; Nishida, T.; Soeda, T.; Okayama, S.; Watanabe, M.; et al. Alteration of β-Adrenoceptor Signaling in Left Ventricle of Acute Phase Takotsubo Syndrome: A Human Study. Sci. Rep. 2018, 8, 12731. [Google Scholar] [CrossRef]
- Spinelli, L.; Trimarco, V.; Di Marino, S.; Marino, M.; Iaccarino, G.; Trimarco, B. L41Q polymorphism of the G protein coupled receptor kinase 5 is associated with left ventricular apical ballooning syndrome. Eur. J. Heart Fail. 2010, 12, 13–16. [Google Scholar] [CrossRef]
- Onrat, S.T.; Dural, İ.E.; Yalım, Z.; Onrat, E. Investigating changes in β-adrenergic gene expression (ADRB1 and ADRB2) in Takotsubo (stress) cardiomyopathy syndrome; a pilot study. Mol. Biol. Rep. 2021, 48, 7893–7900. [Google Scholar] [CrossRef]
- Goodloe, A.H.; Evans, J.M.; Middha, S.; Prasad, A.; Olson, T.M. Characterizing genetic variation of adrenergic signalling pathways in Takotsubo (stress) cardiomyopathy exomes. Eur. J. Heart Fail. 2014, 16, 942–949. [Google Scholar] [CrossRef]
- Beigi, F.; Gonzalez, D.R.; Minhas, K.M.; Sun, Q.A.; Foster, M.W.; Khan, S.A.; Treuer, A.V.; Dulce, R.A.; Harrison, R.W.; Saraiva, R.M.; et al. Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc. Natl. Acad. Sci. USA 2012, 109, 4314–4319. [Google Scholar] [CrossRef]
- Zhang, Z.; Tremblay, J.; Raelson, J.; Sofer, T.; Du, L.; Fang, Q.; Argos, M.; Marois-Blanchet, F.C.; Wang, Y.; Yan, L.; et al. EPHA4 regulates vascular smooth muscle cell contractility and is a sex-specific hypertension risk gene in individuals with type 2 diabetes. J. Hypertens. 2019, 37, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.J.; Robertson, H.M.; Best, P.M. Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene 2001, 280, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Verweij, N.; Benjamins, J.W.; Morley, M.P.; van de Vegte, Y.J.; Teumer, A.; Trenkwalder, T.; Reinhard, W.; Cappola, T.P.; van der Harst, P. The Genetic Makeup of the Electrocardiogram. Cell Syst. 2020, 11, 229–238.e5. [Google Scholar] [CrossRef]
- Kleinfeldt, T.; Schneider, H.; Akin, I.; Kische, S.; Turan, R.G.; Nienaber, C.A.; Ince, H. Detection of FMR1-gene in Takotsubo cardiomyopathy: A new piece in the puzzle. Int. J. Cardiol. 2009, 137, e81–e83. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.Y.; Saw, J. Basis for sex-specific expression of Takotsubo cardiomyopathy, cardiac syndrome X, and spontaneous coronary artery dissection. Can. J. Cardiol. 2014, 30, 738–746. [Google Scholar] [CrossRef]
- Ghaffari, S.; Naderi Nabi, F.; Sugiyama, M.G.; Lee, W.L. Estrogen Inhibits LDL (Low-Density Lipoprotein) Transcytosis by Human Coronary Artery Endothelial Cells via GPER (G-Protein-Coupled Estrogen Receptor) and SR-BI (Scavenger Receptor Class B Type 1). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2283–2294. [Google Scholar] [CrossRef]
- Ueyama, T.; Ishikura, F.; Matsuda, A.; Asanuma, T.; Ueda, K.; Ichinose, M.; Kasamatsu, K.; Hano, T.; Akasaka, T.; Tsuruo, Y.; et al. Chronic estrogen supplementation following ovariectomy improves the emotional stress-induced cardiovascular responses by indirect action on the nervous system and by direct action on the heart. Circ. J. 2007, 71, 565–573. [Google Scholar] [CrossRef]
- Ueyama, T.; Kasamatsu, K.; Hano, T.; Tsuruo, Y.; Ishikura, F. Catecholamines and estrogen are involved in the pathogenesis of emotional stress-induced acute heart attack. Ann. N. Y. Acad. Sci. 2008, 1148, 479–485. [Google Scholar] [CrossRef]
- Brenner, R.; Weilenmann, D.; Maeder, M.T.; Jörg, L.; Bluzaite, I.; Rickli, H.; De Pasquale, G.; Ammann, P. Clinical characteristics, sex hormones, and long-term follow-up in Swiss postmenopausal women presenting with Takotsubo cardiomyopathy. Clin. Cardiol. 2012, 35, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Shansky, R.M.; Glavis-Bloom, C.; Lerman, D.; McRae, P.; Benson, C.; Miller, K.; Cosand, L.; Horvath, T.L.; Arnsten, A.F. Estrogen mediates sex differences in stress-induced prefrontal cortex dysfunction. Mol. Psychiatry 2004, 9, 531–538. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, H.; Machuki, J.O.; Zhang, T.; Han, L.; Sang, L.; Wu, L.; Zhao, Z.; Turley, J.M.; Hu, X.; et al. GPER mediates estrogen cardioprotection against epinephrine-induced stress. J. Endocrinol. 2021, 249, 209–222. [Google Scholar] [CrossRef]
- Prossnitz, E.R.; Barton, M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat. Rev. Endocrinol. 2011, 7, 715–726. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Chen, Y.; Tang, Y.; Chen, T.; Zhou, C.; Wang, S.; Chang, R.; Chen, Z.; Yang, W.; et al. From physiology to pathology: Emerging roles of GPER in cardiovascular disease. Pharmacol. Ther. 2025, 267, 108801. [Google Scholar] [CrossRef]
- Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Ning, D.; Yang, X.; Wang, T.; Jiang, Q.; Yu, J.; Wang, D. Atorvastatin treatment ameliorates cardiac function and remodeling induced by isoproterenol attack through mitigation of ferroptosis. Biochem. Biophys. Res. Commun. 2021, 574, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Marchegiani, F.; Matacchione, G.; Giuliani, A.; Ramini, D.; Fazioli, F.; Sabbatinelli, J.; Bonafè, M. Sex/gender-related differences in inflammaging. Mech. Ageing Dev. 2023, 211, 111792. [Google Scholar] [CrossRef]
- Lam, C.S.P.; Arnott, C.; Beale, A.L.; Chandramouli, C.; Hilfiker-Kleiner, D.; Kaye, D.M.; Ky, B.; Santema, B.T.; Sliwa, K.; Voors, A.A. Sex differences in heart failure. Eur. Heart J. 2019, 40, 3859–3868c. [Google Scholar] [CrossRef]
- Pizzino, G.; Bitto, A.; Crea, P.; Khandheria, B.; Vriz, O.; Carerj, S.; Squadrito, F.; Minisini, R.; Citro, R.; Cusmà-Piccione, M.; et al. Takotsubo syndrome and estrogen receptor genes: Partners in crime? J Cardiovasc. Med. 2017, 18, 268–276. [Google Scholar] [CrossRef]
- Crea, P.; Carerj, S.; Bitto, A.; Cusma-Piccione, M.; Vriz, O.; Madaffari, A.; Minisini, R.; Acri, E.; Oteri, A.; Zito, C. Study of estrogen receptors polymorphisms in women with Takotsubo cardiomyopathy or myocardial infarction. Eur. Heart J. 2013, 34 (Suppl. S1), P5697. [Google Scholar] [CrossRef]
- Münzel, T.; Templin, C.; Cammann, V.L.; Hahad, O. Takotsubo Syndrome: Impact of endothelial dysfunction and oxidative stress. Free Radic. Biol. Med. 2021, 169, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Vendrov, A.E.; Xiao, H.; Lozhkin, A.; Hayami, T.; Hu, G.; Brody, M.J.; Sadoshima, J.; Zhang, Y.Y.; Runge, M.S.; Madamanchi, N.R. Cardiomyocyte NOX4 regulates resident macrophage-mediated inflammation and diastolic dysfunction in stress cardiomyopathy. Redox Biol. 2023, 67, 102937. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Li, H.; Wang, J.J.; Zhang, J.S.; Shen, J.; An, X.B.; Zhang, C.C.; Wu, J.M.; Song, Y.; Wang, X.Y.; et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur. Heart J. 2018, 39, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Nef, H.M.; Möllmann, H.; Kostin, S.; Troidl, C.; Voss, S.; Weber, M.; Dill, T.; Rolf, A.; Brandt, R.; Hamm, C.W.; et al. Tako-Tsubo cardiomyopathy: Intraindividual structural analysis in the acute phase and after functional recovery. Eur. Heart J. 2007, 28, 2456–2464. [Google Scholar] [CrossRef]
- Gomez Perdiguero, E.; Klapproth, K.; Schulz, C.; Busch, K.; Azzoni, E.; Crozet, L.; Garner, H.; Trouillet, C.; de Bruijn, M.F.; Geissmann, F.; et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015, 518, 547–551. [Google Scholar] [CrossRef]
- Liao, X.; Chang, E.; Tang, X.; Watanabe, I.; Zhang, R.; Jeong, H.W.; Adams, R.H.; Jain, M.K. Cardiac macrophages regulate isoproterenol-induced Takotsubo-like cardiomyopathy. JCI Insight 2022, 7, e156236. [Google Scholar] [CrossRef]
- Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020, 20, 95–112. [Google Scholar] [CrossRef]
- King, K.R.; Aguirre, A.D.; Ye, Y.X.; Sun, Y.; Roh, J.D.; Ng, R.P., Jr.; Kohler, R.H.; Arlauckas, S.P.; Iwamoto, Y.; Savol, A.; et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 2017, 23, 1481–1487. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, X.; Cui, J.; Wang, P.; Yang, Q.; Chen, Y.; Zhang, T. Ginsenoside Rb1 mitigates acute catecholamine surge-induced myocardial injuries in part by suppressing STING-mediated macrophage activation. Biomed. Pharmacother. 2024, 175, 116794. [Google Scholar] [CrossRef]
- Behzadi, P.; García-Perdomo, H.A.; Karpiński, T.M. Toll-Like Receptors: General Molecular and Structural Biology. J. Immunol. Res. 2021, 2021, 9914854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, J.; Dong, E.; Wang, Z.; Xiao, H. Toll-like receptors in cardiac hypertrophy. Front. Cardiovasc. Med. 2023, 10, 1143583. [Google Scholar] [CrossRef]
- Kołodzińska, A.; Czarzasta, K.; Szczepankiewicz, B.; Główczyńska, R.; Fojt, A.; Ilczuk, T.; Budnik, M.; Krasuski, K.; Folta, M.; Cudnoch-Jędrzejewska, A.; et al. Toll-like receptor expression and apoptosis morphological patterns in female rat hearts with takotsubo syndrome induced by isoprenaline. Life Sci. 2018, 199, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Egami, H.; Uchida, Y.; Sakurai, T.; Kanai, M.; Shirai, S.; Nakagawa, O.; Oshima, T. Possible participation of endothelial cell apoptosis of coronary microvessels in the genesis of Takotsubo cardiomyopathy. Clin. Cardiol. 2010, 33, 371–377. [Google Scholar] [CrossRef]
- Riad, A.; zu Schwabedissen, H.M.; Weitmann, K.; Herda, L.R.; Dörr, M.; Empen, K.; Kieback, A.; Hummel, A.; Reinthaler, M.; Grube, M.; et al. Variants of Toll-like receptor 4 predict cardiac recovery in patients with dilated cardiomyopathy. J. Biol. Chem. 2012, 287, 27236–27243. [Google Scholar] [CrossRef] [PubMed]
- Incalcaterra, E.; Caruso, M.; Balistreri, C.R.; Candore, G.; Lo Presti, R.; Hoffmann, E.; Caimi, G. Role of genetic polymorphisms in myocardial infarction at young age. Clin. Hemorheol. Microcirc. 2010, 46, 291–298. [Google Scholar] [CrossRef]
- Hussain, S.; Jha, S.; Berger, E.; Molander, L.; Sevastianova, V.; Sheybani, Z.; Espinosa, A.S.; Elmahdy, A.; Al-Awar, A.; Kakaei, Y.; et al. Comparative Analysis of Plasma Protein Dynamics in Women with ST-Elevation Myocardial Infarction and Takotsubo Syndrome. Cells 2024, 13, 1764. [Google Scholar] [CrossRef]
- Nagai, M.; Shityakov, S.; Smetak, M.; Hunkler, H.J.; Bär, C.; Schlegel, N.; Thum, T.; Förster, C.Y. Blood Biomarkers in Takotsubo Syndrome Point to an Emerging Role for Inflammaging in Endothelial Pathophysiology. Biomolecules 2023, 13, 995. [Google Scholar] [CrossRef]
- Di Gangi, P.; Scola, L.; Giambanco, S.; Bova, M.; Santini, G.; Vaccarino, L.; Balistreri, C.R.; Lio, D.; Novo, G. Cytokine Polymorphism in Takotsubo Cardiomyopathy. Am. J. Pathol. 2014, 184, 31. [Google Scholar]
- O’Reardon, J.P.; Lott, J.P.; Akhtar, U.W.; Cristancho, P.; Weiss, D.; Jones, N. Acute coronary syndrome (Takotsubo cardiomyopathy) following electroconvulsive therapy in the absence of significant coronary artery disease: Case report and review of the literature. J. ECT 2008, 24, 277–280. [Google Scholar] [CrossRef]
- Gargoum, A.; Bare, I.; Pekrul, C.; Nosib, S. Loeys-Dietz syndrome and isolated severe ostial left main coronary stenosis presenting as ventricular fibrillation arrest and biventricular takotsubo syndrome in a 25-year-old patient. BMJ Case Rep. 2021, 14, e245566. [Google Scholar] [CrossRef] [PubMed]
- Scola, L.; Di Maggio, F.M.; Vaccarino, L.; Bova, M.; Forte, G.I.; Pisano, C.; Candore, G.; Colonna-Romano, G.; Lio, D.; Ruvolo, G.; et al. Role of TGF-β pathway polymorphisms in sporadic thoracic aortic aneurysm: rs900 TGF-β2 is a marker of differential gender susceptibility. Mediat. Inflamm. 2014, 2014, 165758. [Google Scholar] [CrossRef] [PubMed]
- Ueyama, T.; Kawabe, T.; Hano, T.; Tsuruo, Y.; Ueda, K.; Ichinose, M.; Kimura, H.; Yoshida, K. Upregulation of heme oxygenase-1 in an animal model of Takotsubo cardiomyopathy. Circ. J. 2009, 73, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Willis, B.C.; Salazar-Cantú, A.; Silva-Platas, C.; Fernández-Sada, E.; Villegas, C.A.; Rios-Argaiz, E.; González-Serrano, P.; Sánchez, L.A.; Guerrero-Beltrán, C.E.; García, N.; et al. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H467–H477. [Google Scholar] [CrossRef]
- Tsolaki, V.; Makris, D.; Mantzarlis, K.; Zakynthinos, E. Sepsis-Induced Cardiomyopathy: Oxidative Implications in the Initiation and Resolution of the Damage. Oxid. Med. Cell. Longev. 2017, 2017, 7393525. [Google Scholar] [CrossRef]
- Nef, H.M.; Möllmann, H.; Troidl, C.; Kostin, S.; Böttger, T.; Voss, S.; Hilpert, P.; Krause, N.; Weber, M.; Rolf, A.; et al. Expression profiling of cardiac genes in Tako-Tsubo cardiomyopathy: Insight into a new cardiac entity. J. Mol. Cell. Cardiol. 2008, 44, 395–404. [Google Scholar] [CrossRef]
- Surikow, S.Y.; Nguyen, T.H.; Stafford, I.; Chapman, M.; Chacko, S.; Singh, K.; Licari, G.; Raman, B.; Kelly, D.J.; Zhang, Y.; et al. Nitrosative Stress as a Modulator of Inflammatory Change in a Model of Takotsubo Syndrome. JACC Basic Transl. Sci. 2018, 3, 213–226. [Google Scholar] [CrossRef]
- He, W.; Wang, Q.; Gu, L.; Zhong, L.; Liu, D. NOX4 rs11018628 polymorphism associates with a decreased risk and better short-term recovery of ischemic stroke. Exp. Ther. Med. 2018, 16, 5258–5264. [Google Scholar] [CrossRef]
- Theccanat, T.; Philip, J.L.; Razzaque, A.M.; Ludmer, N.; Li, J.; Xu, X.; Akhter, S.A. Regulation of cellular oxidative stress and apoptosis by G protein-coupled receptor kinase-2; The role of NADPH oxidase 4. Cell. Signal. 2016, 28, 190–203. [Google Scholar] [CrossRef]
- Lange, L.A.; Croteau-Chonka, D.C.; Marvelle, A.F.; Qin, L.; Gaulton, K.J.; Kuzawa, C.W.; McDade, T.W.; Wang, Y.; Li, Y.; Levy, S.; et al. Genome-wide association study of homocysteine levels in Filipinos provides evidence for CPS1 in women and a stronger MTHFR effect in young adults. Hum. Mol. Genet. 2010, 19, 2050–2058. [Google Scholar] [CrossRef]
- Wang, S.; Nikamo, P.; Laasonen, L.; Gudbjornsson, B.; Ejstrup, L.; Iversen, L.; Lindqvist, U.; Alm, J.J.; Eisfeldt, J.; Zheng, X.; et al. Rare coding variants in NOX4 link high ROS levels to psoriatic arthritis mutilans. EMBO Mol. Med. 2024, 16, 596–615. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Hanna, P.; Mori, S. Innervation of the coronary arteries and its role in controlling microvascular resistance. J. Cardiol. 2024, 84, 1–13. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Hasenfuß, G.; Buchmann, S.; Kahl, K.G.; Aeschbacher, S.; Osswald, S.; Angermann, C.E. Heart and brain interactions: Pathophysiology and management of cardio-psycho-neurological disorders. Herz 2021, 46, 138–149. [Google Scholar] [CrossRef]
- Couch, L.S.; Fiedler, J.; Chick, G.; Clayton, R.; Dries, E.; Wienecke, L.M.; Fu, L.; Fourre, J.; Pandey, P.; Derda, A.A.; et al. Circulating microRNAs predispose to takotsubo syndrome following high-dose adrenaline exposure. Cardiovasc. Res. 2022, 118, 1758–1770. [Google Scholar] [CrossRef]
- Cho, Y.Y.; Kim, S.; Kim, P.; Jo, M.J.; Park, S.E.; Choi, Y.; Jung, S.M.; Kang, H.J. G-Protein-Coupled Receptor (GPCR) Signaling and Pharmacology in Metabolism: Physiology, Mechanisms, and Therapeutic Potential. Biomolecules 2025, 15, 291. [Google Scholar] [CrossRef]
- Wieland, T.; Lutz, S.; Chidiac, P. Regulators of G protein signalling: A spotlight on emerging functions in the cardiovascular system. Curr. Opin. Pharmacol. 2007, 7, 201–207. [Google Scholar] [CrossRef]
- Kuwabara, Y.; Ono, K.; Horie, T.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Baba, O.; Kojima, Y.; Shizuta, S.; et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet. 2011, 4, 446–454. [Google Scholar] [CrossRef]
- d’Avenia, M.; Citro, R.; De Marco, M.; Veronese, A.; Rosati, A.; Visone, R.; Leptidis, S.; Philippen, L.; Vitale, G.; Cavallo, A.; et al. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death Dis. 2015, 6, e1948. [Google Scholar] [CrossRef] [PubMed]
- Citro, R.; d’Avenia, M.; De Marco, M.; Giudice, R.; Mirra, M.; Ravera, A.; Silverio, A.; Farina, R.; Silvestri, F.; Gravina, P.; et al. Polymorphisms of the antiapoptotic protein bag3 may play a role in the pathogenesis of tako-tsubo cardiomyopathy. Int. J. Cardiol. 2013, 168, 1663–1665. [Google Scholar] [CrossRef]
- Gaddam, R.R.; Amalkar, V.S.; Sali, V.K.; Nakuluri, K.; Jacobs, J.S.; Kim, Y.R.; Li, Q.; Bahal, R.; Irani, K.; Vikram, A. Role of miR-204 in segmental cardiac effects of phenylephrine and pressure overload. Biochem. Biophys. Res. Commun. 2023, 675, 85–91. [Google Scholar] [CrossRef]
- Ibanez, B.; Benezet-Mazuecos, J.; Navarro, F.; Farre, J. Takotsubo syndrome: A Bayesian approach to interpreting its pathogenesis. Mayo Clin. Proc. 2006, 81, 732–735. [Google Scholar] [CrossRef]
- Haghi, D.; Roehm, S.; Hamm, K.; Harder, N.; Suselbeck, T.; Borggrefe, M.; Papavassiliu, T. Takotsubo cardiomyopathy is not due to plaque rupture: An intravascular ultrasound study. Clin. Cardiol. 2010, 33, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, E.; Parodi, G.; Fatucchi, S.; Angelotti, P.; Giglioli, C.; Gori, A.M.; Bandinelli, B.; Bellandi, B.; Sticchi, E.; Romagnuolo, I.; et al. Prevalence of thrombophilic disorders in takotsubo patients: The (ThROmbophylia in TAkotsubo cardiomyopathy) TROTA study. Clin. Res. Cardiol. 2016, 105, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Santoro, F.; Tarantino, N.; Ieva, R.; Musaico, F.; Di Biase, M.; Brunetti, N.D. Hereditary hypercoagulable state and Takotsubo cardiomyopathy: A possible link. Int. J. Cardiol. 2014, 174, e108–e109. [Google Scholar] [CrossRef] [PubMed]
- Bova, M.; Novo, G.; Scola, L.; Santini, G.; Di Gangi, P.; Lio, D. Analysis of coagulation gene SNPs support the role of acute phase reaction and catecholamine excess in takotsubo cardiomyopathy. In Proceedings of the 1st SIPMeL National Congress—La Medicina di Laboratorio Guarda al Future, Rome, Italy, 24–26 November 2015; p. e253. [Google Scholar]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef]
- Flammer, A.J.; Lüscher, T.F. Human endothelial dysfunction: EDRFs. Pflug. Arch. 2010, 459, 1005–1013. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Huang, M.; Li, X.; Fan, X.; Yan, C.; Meng, Z.; Liao, B.; Hamdani, N.; El-Battrawy, I.; et al. Small conductance calcium-activated potassium channel contributes to stress induced endothelial dysfunctions. Microvasc. Res. 2024, 155, 104699. [Google Scholar] [CrossRef]
- Kalani, M.Y.S.; Siniard, A.L.; Corneveaux, J.J.; Bruhns, R.; Richholt, R.; Forseth, J.; Zabramski, J.M.; Nakaji, P.; Spetzler, R.F.; Huentelman, M.J. Rare Variants in Cardiomyopathy Genes Associated with Stress-Induced Cardiomyopathy. Neurosurgery 2016, 78, 835–843. [Google Scholar] [CrossRef]
- d’Apolito, M.; Santoro, F.; Ranaldi, A.; Cannito, S.; Santacroce, R.; Ragnatela, I.; Margaglione, A.; D’Andrea, G.; Brunetti, N.D.; Margaglione, M. Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study. Int. J. Mol. Sci. 2025, 26, 1200. [Google Scholar] [CrossRef]
- Frederiksen, T.C.; Calloe, K.; Geryk, M.; Jensen, H.K. Takotsubo cardiomyopathy and Brugada syndrome in a patient with a novel loss-of-function variant in the cardiac sodium channel Nav1.5. HeartRhythm Case Rep. 2022, 8, 325–329. [Google Scholar] [CrossRef]
- Eitel, I.; Moeller, C.; Munz, M.; Stiermaier, T.; Meitinger, T.; Thiele, H.; Erdmann, J. Genome-wide association study in takotsubo syndrome—Preliminary results and future directions. Int. J. Cardiol. 2017, 236, 335–339. [Google Scholar] [CrossRef]
- Dattilo, V.; Ulivi, S.; Minelli, A.; La Bianca, M.; Giacopuzzi, E.; Bortolomasi, M.; Bignotti, S.; Gennarelli, M.; Gasparini, P.; Concas, M.P. Genome-wide association studies on Northern Italy isolated populations provide further support concerning genetic susceptibility for major depressive disorder. World J. Biol. Psychiatry 2023, 24, 135–148. [Google Scholar] [CrossRef]
- Zorn, P.; Calvo Sánchez, J.; Alakhras, T.; Schreier, B.; Gekle, M.; Hüttelmaier, S.; Köhn, M. Rbfox1 controls alternative splicing of focal adhesion genes in cardiac muscle cells. J. Mol. Cell. Biol. 2024, 16, mjae003. [Google Scholar] [CrossRef]
- Zeng, Q.; Cai, J.; Wan, H.; Zhao, S.; Tan, Y.; Zhang, C.; Qu, S. PIWI-interacting RNAs and PIWI proteins in diabetes and cardiovascular disease: Molecular pathogenesis and role as biomarkers. Clin. Chim. Acta 2021, 518, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xia, L.K.; Di, Y.; Nie, Q.Z.; Chen, X.L. Mechanism of piR-1245/PIWI-like protein-2 regulating Janus kinase-2/signal transducer and activator of transcription-3/vascular endothelial growth factor signaling pathway in retinal neovascularization. Neural Regen Res. 2023, 18, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Verna, E.; Provasoli, S.; Ghiringhelli, S.; Morandi, F.; Salerno-Uriarte, J. Abnormal coronary vasoreactivity in transient left ventricular apical ballooning (tako-tsubo) syndrome. Int. J. Cardiol. 2018, 250, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.M.; Lerman, A.; Lennon, R.J.; Prasad, A. Impaired coronary microvascular reactivity in women with apical ballooning syndrome (Takotsubo/stress cardiomyopathy). Eur. Heart J. Acute Cardiovasc. Care 2013, 2, 147–152. [Google Scholar] [CrossRef]
- Wong, W.M.; Mahroo, O.A. Monogenic Retinal Diseases Associated with Genes Encoding Phototransduction Proteins: A Review. Clin. Exp. Ophthalmol. 2025, 53, 260–280. [Google Scholar] [CrossRef]
- Li, L.; Zhao, H.; Xie, H.; Akhtar, T.; Yao, Y.; Cai, Y.; Dong, K.; Gu, Y.; Bao, J.; Chen, J.; et al. Electrophysiological characterization of photoreceptor-like cells in human inducible pluripotent stem cell-derived retinal organoids during in vitro maturation. Stem Cells 2021, 39, 959–974. [Google Scholar] [CrossRef]
- Hamm, M.J.; Kirchmaier, B.C.; Herzog, W. Sema3d controls collective endothelial cell migration by distinct mechanisms via Nrp1 and PlxnD1. J. Cell Biol. 2016, 215, 415–430. [Google Scholar] [CrossRef]
- Corà, D.; Astanina, E.; Giraudo, E.; Bussolino, F. Semaphorins in cardiovascular medicine. Trends Mol. Med. 2014, 20, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Aghajanian, H.; Cho, Y.K.; Manderfield, L.J.; Herling, M.R.; Gupta, M.; Ho, V.C.; Li, L.; Degenhardt, K.; Aharonov, A.; Tzahor, E.; et al. Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nat. Commun. 2016, 7, 12038. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, S. ADAMTS-5: A difficult teenager turning 20. Int. J. Exp. Pathol. 2020, 101, 4–20. [Google Scholar] [CrossRef]
- Hemmeryckx, B.; Carai, P.; Lijnen, R.H. ADAMTS5 deficiency in mice does not affect cardiac function. Cell. Biol. Int. 2019, 43, 593–604. [Google Scholar] [CrossRef]
- Suna, G.; Wojakowski, W.; Lynch, M.; Barallobre-Barreiro, J.; Yin, X.; Mayr, U.; Baig, F.; Lu, R.; Fava, M.; Hayward, R.; et al. Extracellular Matrix Proteomics Reveals Interplay of Aggrecan and Aggrecanases in Vascular Remodeling of Stented Coronary Arteries. Circulation 2018, 137, 166–183. [Google Scholar] [CrossRef] [PubMed]
- Alabi, R.O.; Farber, G.; Blobel, C.P. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol. Rev. 2018, 98, 2025–2061. [Google Scholar] [CrossRef]
- Xu, T.; Jiang, S.; Liu, T.; Han, S.; Wang, Y. ADAM10 Alleviates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Activating the Notch Signaling Pathway. Cell Biochem. Biophys. 2024, 82, 2523–2532. [Google Scholar] [CrossRef]
- Zaker, S.R.; Ghaedi, K. Downregulation of LINC02615 is correlated with the breast cancer progress: A novel biomarker for differential identification of breast cancer tissues. Cell J. 2021, 23, 414–420. [Google Scholar] [CrossRef]
- Yang, C.; Wu, J.; Lu, X.; Xiong, S.; Xu, X. Identification of novel biomarkers for intracerebral hemorrhage via long noncoding RNA-associated competing endogenous RNA network. Mol. Omics 2022, 18, 71–82. [Google Scholar] [CrossRef]
- Saeidi, L.; Ghaedi, H.; Sadatamini, M.; Vahabpour, R.; Rahimipour, A.; Shanaki, M.; Mansoori, Z.; Kazerouni, F. Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol. Biol. Rep. 2018, 45, 2601–2608. [Google Scholar] [CrossRef]
- Hakansson, H.; Tornvall, P. A Genome-Wide Association Study (GWAS) of Takotsubo syndrome. Eur. Heart J. 2024, 45, ehae666.3661. [Google Scholar] [CrossRef]
- Li, C.; Zhang, K.; Zhao, J. Genome-wide Mendelian randomization mapping the influence of plasma proteome on major depressive disorder. J. Affect. Disord. 2025, 376, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Garshick, M.S.; Barrett, T.J.; Cornwell, M.G.; Drenkova, K.; Garelik, J.; Weber, B.N.; Schlamp, F.; Rockman, C.; Ruggles, K.V.; Reynolds, H.R.; et al. An inflammatory transcriptomic signature in psoriasis associates with future cardiovascular events. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
SNP | Chromosome (GRCh38) | Characterized DNA Sequences | Variation Type | Functional Role |
---|---|---|---|---|
rs113154180 | 3:7563703 | GRM7 | Intron variant | Major depression susceptibility |
rs12444925 | 16:5420155 | RBFOX1 | Genic downstream transcript variant, intron variant | Cytoskeletal organization, in cardiomyoblast |
rs13273616 | 8:22333990 | PIWIL2 | Intron variant, Genic downstream transcript variant, | Interaction with JAK2/STAT3 in endothelial cells in hypoxic condition |
rs162487 | 21:26940919 | ADAMTS5 | Intron variant | Angiogenesis and inflammation |
rs4676168 | 2:107987046 | SLC5A7 | Genic downstream transcript variant, intron variant | Cholin trasporter in the acetylcholine neuro-transmission pathway |
rs4961212 | 8:86709209 | CNGB3 | Genic downstream transcript variant, intron variant | Achromatopsia, cyclic nucleotide-gated (CNG) channels |
rs56403110 | 15:58718163 | ADAM10 | Intron variant | Molecular scissors for extracellular domains Reduction in oxidative stress, Anti apoptosis |
rs6944978 | 7:85184930 | SEMA3D | Genic downstream transcript variant, intron variant | Cardiovascular development |
rs7070797 | 10:61792015 | LINC02625 | Intron variant | miR interaction, Apoptosis |
rs9392780 | 6:6405398 | LY86-AS1 | Intron variant | Hemorrhagic Ictus, IDDM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lio, D.; Scola, L.; Forte, G.I.; Vaccarino, L.; Bova, M.; Di Gangi, P.; Santini, G.; di Lisi, D.; Madaudo, C.; Novo, G. The Genetic Puzzle of the Stress-Induced Cardiomyopathy (Takotsubo Syndrome): State of Art and Future Perspectives. Biomolecules 2025, 15, 926. https://doi.org/10.3390/biom15070926
Lio D, Scola L, Forte GI, Vaccarino L, Bova M, Di Gangi P, Santini G, di Lisi D, Madaudo C, Novo G. The Genetic Puzzle of the Stress-Induced Cardiomyopathy (Takotsubo Syndrome): State of Art and Future Perspectives. Biomolecules. 2025; 15(7):926. https://doi.org/10.3390/biom15070926
Chicago/Turabian StyleLio, Domenico, Letizia Scola, Giusi Irma Forte, Loredana Vaccarino, Manuela Bova, Patrizia Di Gangi, Giorgia Santini, Daniela di Lisi, Cristina Madaudo, and Giuseppina Novo. 2025. "The Genetic Puzzle of the Stress-Induced Cardiomyopathy (Takotsubo Syndrome): State of Art and Future Perspectives" Biomolecules 15, no. 7: 926. https://doi.org/10.3390/biom15070926
APA StyleLio, D., Scola, L., Forte, G. I., Vaccarino, L., Bova, M., Di Gangi, P., Santini, G., di Lisi, D., Madaudo, C., & Novo, G. (2025). The Genetic Puzzle of the Stress-Induced Cardiomyopathy (Takotsubo Syndrome): State of Art and Future Perspectives. Biomolecules, 15(7), 926. https://doi.org/10.3390/biom15070926