Advancing Therapeutic Strategies in Atopic Dermatitis: Emerging Targets and Personalized Approaches
Abstract
:1. Introduction
2. Topical Treatments for AD
3. Systemic Treatments for AD
3.1. Biologics and Small Molecule Inhibitors for AD
3.2. Therapies Under Investigation
3.2.1. TSLP and the IL-1 Family
Target | Medication | Study Design | Primary Outcome | Clinical Trial | Status of Investigation |
---|---|---|---|---|---|
TSLP | Tezepelumab | 113 adults with moderate to severe AD | EASI50 at Week 12 Tezepelumab+TCS: 64.7% Placebo+TCS: 48.2% Odds Ratio: 1.97 (95% CI: 0.90 to 4.33) | NCT02525094 (Phase II) [22] | Complete, but failed to meet efficacy |
IL-1α | Bermekimab | 87 adults with moderate to severe AD | EASI75 at Week 16 Bermekimab 400 mg qw: 34.5% (p = 0.04) Bermekimab 400 mg q2w: 24.1% (p = 0.35) Placebo: 13.8% | NCT04021862 (Phase II) [30] | Complete, but failed to meet efficacy |
130 adults with moderate to severe AD | EASI75 at Week 16 Bermekimab 350 mg qw: 16.7% (p = 0.489) Bermekimab 700 mg q2w: 16.7% (p = 0.448) Placebo: 9.5% | NCT04021862 (Phase II) [30] | Terminated due to meeting futility criterion | ||
IL-18 | CMK389 | 71 adults with moderate to severe AD | IGA clear or almost clear and at least a 2-grade improvement from baseline at Week 16 CMK389 10 mg/kg monthly: 14.7% CMK389 300 mg monthly: 11.8% Placebo: 0% | NCT04836858 (Phase II) [34] | Complete |
IL-33 | Astegolimab | 65 adults with moderate to severe AD | % change in the EASI score at Week 16 Astegolimab loading 245 mg/490 mg q4w: −51.47 (8.639) Placebo: −58.24 (9.092) Mean (Standard Error) | NCT03747575 (Phase II) [28] | Complete, but failed to meet efficacy |
Etokimab | 302 adults with moderate to severe AD | % change in the EASI score at Week 16 Etokimab 20 mg q4w: −41.63 (6.707) Etokimab loading 300 mg/150 mg q8w: −55.70 (6.21) Etokimab loading 300 mg/150 mg q4w: −47.40 (6.09) Etokimab loading 600 mg/300 mg q4w: −44.56 (7.81) Placebo: −49.38 (7.12) Mean (Standard Error) | NCT03533751 (Phase II) [35] | Complete, but failed to meet efficacy | |
Itepekimab | 206 adults with moderate to severe AD | % change in the EASI score at Week 16 Itepekimab 300 mg q2w: −66.6 (22.46) Placebo: −52.4 (31.86) Mean (Standard Error) | NCT03736967 (Phase II) [31] | Terminated due to meeting futility criterion | |
IL36R | Spesolimab | 51 adults with moderate to severe AD | % change in the EASI score at Week 16 Spesolimab 600 mg q4w: −37.9 (9.8) Placebo: −12.3 (14.3) (p = 0.149) Mean (Standard Error) | NCT03822832 (Phase II) [32] | Complete, but failed to meet efficacy |
14 adults with moderate to severe AD | Number of patients with treatment emergent adverse events at week 48: 9/14 (64.3%) | NCT04086121 (Phase II) Open Label Extension Study of NCT03822832 [36] | Terminated |
3.2.2. OX40 and OX40L
Target | Medication | Study Design | Primary Outcome | Clinical Trial | Status of Investigation |
---|---|---|---|---|---|
OX40L | Amlitelimab | 89 adults with moderate to severe AD | % change in the EASI score at Week 16 Amlitelimab loading 200 mg/100 mg q4w: −80.12% (95% CI: −95.55 to −64.68) (p = 0.009) Amlitelimab loading 500 mg/250 mg q4w: −69.97% (95% CI: −85.04 to −54.60) (p = 0.07) Placebo: −49.37% (95% CI: −66.02 to −32.72) | NCT03754309 (Phase II) [48] | Complete |
390 adults with moderate to severe AD | % change in the EASI score at Week 16 Amlitelimab loading 500 mg/250 mg q4w: −61.5% (95% CI: −43.9 to −20.3) (p < 0.0001) Amlitelimab 250 mg q4w: −56.8% (95% CI: −39.1 to −15.6) (p < 0.0001) Amlitelimab 125 mg q4w: −51.6% (95% CI: −34.0 to −10.4) (p = 0.0002) Amlitelimab 62.5 mg q4w: −59.6% (95% CI: −41.9 to −18.5) (p < 0.0001) Placebo: −29.4% | NCT05131477 (Phase II) [47] | Complete | ||
OX40 | Rocatinlimab (AMG 451/KHK4083) | 274 adults with moderate to severe AD | % change in the EASI score at Week 16 Rocatinlimab 150 mg q4w: −48.33 (95% CI: −62.62 to −34.04) Rocatinlimab 600 mg q4w: −49.72 (95% CI: −62.47 to −35.17) Rocatinlimab 300 mg q2w: −61.07 (95% CI: −75.19 to −46.96) Rocatinlimab 600 mg q2w: −57.35 (95% CI: −71.27 to −43.43) Placebo: −15.01 (95% CI: −28.60 to −1.43) Statistically significant improvements in all groups | NCT03703102 (Phase II) [44] | Complete |
OX40 | Telazorlimab (ISB 830/ GBR 830) | 64 adults with moderate to severe AD | Change from baseline in lesional epidermal thickness at week10 Telazorlimab 10 mg/kg q4w: −26.51 (88.68) Placebo: −6.01 (39.40) | NCT02683928 (Phase II) [45] | Complete |
462 adults with moderate to severe AD | % change in the EASI score at Week 16; Mean (Standard Error) Telazorlimab loading 600 mg/300 mg q2w: −54.4 (5.1) (p = 0.008) Telazorlimab loading 600 mg/300 mg q4w: −48.6 (5.4) (p = 0.06) Telazorlimab loading 150 mg/75 mg q4w: −31.0 (5.7) (p = 0.69) Placebo 2 injections q2w: −34.2 (5.5) Telazorlimab loading 1200 mg/600 mg q2w: −59.0 (4.6) (p = 0.008) Placebo 4 injections q2w: −41.8 (4.7) | NCT03568162 (Phase II) [46] | Complete | ||
IL-12/ IL-23 | Ustekinumab | 79 Japanese adults with severe AD | % change in the EASI score at Week 12; Mean (Standard Error) Ustekinumab 45 mg at Week 0 and 4: −38.62 (32.684) Ustekinumab 90 mg at Week 0 and 4: −39.39 (38.710) Placebo: −37.54 (37.592) Both treatment arms allowed concurrent use of TCS, topical calcineurin inhibitors, or anti-leukotriene therapies | NCT01945086 (Phase II) [49] | Complete, but failed to meet efficacy |
32 adults with moderate to severe AD | SCORAD50 at Week 16 Ustekinumab+TCS: 31.3%; Placebo+TCS: 18.8% Odds Ratio: 1.93 (95%CI: 0.30 to 15.33) | NCT01806662 (Phase II) [50] | Complete, but failed to meet efficacy | ||
IL-23 | Risankizumab | 172 adults and adolescents with moderate to severe AD | EASI75 at Week 16 Risankizumab 150 mg at Week 0 and 4: 24.6% (95%CI: 14.5 to 34.8) (p = 0.08) Risankizumab 300 mg at Week 0 and 4: 21.7% (95%CI: 12.0 to 31.5) (p = 0.18) Placebo: 11.8% (95%CI: 0.9–22.6) | NCT03706040 (Phase II) [51] | Complete, but failed to meet efficacy |
IL-17 | Secukinumab | 41 adults with moderate to severe AD | Fold change in epidermal thickness of lesional skin at Week 16 Secukinumab only for extrinsic AD: 1.18 (1.15) Secukinumab only for intrinsic AD: −1 (1.15) Placebo then secukinumab from week 16 for extrinsic AD: 1.15 (1.22) Placebo then secukinumab from week 16 for intrinsic AD: 1.5 (1.3) | NCT02594098 (Phase II) [52] | Complete, but failed to meet efficacy |
IL-22 | Fezakinumab (ILV-094) | 60 adults with moderate to severe AD | % change in the SCORAD at Week 12 Fezakinumab loading 600 mg/300 mg q2w: −13.8 (2.7) Placebo: −8 (3.1) (p = 0·134) % change in the SCORAD at Week 20 Fezakinumab loading 600 mg/300 mg q2w: −18.8 (2.9) Placebo: −11.7 (3.9) (p = 0·049) | NCT01941537 (Phase II) [53] | Complete |
3.2.3. IL-17 and Th17-Related Cytokines
3.2.4. IL-22
4. Special Consideration for AD
4.1. Modulation of the Skin Microbiome
4.2. The Itch–Scratch Cycle
4.2.1. IL-31
4.2.2. Histamine 4 Receptor (H4R)
4.2.3. Substance P (SP) and Neurokinin 1 Receptor (NK1R)
5. Challenging and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | atopic dermatitis |
Th2 | T helper 2 |
IL | interleukin |
JAK/STAT | Janus kinase/signal transducer and activator of transcription |
TSLP | thymic stromal lymphopoietin |
EASI | eczema area and severity index |
POEM | patient-oriented eczema measure |
DLQI | dermatology life quality index |
PP-NRS | peak pruritus numerical rating scale |
TCS | topical corticosteroids |
RCT | randomized controlled trial |
H4R | Histamine 4 Receptor |
IGA | Investigator’s Global Assessment |
NK1R | neurokinin 1 receptor |
SP | Substance P |
SCORAD | SCORing Atopic Dermatitis |
TSLP | thymic stromal lymphopoietin |
WI-NRS | worst itch numeric rating scale |
References
- Facheris, P.; Jeffery, J.; Del Duca, E.; Guttman-Yassky, E. The translational revolution in atopic dermatitis: The paradigm shift from pathogenesis to treatment. Cell. Mol. Immunol. 2023, 20, 448–474. [Google Scholar] [CrossRef] [PubMed]
- Sroka-Tomaszewska, J.; Trzeciak, M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 4130. [Google Scholar] [CrossRef] [PubMed]
- Sadrolashrafi, K.; Guo, L.; Kikuchi, R.; Hao, A.; Yamamoto, R.K.; Tolson, H.C.; Bilimoria, S.N.; Yee, D.K.; Armstrong, A.W. An OX-Tra’Ordinary Tale: The Role of OX40 and OX40L in Atopic Dermatitis. Cells 2024, 13, 587. [Google Scholar] [CrossRef] [PubMed]
- Gittler, J.K.; Shemer, A.; Suarez-Farinas, M.; Fuentes-Duculan, J.; Gulewicz, K.J.; Wang, C.Q.; Mitsui, H.; Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol. 2012, 130, 1344–1354. [Google Scholar] [CrossRef]
- Sidbury, R.; Alikhan, A.; Bercovitch, L.; Cohen, D.E.; Darr, J.M.; Drucker, A.M.; Eichenfield, L.F.; Frazer-Green, L.; Paller, A.S.; Schwarzenberger, K.; et al. Guidelines of care for the management of atopic dermatitis in adults with topical therapies. J. Am. Acad. Dermatol. 2023, 89, e1–e20. [Google Scholar] [CrossRef]
- Papp, K.; Szepietowski, J.C.; Kircik, L.; Toth, D.; Eichenfield, L.F.; Leung, D.Y.M.; Forman, S.B.; Venturanza, M.E.; Sun, K.; Kuligowski, M.E.; et al. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-blind studies. J. Am. Acad. Dermatol. 2021, 85, 863–872. [Google Scholar] [CrossRef]
- Papp, K.; Szepietowski, J.C.; Kircik, L.; Toth, D.; Eichenfield, L.F.; Forman, S.B.; Kuligowski, M.E.; Kallender, H.; Sun, K.; Ren, H.; et al. Long-term safety and disease control with ruxolitinib cream in atopic dermatitis: Results from two phase 3 studies. J. Am. Acad. Dermatol. 2023, 88, 1008–1016. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nemoto, O.; Igarashi, A.; Saeki, H.; Kabashima, K.; Oda, M.; Nagata, T. Delgocitinib ointment in pediatric patients with atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and a subsequent open-label, long-term study. J. Am. Acad. Dermatol. 2021, 85, 854–862. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nemoto, O.; Igarashi, A.; Saeki, H.; Kaino, H.; Nagata, T. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. J. Am. Acad. Dermatol. 2020, 82, 823–831. [Google Scholar] [CrossRef]
- Drucker, A.M.; Morra, D.E.; Prieto-Merino, D.; Ellis, A.G.; Yiu, Z.Z.N.; Rochwerg, B.; Di Giorgio, S.; Arents, B.W.M.; Burton, T.; Spuls, P.I.; et al. Systemic Immunomodulatory Treatments for Atopic Dermatitis: Update of a Living Systematic Review and Network Meta-analysis. JAMA Dermatol. 2022, 158, 523–532. [Google Scholar] [CrossRef]
- Drucker, A.M.; Lam, M.; Prieto-Merino, D.; Malek, R.; Ellis, A.G.; Yiu, Z.Z.N.; Rochwerg, B.; Di Giorgio, S.; Arents, B.W.M.; Mohan, T.; et al. Systemic Immunomodulatory Treatments for Atopic Dermatitis: Living Systematic Review and Network Meta-Analysis Update. JAMA Dermatol. 2024, 160, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; Schadeck, T.; Jacobs, F.; Weyergraf, A.; Mortazawi, D.; Hagemann, T.; Abousamra, F.; Mosch, T.; Fritz, B.; Lauffer, F. Early Achievement of High Treatment Targets in Moderate-to-Severe Atopic Dermatitis with Upadacitinib: Real-World Evidence from the Observational UP-TAINED Study. Dermatol. Ther. 2025, 15, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, L.; Ibba, L.; Bianco, M.; Di Giulio, S.; Alfano, A.; Cascio Ingurgio, R.; Facheris, P.; Perugini, C.; Valenti, M.; Costanzo, A.; et al. Upadacitinib 30 mg for the optimal management of moderate-to-severe atopic dermatitis: A 52-week single-center real-world study. J. Dermatol. Treat. 2024, 35, 2375102. [Google Scholar] [CrossRef] [PubMed]
- Hagino, T.; Hamada, R.; Yoshida, M.; Saeki, H.; Fujimoto, E.; Kanda, N. Sustained Effectiveness of Upadacitinib in Moderate-to-Severe Atopic Dermatitis: A 48-Week Real-World Study. Pharmaceuticals 2024, 17, 519. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wu, Y.; Yin, H.; Wang, S.; Wu, H.; Qin, H.; Wang, C.; Yao, X.; Li, W.; et al. Real-World Efficacy and Safety of Abrocitinib in Chinese Atopic Dermatitis Patients: A Single-Center Prospective Study. Allergy 2025, 80, 1417–1427. [Google Scholar] [CrossRef]
- Ronnstad, A.T.M.; Bunick, C.G.; Chovatiya, R.; Kamata, M.; Nielsen, M.L.; Isufi, D.; Thomsen, S.F.; Vestergaard, C.; Wollenberg, A.; Egeberg, A.; et al. Real-World Evidence of Tralokinumab Effectiveness and Safety: A Systematic Review and Meta-analysis. Am. J. Clin. Dermatol. 2025, 26, 411–424. [Google Scholar] [CrossRef]
- Hagino, T.; Uchiyama, A.; Onda, M.; Kosaka, K.; Araki, T.; Motegi, S.I.; Saeki, H.; Fujimoto, E.; Kanda, N. Real-World Effectiveness and Safety of Lebrikizumab for Moderate-to-Severe Atopic Dermatitis: A 16-Week Study in Japan. Dermatitis, 2025; ahead of print. [Google Scholar] [CrossRef]
- Halling, A.S.; Loft, N.; Silverberg, J.I.; Guttman-Yassky, E.; Thyssen, J.P. Real-world evidence of dupilumab efficacy and risk of adverse events: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2021, 84, 139–147. [Google Scholar] [CrossRef]
- Soumelis, V.; Reche, P.A.; Kanzler, H.; Yuan, W.; Edward, G.; Homey, B.; Gilliet, M.; Ho, S.; Antonenko, S.; Lauerma, A.; et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 2002, 3, 673–680. [Google Scholar] [CrossRef]
- Yoo, J.; Omori, M.; Gyarmati, D.; Zhou, B.; Aye, T.; Brewer, A.; Comeau, M.R.; Campbell, D.J.; Ziegler, S.F. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 2005, 202, 541–549. [Google Scholar] [CrossRef]
- Garcia-Reyes, M.M.; Zumaya-Perez, L.C.; Pastelin-Palacios, R.; Moreno-Eutimio, M.A. Serum thymic stromal lymphopoietin (TSLP) levels in atopic dermatitis patients: A systematic review and meta-analysis. Clin. Exp. Med. 2023, 23, 4129–4139. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.L.; Parnes, J.R.; She, D.; Crouch, S.; Rees, W.; Mo, M.; van der Merwe, R. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: A randomized phase 2a clinical trial. J. Am. Acad. Dermatol. 2019, 80, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, Y.; Nakashima, C.; Otsuka, A. Interplay of cytokines in the pathophysiology of atopic dermatitis: Insights from Murin models and human. Front. Med. 2024, 11, 1342176. [Google Scholar] [CrossRef] [PubMed]
- Rusinol, L.; Puig, L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int. J. Mol. Sci. 2024, 25, 8437. [Google Scholar] [CrossRef]
- Imai, Y. Interleukin-33 in atopic dermatitis. J. Dermatol. Sci. 2019, 96, 2–7. [Google Scholar] [CrossRef]
- Ahmad, F.; Alam, M.A.; Ansari, A.W.; Jochebeth, A.; Leo, R.; Al-Abdulla, M.N.; Al-Khawaga, S.; AlHammadi, A.; Al-Malki, A.; Al Naama, K.; et al. Emerging Role of the IL-36/IL-36R Axis in Multiple Inflammatory Skin Diseases. J. Investig. Dermatol. 2024, 144, 206–224. [Google Scholar] [CrossRef]
- Iznardo, H.; Puig, L. IL-1 Family Cytokines in Inflammatory Dermatoses: Pathogenetic Role and Potential Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 9479. [Google Scholar] [CrossRef]
- Maurer, M.; Cheung, D.S.; Theess, W.; Yang, X.; Dolton, M.; Guttman, A.; Choy, D.F.; Dash, A.; Grimbaldeston, M.A.; Soong, W. Phase 2 randomized clinical trial of astegolimab in patients with moderate to severe atopic dermatitis. J. Allergy Clin. Immunol. 2022, 150, 1517–1524. [Google Scholar] [CrossRef]
- Laquer, V.; Parra, V.; Lacour, J.P.; Takahashi, H.; Knorr, J.; Okragly, A.J.; James, D.E.; Sims, J.T.; Chang, C.Y.; Chao, J.; et al. Interleukin-33 antibody failed to demonstrate benefit in a phase, I.I.; double-blind, randomized, placebo-controlled study in adult patients with moderate-to-severe atopic dermatitis. Br. J. Dermatol. 2022, 187, 599–602. [Google Scholar] [CrossRef]
- Simpson, E.L.; Guttman-Yassky, E.; Pawlikowski, J.; Ghorayeb, E.G.; Ota, T.; Lebwohl, M.G. Interleukin-1alpha inhibitor bermekimab in patients with atopic dermatitis: Randomized and nonrandomized studies. Arch. Dermatol. Res. 2024, 316, 589. [Google Scholar] [CrossRef]
- Kosloski, M.P.; Guttman-Yassky, E.; Cork, M.J.; Worm, M.; Nahm, D.H.; Zhu, X.; Ruddy, M.K.; Harel, S.; Kamal, M.A.; Goulaouic, H.; et al. Pharmacokinetics and pharmacodynamics of itepekimab in adults with moderate-to-severe atopic dermatitis: Results from two terminated phase II trials. Clin. Transl. Sci. 2024, 17, e13874. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, R.; Abramovits, W.; Saint-Cyr Proulx, E.; Lee, P.; Guttman-Yassky, E.; Zovko, E.; Sigmund, R.; Willcox, J.; Bieber, T. Spesolimab, an anti-interleukin-36 receptor antibody, in patients with moderate-to-severe atopic dermatitis: Results from a multicentre, randomized, double-blind, placebo-controlled, phase IIa study. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Niu, X.L.; Gao, Y.L.; Ma, L.; Gao, X.H.; Chen, H.D.; Qi, R.Q. IL-18 knockout alleviates atopic dermatitis-like skin lesions induced by MC903 in a mouse model. Int. J. Mol. Med. 2020, 46, 880–888. [Google Scholar] [CrossRef] [PubMed]
- A Study to Assess the Efficacy and Safety of CMK389 in Patients with Moderate to Severe Atopic Dermatitis. Available online: https://clinicaltrials.gov/study/NCT04836858?term=NCT04836858&rank=1&tab=results#outcome-measures (accessed on 6 June 2025).
- Efficacy, Safety, and Pharmacokinetic Profile of Etokimab (ANB020) in Adult Participants with Moderate-to-Severe Atopic Dermatitis (ATLAS). Available online: https://clinicaltrials.gov/study/NCT03533751?term=NCT03533751&rank=1 (accessed on 6 June 2025).
- A Study to Test the Long-Term Safety of BI 655130 in Patients with Atopic Eczema Who Took Part in Study 1368-0032. Available online: https://clinicaltrials.gov/study/NCT04086121?term=NCT04086121&rank=1 (accessed on 6 June 2025).
- Croft, M.; So, T.; Duan, W.; Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 2009, 229, 173–191. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Croft, M.; Geng, B.; Rynkiewicz, N.; Lucchesi, D.; Peakman, M.; van Krinks, C.; Valdecantos, W.; Xing, H.; Weidinger, S. The role of OX40 ligand/OX40 axis signalling in atopic dermatitis. Br. J. Dermatol. 2024, 191, 488–496. [Google Scholar] [CrossRef]
- Furue, M.; Furue, M. OX40L-OX40 Signaling in Atopic Dermatitis. J. Clin. Med. 2021, 10, 2578. [Google Scholar] [CrossRef]
- Ilves, T.; Harvima, I.T. OX40 ligand and OX40 are increased in atopic dermatitis lesions but do not correlate with clinical severity. J. Eur. Acad. Dermatol. Venereol. 2013, 27, e197–e205. [Google Scholar] [CrossRef]
- Elsner, J.S.; Carlsson, M.; Stougaard, J.K.; Nygaard, U.; Buchner, M.; Folster-Holst, R.; Hvid, M.; Vestergaard, C.; Deleuran, M.; Deleuran, B. The OX40 Axis is Associated with Both Systemic and Local Involvement in Atopic Dermatitis. Acta Derm. Venereol. 2020, 100, adv00099. [Google Scholar] [CrossRef]
- Del Duca, E.; He, H.; Liu, Y.; Pagan, A.D.; David, E.; Cheng, J.; Carroll, B.; Renert-Yuval, Y.; Bar, J.; Estrada, Y.D.; et al. Intrapatient comparison of atopic dermatitis skin transcriptome shows differences between tape-strips and biopsies. Allergy 2024, 79, 80–92. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Diaz, A.; Pavel, A.B.; Fernandes, M.; Lefferdink, R.; Erickson, T.; Canter, T.; Rangel, S.; Peng, X.; Li, R.; et al. Use of Tape Strips to Detect Immune and Barrier Abnormalities in the Skin of Children With Early-Onset Atopic Dermatitis. JAMA Dermatol. 2019, 155, 1358–1370. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Simpson, E.L.; Reich, K.; Kabashima, K.; Igawa, K.; Suzuki, T.; Mano, H.; Matsui, T.; Esfandiari, E.; Furue, M. An anti-OX40 antibody to treat moderate-to-severe atopic dermatitis: A multicentre, double-blind, placebo-controlled phase 2b study. Lancet 2023, 401, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Guttman-Yassky, E.; Pavel, A.B.; Zhou, L.; Estrada, Y.D.; Zhang, N.; Xu, H.; Peng, X.; Wen, H.C.; Govas, P.; Gudi, G.; et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 144, 482–493.e7. [Google Scholar] [CrossRef] [PubMed]
- Rewerska, B.; Sher, L.D.; Alpizar, S.; Pauser, S.; Pulka, G.; Mozaffarian, N.; Salhi, Y.; Martinet, C.; Jabert, W.; Gudi, G.; et al. Phase 2b randomized trial of OX40 inhibitor telazorlimab for moderate-to-severe atopic dermatitis. J. Allergy Clin. Immunol. Glob. 2024, 3, 100195. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; Blauvelt, A.; Papp, K.A.; Reich, A.; Lee, C.H.; Worm, M.; Lynde, C.; Kataoka, Y.; Foley, P.; Wei, X.; et al. Phase 2b randomized clinical trial of amlitelimab, an anti-OX40 ligand antibody, in patients with moderate-to-severe atopic dermatitis. J. Allergy Clin. Immunol. 2024, 155, 1264–1275. [Google Scholar] [CrossRef]
- Weidinger, S.; Bieber, T.; Cork, M.J.; Reich, A.; Wilson, R.; Quaratino, S.; Stebegg, M.; Brennan, N.; Gilbert, S.; O’Malley, J.T.; et al. Safety and efficacy of amlitelimab, a fully human nondepleting, noncytotoxic anti-OX40 ligand monoclonal antibody, in atopic dermatitis: Results of a phase IIa randomized placebo-controlled trial. Br. J. Dermatol. 2023, 189, 531–539. [Google Scholar] [CrossRef]
- Saeki, H.; Kabashima, K.; Tokura, Y.; Murata, Y.; Shiraishi, A.; Tamamura, R.; Randazzo, B.; Imanaka, K. Efficacy and safety of ustekinumab in Japanese patients with severe atopic dermatitis: A randomized, double-blind, placebo-controlled, phase II study. Br. J. Dermatol. 2017, 177, 419–427. [Google Scholar] [CrossRef]
- Khattri, S.; Brunner, P.M.; Garcet, S.; Finney, R.; Cohen, S.R.; Oliva, M.; Dutt, R.; Fuentes-Duculan, J.; Zheng, X.; Li, X.; et al. Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis. Exp. Dermatol. 2017, 26, 28–35. [Google Scholar] [CrossRef]
- Tyring, S.K.; Rich, P.; Tada, Y.; Beeck, S.; Messina, I.; Liu, J.; Huang, X.; Shumack, S. Risankizumab in Patients with Moderate-to-Severe Atopic Dermatitis: A Phase 2, Randomized, Double-Blind, Placebo-Controlled Study. Dermatol. Ther. 2023, 13, 595–608. [Google Scholar] [CrossRef]
- Ungar, B.; Pavel, A.B.; Li, R.; Kimmel, G.; Nia, J.; Hashim, P.; Kim, H.J.; Chima, M.; Vekaria, A.S.; Estrada, Y.; et al. Phase 2 randomized, double-blind study of IL-17 targeting with secukinumab in atopic dermatitis. J. Allergy Clin. Immunol. 2021, 147, 394–397. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Brunner, P.M.; Neumann, A.U.; Khattri, S.; Pavel, A.B.; Malik, K.; Singer, G.K.; Baum, D.; Gilleaudeau, P.; Sullivan-Whalen, M.; et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: A randomized, double-blind, phase 2a trial. J. Am. Acad. Dermatol. 2018, 78, 872–881.e6. [Google Scholar] [CrossRef]
- Suzuki, T.; Kondo, S.; Ogura, Y.; Otsuka, M.; Tokura, Y. How Do Classical Subtypes Correspond to Endotypes in Atopic Dermatitis? Int. J. Mol. Sci. 2023, 25. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Farinas, M.; Dhingra, N.; Gittler, J.; Shemer, A.; Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; Guttman-Yassky, E. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J. Allergy Clin. Immunol. 2013, 132, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Suarez-Farinas, M.; Ungar, B.; Kim, S.J.; de Guzman Strong, C.; Xu, H.; Peng, X.; Estrada, Y.D.; Nakajima, S.; Honda, T.; et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J. Allergy Clin. Immunol. 2015, 136, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.C.; Czarnowicki, T.; Noda, S.; Malik, K.; Pavel, A.B.; Nakajima, S.; Honda, T.; Shin, J.U.; Lee, H.; Chou, M.; et al. Serum from Asian patients with atopic dermatitis is characterized by T(H)2/T(H)22 activation, which is highly correlated with nonlesional skin measures. J. Allergy Clin. Immunol. 2018, 142, 324–328.e11. [Google Scholar] [CrossRef]
- Ramirez-Marin, H.A.; Silverberg, J.I. Differences between pediatric and adult atopic dermatitis. Pediatr. Dermatol. 2022, 39, 345–353. [Google Scholar] [CrossRef]
- Hayashida, S.; Uchi, H.; Takeuchi, S.; Esaki, H.; Moroi, Y.; Furue, M. Significant correlation of serum IL-22 levels with CCL17 levels in atopic dermatitis. J. Dermatol. Sci. 2011, 61, 78–79. [Google Scholar] [CrossRef]
- Nograles, K.E.; Zaba, L.C.; Shemer, A.; Fuentes-Duculan, J.; Cardinale, I.; Kikuchi, T.; Ramon, M.; Bergman, R.; Krueger, J.G.; Guttman-Yassky, E. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J. Allergy Clin. Immunol. 2009, 123, 1244–1252.e2. [Google Scholar] [CrossRef]
- Laska, J.; Tota, M.; Lacwik, J.; Sedek, L.; Gomulka, K. IL-22 in Atopic Dermatitis. Cells 2024, 13, 1398. [Google Scholar] [CrossRef]
- Lou, H.; Lu, J.; Choi, E.B.; Oh, M.H.; Jeong, M.; Barmettler, S.; Zhu, Z.; Zheng, T. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction, and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway. J. Immunol. 2017, 198, 2543–2555. [Google Scholar] [CrossRef]
- Badi, Y.E.; Pavel, A.B.; Pavlidis, S.; Riley, J.H.; Bates, S.; Kermani, N.Z.; Knowles, R.; Kolmert, J.; Wheelock, C.E.; Worsley, S.; et al. Mapping atopic dermatitis and anti-IL-22 response signatures to type 2-low severe neutrophilic asthma. J. Allergy Clin. Immunol. 2022, 149, 89–101. [Google Scholar] [CrossRef]
- Schmid, B.; Kunstner, A.; Fahnrich, A.; Bersuch, E.; Schmid-Grendelmeier, P.; Busch, H.; Glatz, M.; Bosshard, P.P. Dysbiosis of skin microbiota with increased fungal diversity is associated with severity of disease in atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1811–1819. [Google Scholar] [CrossRef] [PubMed]
- Fyhrquist, N.; Muirhead, G.; Prast-Nielsen, S.; Jeanmougin, M.; Olah, P.; Skoog, T.; Jules-Clement, G.; Feld, M.; Barrientos-Somarribas, M.; Sinkko, H.; et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat. Commun. 2019, 10, 4703. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.J.; Luo, C.H.; Thio, C.L.; Chang, Y.J. Immunomodulatory Role of Staphylococcus aureus in Atopic Dermatitis. Pathogens 2022, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, E.G.; Cavallo, I.; Bordignon, V.; Prignano, G.; Sperduti, I.; Gurtner, A.; Trento, E.; Toma, L.; Pimpinelli, F.; Capitanio, B.; et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci. Rep. 2018, 8, 9573. [Google Scholar] [CrossRef]
- Gonzalez, T.; Biagini Myers, J.M.; Herr, A.B.; Khurana Hershey, G.K. Staphylococcal Biofilms in Atopic Dermatitis. Curr. Allergy Asthma Rep. 2017, 17, 81. [Google Scholar] [CrossRef]
- Hulpusch, C.; Rohayem, R.; Reiger, M.; Traidl-Hoffmann, C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J. Allergy Clin. Immunol. 2024, 154, 31–41. [Google Scholar] [CrossRef]
- Demessant-Flavigny, A.L.; Connetable, S.; Kerob, D.; Moreau, M.; Aguilar, L.; Wollenberg, A. Skin microbiome dysbiosis and the role of Staphylococcus aureus in atopic dermatitis in adults and children: A narrative review. J. Eur. Acad. Dermatol. Venereol. 2023, 37 (Suppl. 5), 3–17. [Google Scholar] [CrossRef]
- Lee, E.; Min, K.; Ahn, H.; Jeon, B.N.; Park, S.; Yun, C.; Jeon, H.; Yeon, J.S.; Kim, H.; Park, H. Potential Therapeutic Skin Microbiomes Suppressing Staphylococcus aureus-Derived Immune Responses and Upregulating Skin Barrier Function-Related Genes via the AhR Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 9551. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Hata, T.R.; Tong, Y.; Cheng, J.Y.; Shafiq, F.; Butcher, A.M.; Salem, S.S.; Brinton, S.L.; Rudman Spergel, A.K.; Johnson, K.; et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 2021, 27, 700–709. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Lio, P.A.; Simpson, E.L.; Li, C.; Brownell, D.R.; Gryllos, I.; Ng-Cashin, J.; Krueger, T.; Swaidan, V.R.; Bliss, R.L.; et al. Efficacy and safety of topically applied therapeutic ammonia oxidising bacteria in adults with mild-to-moderate atopic dermatitis and moderate-to-severe pruritus: A randomised, double-blind, placebo-controlled, dose-ranging, phase 2b trial. eClinicalMedicine. 2023, 60, 102002. [Google Scholar] [CrossRef]
- Niemeyer-van der Kolk, T.; Buters, T.P.; Krouwels, L.; Boltjes, J.; de Kam, M.L.; van der Wall, H.; van Alewijk, D.; van den Munckhof, E.H.A.; Becker, M.J.; Feiss, G.; et al. Topical antimicrobial peptide omiganan recovers cutaneous dysbiosis but does not improve clinical symptoms in patients with mild to moderate atopic dermatitis in a phase 2 randomized controlled trial. J. Am. Acad. Dermatol. 2022, 86, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer-van der Kolk, T.; van der Wall, H.; Hogendoorn, G.K.; Rijneveld, R.; Luijten, S.; van Alewijk, D.; van den Munckhof, E.H.A.; de Kam, M.L.; Feiss, G.L.; Prens, E.P.; et al. Pharmacodynamic Effects of Topical Omiganan in Patients With Mild to Moderate Atopic Dermatitis in a Randomized, Placebo-Controlled, Phase II Trial. Clin. Transl. Sci. 2020, 13, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.E.; Myles, I.A.; Paller, A.S.; Eichenfield, L.F.; Simpson, E.L. A Randomized, Double-Blind, Placebo-Controlled, Multicenter, 16-Week Trial to Evaluate the Efficacy and Safety of FB-401 in Children, Adolescents, and Adult Subjects (Ages 2 Years and Older) with Mild-to-Moderate Atopic Dermatitis. Dermatology 2024, 240, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Myles, I.A.; Castillo, C.R.; Barbian, K.D.; Kanakabandi, K.; Virtaneva, K.; Fitzmeyer, E.; Paneru, M.; Otaizo-Carrasquero, F.; Myers, T.G.; Markowitz, T.E.; et al. Therapeutic responses to Roseomonas mucosa in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair. Sci. Transl. Med. 2020, 12, eaaz8631. [Google Scholar] [CrossRef]
- Myles, I.A.; Earland, N.J.; Anderson, E.D.; Moore, I.N.; Kieh, M.D.; Williams, K.W.; Saleem, A.; Fontecilla, N.M.; Welch, P.A.; Darnell, D.A.; et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight. 2018, 3, e120608. [Google Scholar] [CrossRef]
- Alam, M.J.; Xie, L.; Yap, Y.A.; Marques, F.Z.; Robert, R. Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens 2022, 11, 642. [Google Scholar] [CrossRef]
- Lee, E.; Lee, S.Y.; Kang, M.J.; Kim, K.; Won, S.; Kim, B.J.; Choi, K.Y.; Kim, B.S.; Cho, H.J.; Kim, Y.; et al. Clostridia in the gut and onset of atopic dermatitis via eosinophilic inflammation. Ann. Allergy Asthma Immunol. 2016, 117, 91–92.e1. [Google Scholar] [CrossRef]
- Reddel, S.; Del Chierico, F.; Quagliariello, A.; Giancristoforo, S.; Vernocchi, P.; Russo, A.; Fiocchi, A.; Rossi, P.; Putignani, L.; El Hachem, M. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci. Rep. 2019, 9, 4996. [Google Scholar] [CrossRef]
- Liu, X.; Cai, M.; Chen, M.; Chen, J.; Zhu, T.; Wu, S.; Jia, J. Alterations in gut microbiome associated with severity of atopic dermatitis in infants. Australas. J. Dermatol. 2024, 65, 328–336. [Google Scholar] [CrossRef]
- Nylund, L.; Nermes, M.; Isolauri, E.; Salminen, S.; de Vos, W.M.; Satokari, R. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy 2015, 70, 241–244. [Google Scholar] [CrossRef]
- Hu, C.; van Meel, E.R.; Medina-Gomez, C.; Kraaij, R.; Barroso, M.; Kiefte-de Jong, J.; Radjabzadeh, D.; Pasmans, S.; de Jong, N.W.; de Jongste, J.C.; et al. A population-based study on associations of stool microbiota with atopic diseases in school-age children. J. Allergy Clin. Immunol. 2021, 148, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Feito-Rodriguez, M.; Ramirez-Bosca, A.; Vidal-Asensi, S.; Fernandez-Nieto, D.; Ros-Cervera, G.; Alonso-Usero, V.; Prieto-Merino, D.; Nunez-Delegido, E.; Ruzafa-Costas, B.; Sanchez-Pellicer, P.; et al. Randomized double-blind placebo-controlled clinical trial to evaluate the effect of a mixture of probiotic strains on symptom severity and use of corticosteroids in children and adolescents with atopic dermatitis. Clin. Exp. Dermatol. 2023, 48, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Choy, C.T.; Siu, P.L.K.; Zhou, J.; Wong, C.H.; Lee, Y.W.; Chan, H.W.; Tsui, J.C.C.; Lo, C.J.Y.; Loo, S.K.F.; Tsui, S.K.W. Improvements in Gut Microbiome Composition Predict the Clinical Efficacy of a Novel Synbiotics Formula in Children with Mild to Moderate Atopic Dermatitis. Microorganisms 2023, 11, 2175. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Lopez, V.; Ramirez-Bosca, A.; Ramon-Vidal, D.; Ruzafa-Costas, B.; Genoves-Martinez, S.; Chenoll-Cuadros, E.; Carrion-Gutierrez, M.; Horga de la Parte, J.; Prieto-Merino, D.; Codoner-Cortes, F.M. Effect of Oral Administration of a Mixture of Probiotic Strains on SCORAD Index and Use of Topical Steroids in Young Patients With Moderate Atopic Dermatitis: A Randomized Clinical Trial. JAMA Dermatol. 2018, 154, 37–43. [Google Scholar] [CrossRef]
- Mashiah, J.; Karady, T.; Fliss-Isakov, N.; Sprecher, E.; Slodownik, D.; Artzi, O.; Samuelov, L.; Ellenbogen, E.; Godneva, A.; Segal, E.; et al. Clinical efficacy of fecal microbial transplantation treatment in adults with moderate-to-severe atopic dermatitis. Immun. Inflamm. Dis. 2022, 10, e570. [Google Scholar] [CrossRef]
- Tominaga, M.; Takamori, K. Peripheral itch sensitization in atopic dermatitis. Allergol. Int. 2022, 71, 265–277. [Google Scholar] [CrossRef]
- Wong, L.S.; Yen, Y.T.; Lee, C.H. The Implications of Pruritogens in the Pathogenesis of Atopic Dermatitis. Int. J. Mol. Sci. 2021, 22, 7227. [Google Scholar] [CrossRef]
- Orfali, R.L.; Aoki, V. Blockage of the IL-31 Pathway as a Potential Target Therapy for Atopic Dermatitis. Pharmaceutics 2023, 15, 577. [Google Scholar] [CrossRef]
- Nemmer, J.M.; Kuchner, M.; Datsi, A.; Olah, P.; Julia, V.; Raap, U.; Homey, B. Interleukin-31 Signaling Bridges the Gap Between Immune Cells, the Nervous System and Epithelial Tissues. Front. Med. 2021, 8, 639097. [Google Scholar] [CrossRef]
- Liang, J.; Hu, F.; Dan, M.; Sang, Y.; Abulikemu, K.; Wang, Q.; Hong, Y.; Kang, X. Safety and Efficacy of Nemolizumab for Atopic Dermatitis With Pruritus: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials. Front. Immunol. 2022, 13, 825312. [Google Scholar] [CrossRef]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M.; Nemolizumab JP01 andJP02 Study Group. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: Results from two phase III, long-term studies. Br. J. Dermatol. 2022, 186, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, A.; Katsunuma, T.; Matsumura, T.; Komazaki, H.; Nemolizumab JP01 andJP02 Study Group. Efficacy and safety of nemolizumab in paediatric patients aged 6–12 years with atopic dermatitis with moderate-to-severe pruritus: Results from a phase III, randomized, double-blind, placebo-controlled, multicentre study. Br. J. Dermatol. 2023, 190, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Wollenberg, A.; Reich, A.; Thaci, D.; Legat, F.J.; Papp, K.A.; Stein Gold, L.; Bouaziz, J.D.; Pink, A.E.; Carrascosa, J.M.; et al. Nemolizumab with concomitant topical therapy in adolescents and adults with moderate-to-severe atopic dermatitis (ARCADIA 1 and ARCADIA 2): Results from two replicate, double-blind, randomised controlled phase 3 trials. Lancet 2024, 404, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M.; Nemolizumab JP01 andJP02 Study Group. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. N. Engl. J. Med. 2020, 383, 141–150. [Google Scholar] [CrossRef]
- Werfel, T.; Layton, G.; Yeadon, M.; Whitlock, L.; Osterloh, I.; Jimenez, P.; Liu, W.; Lynch, V.; Asher, A.; Tsianakas, A.; et al. Efficacy and safety of the histamine H(4) receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 1830–1837.e4. [Google Scholar] [CrossRef]
- Efficacy and Safety of LEO 152020 Tablets for the Treatment of Adults with Moderate to Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05117060 (accessed on 6 June 2025).
- Murata, Y.; Song, M.; Kikuchi, H.; Hisamichi, K.; Xu, X.L.; Greenspan, A.; Kato, M.; Chiou, C.F.; Kato, T.; Guzzo, C.; et al. Phase 2a, randomized, double-blind, placebo-controlled, multicenter, parallel-group study of a H4 R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic dermatitis. J. Dermatol. 2015, 42, 129–139. [Google Scholar] [CrossRef]
- Welsh, S.E.; Xiao, C.; Kaden, A.R.; Brzezynski, J.L.; Mohrman, M.A.; Wang, J.; Smieszek, S.P.; Przychodzen, B.; Stander, S.; Polymeropoulos, C.; et al. Neurokinin-1 receptor antagonist tradipitant has mixed effects on itch in atopic dermatitis: Results from EPIONE, a randomized clinical trial. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e338–e340. [Google Scholar] [CrossRef]
- Evaluating the Effects of Tradipitant, vs. Placebo in Atopic Dermatitis (EPIONE2). Available online: https://clinicaltrials.gov/study/NCT04140695?term=NCT04140695&rank=1 (accessed on 6 June 2025).
- Study of the Efficacy, Safety, and Tolerability of Serlopitant for Pruritus (Itch) in Atopic Dermatitis (ATOMIK). Available online: https://clinicaltrials.gov/study/NCT02975206?term=NCT02975206&rank=1 (accessed on 6 June 2025).
- Glatzer, F.; Gschwandtner, M.; Ehling, S.; Rossbach, K.; Janik, K.; Klos, A.; Baumer, W.; Kietzmann, M.; Werfel, T.; Gutzmer, R. Histamine induces proliferation in keratinocytes from patients with atopic dermatitis through the histamine 4 receptor. J. Allergy Clin. Immunol. 2013, 132, 1358–1367. [Google Scholar] [CrossRef]
- Gutzmer, R.; Mommert, S.; Gschwandtner, M.; Zwingmann, K.; Stark, H.; Werfel, T. The histamine H4 receptor is functionally expressed on T(H)2 cells. J. Allergy Clin. Immunol. 2009, 123, 619–625. [Google Scholar] [CrossRef]
- Marek-Jozefowicz, L.; Nedoszytko, B.; Grochocka, M.; Zmijewski, M.A.; Czajkowski, R.; Cubala, W.J.; Slominski, A.T. Molecular Mechanisms of Neurogenic Inflammation of the Skin. Int. J. Mol. Sci. 2023, 24, 5001. [Google Scholar] [CrossRef]
Target | Medication | Study Design | Primary Outcome | Clinical Trial | Status of Investigation |
---|---|---|---|---|---|
Antibacterial activity | Topical staphylococcus hominis A9 | 54 patients with AD with positive S. aureus culture colonized lesion | Per-participant daily event rate of treatment-emergent adverse event targeted microbiome transplant: 0.19 (95% CI: 0.12 to 0.29) Placebo: 0.34 (95% CI: 0.20 to 0.58) p = 0.075 | NCT03151148 (Phase I) [72] | Complete |
Topical biotherapeutic B244 | 547 patients with AD with mild to moderate pruritus | Mean change in WI-NRS at Week 4 B244 O.D. 5.0: −2.8 (0.184) (p = 0.0148) B244 O.D. 20.0: −2.8 (0.184)(p = 0.0143) Placebo: −2.1 (0.180) | NCT04490109 (Phase II) [73] | Complete | |
Topical omiganan | 37 adults with AD | Change in local objective SCORAD index at Week 4 Omiganan 2.5%: −18.5% (95% CI: −32.9% to −1.0%) (p = 0.04) Omiganan 1%: −13.4% (95% CI: −28.4% to 4.6%) (p = 0.13) | NCT02456480 (Phase II) [75] | Complete | |
80 adults with mild to moderate AD | Abundance of Staphylococcus at Week 4 Omiganan 1%: −15.1 (95% CI, −28.6 to −1.7) (p = 0.03) Omiganan 2.5%: −17.2 (95% CI, −30.4 to −4.1) (p = 0.01) Change in local objective SCORAD index at Week 4 Omiganan 1%: 2.0 (95% CI: 0.52 to 4.51) (p = 0.12) Omiganan 2.5%: 2.52 (95% CI: 0.0 to 5.04) (p = 0.05) | NCT03091426 (Phase II) [74] | Complete | ||
Topical Roseomonas mucosa (FB-401) | 154 patients (age ≥ 2 years) with mild to moderate AD | EASI 50 at Week 16 FB−401 3 times per week: 57.9% (p = 0.7567) Placebo: 60.3% | NCT04504279 (Phase II) [76] | Complete, but failed to meet efficacy |
Target | Medication | Study Design | Primary Outcome | Clinical Trial | Status of Investigation |
---|---|---|---|---|---|
IL-31RA | Nemolizumab | 143 Japanese (age ≥ 13 years) with AD and moderate-to-severe pruritus | % change in the VAS score for pruritus at week 16 Nemolizumab 60 mg q4w: −42.8% Placebo: −21.4% least-squares mean difference between two groups: −21.5% (95% CI: −30.2 to −12.7; p < 0.001) | JapicCTI-173740 [97] | Complete |
89 Japanese patients (age ≥ 6 and < 13 years) with AD and moderate-to-severe pruritus | Change in 5-level itch score from baseline at week 16 Nemolizumab 30 mg q4w: −1.3 Placebo: −0.5 Least-squares mean difference between two groups: −0.8 (95% CI: −1.1 to −0.5; p < 0.0001) | Japan Registry for Clinical Trials 2080225289 [95] | Complete | ||
941 patients (age ≥ 12 years) with moderate to severe AD | IGA clear or almost clear and at least a 2-grade improvement from baseline at Week 16 Nemolizumab loading 60 mg/30 mg q4w: 35.6% (p = 0.0003) Placebo: 24.6% EASI75 at Week 16 Nemolizumab loading 60 mg/30 mg q4w: 43.5% (p < 0.0001) Placebo: 29.0% | NCT03985943 (Phase III) [96] | Complete | ||
787 patients (age ≥ 12 years) with moderate to severe AD | IGA clear or almost clear and at least a 2-grade improvement from baseline at Week 16 Nemolizumab loading 60 mg/30 mg q4w: 37.7% (p = 0.0006) Placebo: 26.0% EASI75 at Week 16 Nemolizumab loading 60 mg/30 mg q4w: 42.1% (p = 0.0006) Placebo: 30.2% | NCT03989349 (Phase III) [96] | Complete | ||
H4R | ZPL-3893787/ Adriforant | 98 adults with moderate to severe AD | Reduction of WI-NRS at week 8 Adriforant 30 mg QD: −3.03 (2.186) (p = 0.249) Placebo: −2.66 (2.057) | NCT02424253 (Phase II) [98] | Complete but failed to meet efficacy |
LEO 152020 | 216 adults with AD | Change in the EASI score at Week 16 LEO 152020(Higher Dose): −9.99 (95% CI: −12.85 to −7.13) LEO 152020(Middle Dose): −8.83 (95% CI: −12.63 to −5.04) LEO 152020(Lower Dose): −8.87 (95% CI: −12.47 to −5.28) Placebo: −9.11(95% CI: −11.88 to −6.35) | NCT05117060 (Phase II) [99] | Complete but failed to meet efficacy | |
JNJ 39758979 | 88 Japanese adults with moderate AD | Changes in EASI scores at Week 6 JNJ−39758979 100 mg: median, −3.70 (p = 0.1672) JNJ−39758979 300 mg: median, −3.00 (p = 0.1992) placebo: median, −1.30 | NCT01497119 (Phase II) [100] | Terminate due to 2 cases of agranulocytosis | |
NK1R | Tradipitant | 375 adults with AD suffering from chronic pruritus | Reduction of WI-NRS at week 8 Mean (Standard Deviation) Oral tradipitant BID: −3.6 (2.8) Placebo: −3.5 (2.75 | NCT03568331 (Phase III) [101] | Complete but failed to meet efficacy |
87 adults with AD suffering from chronic pruritus | WI-NRS responder rate at week 2 (achieve at least 4 points reduction from baseline) Oral tradipitant BID: 4.8% Placebo: 9.3% | NCT04140695 (Phase III) [102] | Terminate | ||
Serlopitant | 484 patients (age ≥ 13 years) AD with pruritus | Reduction of WI-NRS at week 6 Oral serlopitant loading 15 mg/5 mg QD: −2.25 (2.198) Oral serlopitant loading 3 mg/1 mg QD: −2.32 (2.418) Placebo: −2.01 (2.212) | NCT02975206 (Phase II) [103] | Complete but failed to meet efficacy |
Target Symptom | Therapeutic Strategy | Example |
---|---|---|
Skin Inflammation |
|
|
Itch |
|
|
Secondary Infection/Colonization |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, Y.; Cheng, T.-T.; Huang, C.-J.; Cheng, Y.-C.; Chyuan, I.-T. Advancing Therapeutic Strategies in Atopic Dermatitis: Emerging Targets and Personalized Approaches. Biomolecules 2025, 15, 838. https://doi.org/10.3390/biom15060838
Lo Y, Cheng T-T, Huang C-J, Cheng Y-C, Chyuan I-T. Advancing Therapeutic Strategies in Atopic Dermatitis: Emerging Targets and Personalized Approaches. Biomolecules. 2025; 15(6):838. https://doi.org/10.3390/biom15060838
Chicago/Turabian StyleLo, Yang, Ting-Ting Cheng, Chi-Jung Huang, Yu-Che Cheng, and I-Tsu Chyuan. 2025. "Advancing Therapeutic Strategies in Atopic Dermatitis: Emerging Targets and Personalized Approaches" Biomolecules 15, no. 6: 838. https://doi.org/10.3390/biom15060838
APA StyleLo, Y., Cheng, T.-T., Huang, C.-J., Cheng, Y.-C., & Chyuan, I.-T. (2025). Advancing Therapeutic Strategies in Atopic Dermatitis: Emerging Targets and Personalized Approaches. Biomolecules, 15(6), 838. https://doi.org/10.3390/biom15060838