New Lead Schiff Bases Predominantly Mediate Vasorelaxant Activity Through α1 Receptor Blocking Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Drugs and Chemicals
2.3. Animals
2.4. Data Recording
2.5. Solutions
Schiff Bases (SB1 and SB2) Had Poor Solubility in Distilled Water
2.6. Effects of Schiff Bases (SB1 and SB2) on Spontaneous Rabbits’ Jejunal Preparations
2.7. Effects of Schiff Bases (SB1 and SB2) on KCl (80 mM)-Induced Contractions in Aortae
2.8. Effects of Schiff Bases (SB1 and SB2) on NE (1 µM)-Induced Contractions in Aortae
2.9. Effects of Schiff Base SB1 and SB2 on NE-Induced Contractions of Denuded Aortae in the Presence of Verapamil
2.10. Effects of Schiff Bases (SB1 and SB2) on Norepinephrine Concentration Response Curves (N. ECRCs) in Aortae
2.11. Molecular Docking Analysis of Schiff Bases (SB1 and SB2)
2.12. Statistical Analysis
3. Results
3.1. Molecular Docking and Docked Confirmation Visualization Analysis of Schiff Base SB1 and Schiff Base SB2
3.2. Docked Complex Visualization of SB1
3.3. Docked Complex Visualization of SB2
4. Discussion
5. Conclusions
6. Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selvakumar, P.; Seenivasan, S.; Jadhav, R.; Deshmukh, S.M.; Elavarasi, V. Drug Discovery and Development Processes. In Generative AI Techniques for Sustainability in Healthcare Security; IGI Global Scientific Publishing: New York, NY, USA, 2025; pp. 195–212. [Google Scholar]
- Zhou, S.-F.; Zhong, W.-Z. Drug design and discovery: Principles and applications. Molecules 2017, 22, 279. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.P. The Drug Development Process: From Discovery to Market. Int. J. Life Sci. 2024, 13, 118–134. [Google Scholar]
- Zhong, W.-Z.; Zhou, S.-F. Molecular science for drug development and biomedicine. Int. J. Mol. Sci. 2014, 15, 20072–20078. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Min, J.-L.; Lin, W.-Z.; Liu, Z.; Cheng, X.; Chou, K.-C. iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn. 2015, 33, 2221–2233. [Google Scholar] [CrossRef]
- Shultana, S.; Maraz, K.M.; Ahmed, A.; Sultana, T.; Khan, R.A. Drug design, discovery and development and their safety or efficacy on human body. GSC Adv. Res. Rev. 2021, 17, 113–122. [Google Scholar] [CrossRef]
- Brozovich, F.; Nicholson, C.; Degen, C.; Gao, Y.Z.; Aggarwal, M.; Morgan, K.G. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol. Rev. 2016, 68, 476–532. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.C. Smooth muscle contraction and relaxation. Adv. Physiol. Educ. 2003, 27, 201–206. [Google Scholar] [CrossRef]
- Bove, P.F.; van der Vliet, A. Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation. Free. Radic. Biol. Med. 2006, 41, 515–527. [Google Scholar] [CrossRef]
- Tsacheva, I.; Todorova, Z.; Momekova, D.; Momekov, G.; Koseva, N. Pharmacological activities of Schiff bases and their derivatives with low and high molecular phosphonates. Pharmaceuticals 2023, 16, 938. [Google Scholar] [CrossRef]
- Lemilemu, F.; Bitew, M.; Demissie, T.B.; Eswaramoorthy, R.; Endale, M. Synthesis, antibacterial and antioxidant activities of Thiazole-based Schiff base derivatives: A combined experimental and computational study. BMC Chem. 2021, 15, 67. [Google Scholar] [CrossRef]
- Afzal, H.R.; Khan, N.u.H.; Sultana, K.; Mobashar, A.; Lareb, A.; Khan, A.; Gull, A.; Afzaal, H.; Khan, M.T.; Rizwan, M. Schiff bases of pioglitazone provide better antidiabetic and potent antioxidant effect in a streptozotocin–nicotinamide-induced diabetic rodent model. ACS Omega 2021, 6, 4470–4479. [Google Scholar] [CrossRef] [PubMed]
- Sadia, M.; Khan, J.; Naz, R.; Zahoor, M.; Shah, S.W.A.; Ullah, R.; Naz, S.; Bari, A.; Mahmood, H.M.; Ali, S.S. Schiff base ligand L synthesis and its evaluation as anticancer and antidepressant agent. J. King Saud Univ.-Sci. 2021, 33, 101331. [Google Scholar] [CrossRef]
- Nilkanth, P.R.; Ghorai, S.K.; Sathiyanarayanan, A.; Dhawale, K.; Ahamad, T.; Gawande, M.B.; Shelke, S.N. Synthesis and Evaluation of Anticonvulsant Activity of Some Schiff Bases of 7-Amino-1, 3-dihydro-2H-1, 4-benzodiazepin-2-one. Chem. Biodivers. 2020, 17, e2000342. [Google Scholar] [CrossRef]
- Cordeiro, R.; Kachroo, M. Synthesis and biological evaluation of anti-tubercular activity of Schiff bases of 2-Amino thiazoles. Bioorganic Med. Chem. Lett. 2020, 30, 127655. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, S.; Akhtar, M.S.; Kanwal, F.; Abbas, A.; Ashiq, S.; Shamim, S. Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. J. Saudi Chem. Soc. 2017, 21, S359–S372. [Google Scholar] [CrossRef]
- Saadaoui, I.; Krichen, F.; Salah, B.B.; Mansour, R.B.; Miled, N.; Bougatef, A.; Kossentini, M. Design, synthesis and biological evaluation of Schiff bases of 4-amino-1, 2, 4-triazole derivatives as potent angiotensin converting enzyme inhibitors and antioxidant activities. J. Mol. Struct. 2019, 1180, 344–354. [Google Scholar] [CrossRef]
- Ye, D.-M.; Zhang, H.-L.; Wang, L.; Yao, Q.-Y.; Lin, Y.; Li, K. Synthesis, Crystal Structural and Activities of a New Schiff Base Derived from 2, 4, 5-Trimethoxybenzaldehyde. Asian J. Chem. 2013, 25, 4629–4631. [Google Scholar] [CrossRef]
- Zainab; Yu, H.; Rehman, N.U.; Ali, M.; Alam, A.; Latif, A.; Shahab, N.; Amir Khan, I.; Jabbar Shah, A.; Khan, M. Novel polyhydroquinoline-hydrazide-linked Schiff’s base derivatives: Multistep synthesis, antimicrobial, and calcium-channel-blocking activities. Antibiotics 2022, 11, 1568. [Google Scholar] [CrossRef]
- Afridi, H.H.; Shoaib, M.; Al-Joufi, F.A.; Shah, S.W.A.; Hussain, H.; Ullah, A.; Zahoor, M.; Mughal, E.U. Synthesis and investigation of the analgesic potential of enantiomerically pure schiff bases: A mechanistic approach. Molecules 2022, 27, 5206. [Google Scholar] [CrossRef]
- Aslam Khan, A.K.; Najeeb-ur-Rehman NU, R.; Gilani, A.H.; Zunirah Ahmed, Z.A.; Al-Massarani, S.; El-Gamal, A.; Mohamed Farag, M.F. Possible mechanism (s) underlying the antidiarrheal, antispasmodic and bronchodilatory activities of the pericarp of Albizia lebbeck. Int. J. Pharmacol. 2019, 15, 56–65. [Google Scholar] [CrossRef]
- Chiragh, S.; Begum, A.; Karim, S. Prokinetic effect of clarithromycin and azithromycin-in vitro study on rabbit duodenum. Biomedica 2006, 22, 130–134. [Google Scholar]
- Ghayur, M.N.; Ahmad, S.; Gilani, A.H. Spasmolytic Effect of Grewia asiatica fruit extract on isolated smooth muscles is mediated via multiple pathways. Evid.-Based Complement. Altern. Med. 2021, 2021, 5583372. [Google Scholar] [CrossRef]
- Ali, N. Brine shrimp cytotoxicity of crude methanol extract and antispasmodic activity of α-amyrin acetate from Tylophora hirsuta Wall. BMC Complement. Altern. Med. 2013, 13, 1–7. [Google Scholar] [CrossRef]
- Ali, N.; Shah, S.W.A.; Ahmed, G.; Shah, I.; Shoaib, M.; Junaid, M.; Ah, W. Acute toxicity and antispasmodic activities of Achillea wilhelmsii C. Koch. Pak. J. Pharm. Sci. 2014, 27, 309–315. [Google Scholar] [PubMed]
- Furchgott, R.F.; Bhadrakom, S. Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. J. Pharmacol. Exp. Ther. 1953, 108, 129–143. [Google Scholar] [CrossRef]
- Ali, W.; Ali, N.; Ullah, A.; Rahman, S.U.; Ahmad, S. Pitavastatin and Lovastatin Exhibit Calcium Channel Blocking Activity Which Potentiate Vasorelaxant Effects of Amlodipine: A New Futuristic Dimension in Statin’s Pleiotropy. Medicina 2023, 59, 1805. [Google Scholar] [CrossRef] [PubMed]
- Maneesai, P.; Scholfield, C.N.; Chootip, K. Piperine is anti-hyperlipidemic and improves endothelium-dependent vasorelaxation in rats on a high cholesterol diet. J. Physiol. Biomed. Sci. 2012, 25, 27–30. [Google Scholar]
- Shah, A.J.; Gilani, A.H. Blood pressure lowering effect of the extract of aerial parts of Capparis aphylla is mediated through endothelium-dependent and independent mechanisms. Clin. Exp. Hypertens. 2011, 33, 470–477. [Google Scholar] [CrossRef]
- Othman, R.; Ibrahim, H.; Mohd, M.A.; Awang, K.; Gilani, A.-u.H.; Mustafa, M.R. Vasorelaxant effects of ethyl cinnamate isolated from Kaempferia galanga on smooth muscles of the rat aorta. Planta Medica. 2002, 68, 655–657. [Google Scholar] [CrossRef]
- Ali, N.; Ali, W.; Ullah, A.; Ahmad, S.; Alsaiari, A.A.; Almehmadi, M.; Abdulaziz, O.; Allahyani, M.; Aljuaid, A. Atorvastatin and Fluvastatin Potentiate Blood Pressure Lowering Effect of Amlodipine through Vasorelaxant Phenomenon. Medicina 2023, 59, 1023. [Google Scholar] [CrossRef]
- Ali, N.; Ali, W.; Ullah, A.; Ahmad, S.; Hussain, H. Rosuvastatin and Simvastatin potentiate antihypertensive effect of amlodipine through vasorelaxation phenomenon. Pak. J. Pharm. Sci. 2023, 36, 953–961. [Google Scholar] [PubMed]
- Musha, S.; Watanabe, M.; Ishida, Y.; Kato, S.; Konishi, M.; Tomoda, A. A phenoxazine compound, 2-amino-4, 4α-dihydro-4α-7-dimethyl-3H-phenoxazine-3-one reverses the phenylephrine or high-K+ induced contraction of smooth muscles in rat aorta and guinea pig tenia cecum. Biol. Pharm. Bull. 2005, 28, 1521–1523. [Google Scholar] [CrossRef]
- Kousar, M.; Salma, U.; Khan, T.; Shah, A.J. Antihypertensive potential of tartaric acid and exploration of underlying mechanistic pathways. Dose-Response 2022, 20, 15593258221135728. [Google Scholar] [CrossRef] [PubMed]
- Şahin, A.S.; Bariskaner, H. The mechanisms of vasorelaxant effect of leptin on isolated rabbit aorta. Fundam. Clin. Pharmacol. 2007, 21, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Ayodele, P.F.; Bamigbade, A.; Bamigbade, O.O.; Adeniyi, I.A.; Tachin, E.S.; Seweje, A.J.; Farohunbi, S.T. Illustrated Procedure to Perform Molecular Docking Using PyRx and Biovia Discovery Studio Visualizer: A Case Study of 10kt With Atropine. Prog. Drug Discov. Biomed. Sci. 2023, 6, 1–32. [Google Scholar] [CrossRef]
- Malik, A.; Mehmood, M.H.; Channa, H.; Akhtar, M.S.; Gilani, A.-H. Pharmacological basis for the medicinal use of polyherbal formulation and its ingredients in cardiovascular disorders using rodents. BMC Complement. Altern. Med. 2017, 17, 1–12. [Google Scholar] [CrossRef]
- Li, H.; Xu, T.Y.; Li, Y.; Chia, Y.C.; Buranakitjaroen, P.; Cheng, H.M.; Van Huynh, M.; Sogunuru, G.P.; Tay, J.C.; Wang, T.D. Role of α1-blockers in the current management of hypertension. J. Clin. Hypertens. 2022, 24, 1180–1186. [Google Scholar] [CrossRef]
- Deshmukh, M.; Lee, H.W.; McFarlane, S.I.; Whaley-Connell, A. Antihypertensive medications and their effects on lipid metabolism. Curr. Diabetes Rep. 2008, 8, 214–220. [Google Scholar] [CrossRef]
- Zusman, R. The role of alpha1-blockers in combination therapy for hypertension. Int. J. Clin. Pract. 2000, 54, 36–41. [Google Scholar] [CrossRef]
- Ghuman, A.; De Jonge, S.; Dryden, S.D.; Feeney, T.; Buitrago, D.H.; Phang, P.T. Prophylactic use of alpha-1 adrenergic blocking agents for prevention of postoperative urinary retention: A review & meta-analysis of randomized clinical trials. Am. J. Surg. 2018, 215, 973–979. [Google Scholar]
- Al-Shukri, A.S.; Kostyukov, S.V.; Maksimova, A.V. Comparative evaluation of the effectiveness and safety of different dosages of Glancin (tamsulosin) in the treatment of patients with lower urinary tract symptoms due to benign prostatic hyperplasia. Urol. Rep. 2022, 12, 287–295. [Google Scholar] [CrossRef]
- Kim, D.K.; Lee, J.Y.; Jung, J.H.; Kim, J.H.; Hah, Y.S.; Hong, C.H.; Cho, K.S. Alpha-1 adrenergic receptor blockers for the treatment of lower urinary tract symptoms in women: A systematic review and meta-analysis. Int. Neurourol. J. 2019, 23, 56. [Google Scholar] [CrossRef] [PubMed]
- Campschroer, T.; Zhu, X.; Vernooij, R.W.; Lock, M.T. Alpha-blockers as medical expulsive therapy for ureteral stones. Cochrane Database Syst. Rev. 2018, 2018, CD008509. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, M.; Günaydın, G. Doxazosin, a Selective Alpha-1 Blocker, in the Treatment of Premature Ejaculation: Selective alpha-1 blocker and treatment of premature ejaculation. Med. Sci. Discov. 2023, 10, 535–538. [Google Scholar] [CrossRef]
- Grimm, R.H., Jr.; Flack, J.M. Alpha 1 adrenoreceptor antagonists. J. Clin. Hypertens. 2011, 13, 654. [Google Scholar] [CrossRef]
Test Compounds | Status of Aortae | % of Potassium Chloride (Control Max) | % of Norepinephrine (Control Max) | EC50 ± SD Potassium-Chloride-Induced (Molar) | EC50 ± SD Norepinephrine-Induced (Molar) | |
---|---|---|---|---|---|---|
Schiff base (SB1) | Intact | No relaxation | 48% | Nil * | 5.50 × 10−5 ± 2.23 | |
Denuded | No relaxation | 41% | Nil * | 5.81× 10−5 ± 3.80 | ||
Schiff base (SB2) | Intact | No relaxation | 82.5% | Nil * | Nil | |
Denuded | No relaxation | 74% | Nil * | Nil |
Test Compounds | Status of Aortae | % of Norepinephrine (Control Max) | EC50 ± SD Norepinephrine-Induced (Molar) |
---|---|---|---|
Schiff base SB1 | Denuded | 41% | 5.81 × 10−5 ± 3.80 |
Schiff base SB1 + verapamil | Denuded | 12.5% | 3.74 × 10−3 ± 0.00 |
Schiff base SB2 | Denuded | 74% | Nil ** |
Schiff base SB2 + verapamil | Denuded | 21.2% | 4.54 × 10−4 ± 0.00 M. |
Schiff Bases | N. ECRCs Specifications | EC50 Log (NE) ± SD |
---|---|---|
Schiff base SB1 | Control Test concentration (9.1 × 10−8 M) Test concentration (2.6 × 10−7 M) Test concentration (3.1 × 10−7 M) | −3.64 ± 0.00 −3.38 ± 0.03 **** Nil **** Nil **** |
Schiff base SB2 | Control Test concentration (3 × 10−8 M) Test concentration (9 × 10−8 M) Test concentration (2.65 × 10−7 M) | −3.51 ± 0.00 −2.58 ± 0.02 **** Nil **** Nil **** |
Terazosin | Control Concentration of the test (0.03 µM) Concentration of the test (0.1 µM) | −2.77 ± 0.06 −1.94 ± 0.10 **** −0.61 ± 0.15 **** |
S. No | Ligand | Binding Affinity | Rmsd/Ub | Rmsd/Lb |
---|---|---|---|---|
1 | P25100__ADA1D_HUMAN_SB1 | −8.5 | 0 | 0 |
2 | P25100__ADA1D_HUMAN_SB1 | −7.8 | 2.387 | 1.336 |
3 | P25100__ADA1D_HUMAN_SB1 | −7.6 | 6.66 | 1.185 |
4 | P25100__ADA1D_HUMAN_SB1 | −7.3 | 3.792 | 2.531 |
5 | P25100__ADA1D_HUMAN_SB1 | −7.3 | 2.084 | 1.587 |
6 | P25100__ADA1D_HUMAN_SB1 | −7.2 | 47.244 | 45.882 |
7 | P25100__ADA1D_HUMAN_SB1 | −7 | 33.922 | 29.324 |
8 | P25100__ADA1D_HUMAN_SB1 | −7 | 5.81 | 3.658 |
9 | P25100__ADA1D_HUMAN_SB1 | −6.8 | 46.818 | 45.721 |
10 | P25100_ADA1D_HUMAN_SB2 | −8.5 | 0 | 0 |
11 | P25100_ADA1D_HUMAN_SB2 | −7.6 | 6.656 | 1.239 |
12 | P25100_ADA1D_HUMAN_SB2 | −7.2 | 47.126 | 45.577 |
13 | P25100_ADA1D_HUMAN_SB2 | −7.1 | 2.117 | 1.214 |
14 | P25100_ADA1D_HUMAN_SB2 | −6.8 | 46.86 | 45.735 |
15 | P25100_ADA1D_HUMAN_SB2 | −6.8 | 29.78 | 26.775 |
16 | P25100_ADA1D_HUMAN_SB2 | −6.7 | 15.689 | 13.49 |
17 | P25100_ADA1D_HUMAN_SB2 | −6.6 | 6.714 | 2.314 |
18 | P25100_ADA1D_HUMAN_SB2 | −6.5 | 27.734 | 24.762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subhan, Z.; Ali, N.; Ullah, A.; Ali, W.; Nabi, M.; Shah, S.W.A. New Lead Schiff Bases Predominantly Mediate Vasorelaxant Activity Through α1 Receptor Blocking Activity. Biomolecules 2025, 15, 611. https://doi.org/10.3390/biom15050611
Subhan Z, Ali N, Ullah A, Ali W, Nabi M, Shah SWA. New Lead Schiff Bases Predominantly Mediate Vasorelaxant Activity Through α1 Receptor Blocking Activity. Biomolecules. 2025; 15(5):611. https://doi.org/10.3390/biom15050611
Chicago/Turabian StyleSubhan, Zakia, Niaz Ali, Abid Ullah, Wajid Ali, Muhammad Nabi, and Syed Wadood Ali Shah. 2025. "New Lead Schiff Bases Predominantly Mediate Vasorelaxant Activity Through α1 Receptor Blocking Activity" Biomolecules 15, no. 5: 611. https://doi.org/10.3390/biom15050611
APA StyleSubhan, Z., Ali, N., Ullah, A., Ali, W., Nabi, M., & Shah, S. W. A. (2025). New Lead Schiff Bases Predominantly Mediate Vasorelaxant Activity Through α1 Receptor Blocking Activity. Biomolecules, 15(5), 611. https://doi.org/10.3390/biom15050611