Rediscovery of PHI-1/PPP1R14B: Emerging Roles of Cellular PP1 Signaling Mediated by the PPP1R14B Gene Product in Multiple Cancers and Beyond
Abstract
:1. Introducing PHI-1/PPP1R14B: Its Historical Journey into Cellular PP1 Regulation
1.1. Cellular Phosphatase Signaling in Physiology and Pathology
1.2. The PPP1R14 Family
1.3. Discovery and Characterization of PHI-1/PPP1R14B
1.4. Structure of PHI-1/PPP1R14B
1.5. Structure–Function Relationship of PHI-1
2. Deciphering PHI-1: Mechanisms Orchestrating Cellular Homeostasis in Normal States Encompassing Cytoskeletal Dynamics and Selective Proteostasis
2.1. PHI-1’s Role in Regulating the Myosin Phosphatase and Smooth Muscle Contraction
2.2. PHI-1’s Tissue-Specific Expression and Subcellular Distribution
2.3. PHI-1’s Roles in Regulating Cell Migration and Cytoskeletal Reorganization
2.4. PHI-1’s Roles in Selective Proteostasis
3. Rediscovering PHI-1/PPP1R14B: Bridging Molecular Mechanisms and Diagnostic/Prognostic Potential in Cancer
3.1. Mechanisms of Dysregulated PHI-1/PPP1R14B Expression in Cancer Cells
3.1.1. Gene Amplification and mRNA Elevation
3.1.2. Post-Transcriptional Fluctuations
3.1.3. Post-Translational Modifications (PTMs)
3.2. Pathophysiological Role of PHI-1/PPP1R14B in Cancer Cells
3.2.1. Proliferation and Survival
3.2.2. Migration and Invasion
3.2.3. Immune Modulation
3.3. Clinical Relevance of PHI-1 in Cancer
3.3.1. Diagnostic Potential
3.3.2. Prognostic Significance
3.3.3. Predictive Biomarker
Tumor Name | Datasets | References |
---|---|---|
MeWo Melanoma (V3 Isoform of Versican) | OncoChip cDNA microarray (CNIO, Madrid, Spain) | [46] |
Endometriosis-Associated Ovarian Clear Cell Carcinoma (OCCC) | Affymetrix Human Gene 1.1 ST Arrays via the GeneAtlas Fluidic Station | [38] |
Chronic Lymphocytic Leukemia (CLL) | International Cancer Genome Consortium (ICGC, EGAD00010000875), GEO (GSE22762) | [37] |
Prostate Cancer | Oncomine database | [39] |
Bladder Urothelial Carcinoma (BLCA) | TIMER2.0 | [36] |
Breast Invasive Carcinoma (BRCA) | TIMER2.0 | [36] |
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) | TIMER2.0, TCGA, GTEx, Human Protein Atlas (HPA), Kaplan–Meier Plotter | [24,36] |
Cholangiocarcinoma (CHOL) | TIMER2.0 | [36] |
Colon Adenocarcinoma (COAD) | TIMER2.0, CPTAC | [36] |
Diffuse Large B-cell Lymphoma (DLBCL) | GTEx | [36] |
Esophageal Carcinoma (ESCA) | TIMER2.0 | [36] |
Glioblastoma Multiforme (GBM) | TIMER2.0, TCGA-GBM/LGG, GTEx database, qRT-PCR | [36,40] |
Brain Lower-Grade Glioma (LGG) | GTEx, TCGA-GBM/LGG, qRT-PCR | [36,40] |
Head and Neck Squamous Cell Carcinoma (HNSC) | TIMER2.0 | [36] |
Kidney Chromophobe (KICH) | TIMER2.0 | [36] |
Kidney Renal Clear Cell Carcinoma (KIRC) | TIMER2.0, TCGA, ICGC, GEO (GSE40435, GSE53757, GSM4630028), UALCAN, RT-qPCR, LinkedOmics, TISIDB, single-cell RNA-seq | [27,36] |
Kidney Renal Papillary Cell Carcinoma (KIRP) | TIMER2.0 | [36] |
Liver Hepatocellular Carcinoma (LIHC) | TIMER2.0, TCGA-LIHC (Liver Hepatocellular Carcinoma), Human Protein Atlas, Label-Free Quantitative Proteomics, In Vitro and In Vivo Experimental Data | [36,47] |
Lung Adenocarcinoma (LUAD) | TIMER2.0, CPTAC | [36] |
Lung Squamous Cell Carcinoma (LUSC) | TIMER2.0 | [36] |
Ovarian Cancer (OV) | GTEx, CPTAC | [36] |
Prostate Adenocarcinoma (PRAD) | TIMER2.0 | [36] |
Rectum Adenocarcinoma (READ) | TIMER2.0 | [36] |
Stomach Adenocarcinoma (STAD) | TIMER2.0 | [36] |
Thyroid Carcinoma (THCA) | TIMER2.0 | [36] |
Uterine Carcinosarcoma (UCS) | GTEx | [36] |
Uterine Corpus Endometrial Carcinoma (UCEC) | TIMER2.0, CPTAC, TCGA, GEO (GSE17025), Human Protein Atlas (HPA), Clinical Samples, GTEx, Kaplan-Meier Plotter | [24,36,48] |
Gastrointestinal Cancer (GIC) | TCGA, RNA-Seq data (GSE137070, GSE134308), Ago-HITS-CLIP-seq (GSE137071), CRISPR/Cas9 proliferation screening data (DepMap) | [41] |
Triple-Negative Breast Cancer (TNBC) | FUSCC-TNBC cohort (Quantitative proteomics: n = 90 TNBC tissues, n = 72 adjacent normal tissues; RNA-seq: n = 360 TNBC tissues, n = 88 adjacent normal tissues), TCGA, METABRIC | [28] |
Cervical Cancer | TCGA, CGCI, GSE44001, single-cell RNA-seq (GSE168652), proteomics (HeLa cells), TIMER2.0 (immune cell infiltration), lactylation-specific proteomics data | [29] |
4. Decoding PHI-1/PPP1R14B Paradigm: A Balancing Act Between Cellular Homeostasis and Tumor Progression
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PKC | Protein kinase C |
ROCK | Rho-associated coiled-coil-containing protein kinase |
ILK | Integrin-linked kinase |
ZIPK/DAPK3 | Zipper-interacting protein kinase/Death-associated protein kinase 3 |
USP9X | Ubiquitin specific peptidase 9 X-linked |
AKT | AK strain transforming/protein kinase B |
RSK | Ribosomal S6 kinase |
References
- Cohen, P.T. Protein phosphatase 1—Targeted in many directions. J. Cell Sci. 2002, 115, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Virshup, D.M.; Shenolikar, S. From Promiscuity to Precision: Protein Phosphatases Get a Makeover. Mol. Cell 2009, 33, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Brautigan, D.L. Protein Ser/Thr Phosphatases: The Ugly Ducklings of Cell Signaling. FEBS J. 2012, 280, 324–325. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Beullens, M.; Bollen, M.; Van Eynde, A. Functions and therapeutic potential of protein phosphatase 1: Insights from mouse genetics. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 16–30. [Google Scholar] [CrossRef]
- Peti, W.; Nairn, A.C.; Page, R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 2013, 280, 596–611. [Google Scholar] [CrossRef]
- Cao, X.; Lemaire, S.; Bollen, M. Protein phosphatase 1: Life-course regulation by SDS22 and Inhibitor-3. FEBS J. 2022, 289, 3072–3085. [Google Scholar] [CrossRef]
- Eto, M.; Senba, S.; Morita, F.; Yazawa, M. Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: Its specific localization in smooth muscle. FEBS Lett. 1997, 410, 356–360. [Google Scholar] [CrossRef]
- Eto, M.; Karginov, A.; Brautigan, D.L. A novel phosphoprotein inhibitor of protein type-1 phosphatase holoenzymes. Biochemistry 1999, 38, 16952–16957. [Google Scholar] [CrossRef]
- Liu, Q.R.; Zhang, P.W.; Zhen, Q.; Walther, D.; Wang, X.B.; Uhl, G.R. KEPI, a PKC-dependent protein phosphatase 1 inhibitor regulated by morphine. J. Biol. Chem. 2002, 277, 13312–13320. [Google Scholar] [CrossRef]
- Liu, Q.R.; Zhang, P.W.; Lin, Z.; Li, Q.F.; Woods, A.S.; Troncoso, J.; Uhl, G.R. GBPI, a novel gastrointestinal- and brain-specific PP1-inhibitory protein, is activated by PKC and inactivated by PKA. Biochem. J. 2004, 377, 171–181. [Google Scholar] [CrossRef]
- Eto, M.; Brautigan, D.L. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 2012, 64, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Bollen, M.; Peti, W.; Ragusa, M.J.; Beullens, M. The extended PP1 toolkit: Designed to create specificity. Trends Biochem. Sci. 2011, 35, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Lagercrantz, J.; Carson, E.; Larsson, C.; Nordenskjold, M.; Weber, G. Isolation and characterization of a novel gene close to the human phosphoinositide-specific phospholipase C b3 gene on chromosomal resion 11q13. Genomics 1996, 31, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Lagercrantz, J.; Kendra, D.; Carson, E.; Nordenskjold, M.; Dumanski, J.P.; Weber, G.; Piehl, F. Sequence and expression of the mouse homologue to human phospholipase C b3 Neighboring gene. Biochem. Biophys. Res. Commun. 1996, 223, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, I.; Merregaert, J.; Van de Ven, W.J.; Kas, K.; Zhang, C.X.; Giraud, S.; Wautot, V.; Buisson, N.; De Witte, K.; Salandre, J.; et al. Construction of a 1.2-Mb sequence-ready contig of chromosome 11q13 encompassing the multiple endocrine neoplasia type 1 (MEN1) gene. The European Consortium on MEN1. Genomics 1997, 44, 94–100. [Google Scholar] [CrossRef]
- Eto, M.; Katsuki, S.; Ohashi, M.; Miyagawa, Y.; Tanaka, Y.; Takeya, K.; Kitazawa, T. Possible roles of N- and C-terminal unstructured tails of CPI-17 in regulating Ca2+ sensitization force of smooth muscle. J. Smooth Muscle Res. 2022, 58, 22–33. [Google Scholar] [CrossRef]
- Lang, I.; Virk, G.; Zheng, D.C.; Young, J.; Nguyen, M.J.; Amiri, R.; Fong, M.; Arata, A.; Chadaideh, K.S.; Walsh, S.; et al. The Evolution of Duplicated Genes of the Cpi-17/Phi-1 (ppp1r14) Family of Protein Phosphatase 1 Inhibitors in Teleosts. Int. J. Mol. Sci. 2020, 21, 5709. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Deng, J.T.; Sutherland, C.; Brautigan, D.L.; Eto, M.; Walsh, M.P. Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem. J. 2002, 367, 517–524. [Google Scholar] [CrossRef]
- El-Touhky, A.; Given, A.M.; Cochard, A.; Brozovich, F.V. PHI-1 induced enhancement of myosin phosphorylation in chicken smooth muscle. FEBS Lett. 2005, 579, 4271–4277. [Google Scholar] [CrossRef] [PubMed]
- El-Toukhy, A.; Given, A.M.; Ogut, O.; Brozovich, F.V. PHI-1 interacts with the catalytic subunit of myosin light chain phosphatase to produce a Ca2+ independent increase in MLC(20) phosphorylation and force in avian smooth muscle. FEBS Lett. 2006, 580, 5779–5784. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Guo, Z.; Xie, Z.; Su, W.; Gong, M.C. Divergent kinase signaling mediates agonist-induced phosphorylation of phosphatase inhibitory proteins PHI-1 and CPI-17 in vascular smooth muscle cells. Am. J. Physiol. Cell 2006, 290, C892–C899. [Google Scholar] [CrossRef]
- Xiang, N.; Chen, T.; Zhao, X.; Zhao, M. In vitro assessment of roles of PPP1R14B in cervical and endometrial cancer. Tissue Cell 2022, 77, 101845. [Google Scholar] [CrossRef]
- Kirkbride, J.A.; Nilsson, G.Y.; Kim, J.I.; Takeya, K.; Tanaka, Y.; Tokumitsu, H.; Suizu, F.; Eto, M. PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis. Biomolecules 2023, 13, 1741. [Google Scholar] [CrossRef]
- Tountas, N.A.; Brautigan, D.L. Migration and retraction of endothelial and epithelial cells require PHI-1, a specific protein-phosphatase-1 inhibitor protein. J. Cell Sci. 2004, 117, 5905–5912. [Google Scholar] [CrossRef]
- Cheng, L.; Mi, J.; Zhang, J.; Huang, H.; Mo, Z. Upregulated PPP1R14B is connected to cancer progression and immune infiltration in kidney renal clear cell carcinoma. Clin. Transl. Oncol. 2023, 26, 119–135. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, Y.L.; Deng, L.; Chen, C.; Ma, X.Y.; Andriani, L.; Yang, S.Y.; Hu, S.Y.; Zhang, F.L.; Shao, Z.M.; et al. Protein Phosphatase 1 Subunit PPP1R14B Stabilizes STMN1 to Promote Progression and Paclitaxel Resistance in Triple-Negative Breast Cancer. Cancer Res. 2023, 83, 471–484. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.; Bai, X.; Lu, C.; Zhang, K. Lysine lactylation-based insight to understanding the characterization of cervical cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167356. [Google Scholar] [CrossRef]
- Eto, M.; Kitazawa, T. Deversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: Paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. J. Smooth Muscle Res. 2017, 53, 1–19. [Google Scholar] [CrossRef]
- Yang, Q.; Fujii, W.; Kaji, N.; Kakuta, S.; Kada, K.; Kuwahara, M.; Tsubone, H.; Ozaki, H.; Hori, M. The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J. 2018, 32, 2095–2109. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, T.; Polzin, A.N.; Eto, M. CPI-17-deficient smooth muscle of chicken. J. Physiol. 2004, 557, 515–528. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.A.; Eto, M.; Borman, M.A.; Brautigan, D.L.; Haystead, T.A.J. Dual Ser and Thr phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by MYPT-associated kinase. FEBS Lett. 2001, 493, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Tountas, N.A.; Mandell, J.W.; Everett, A.D.; Brautigan, D.L. Juxtamembrane localization of the protein phosphatase-1 inhibitor protein PHI-1 in smooth muscle cells. Histochem. Cell Biol. 2004, 121, 343–350. [Google Scholar] [CrossRef]
- Murata, K.; Hirano, K.; Villa-Moruzzi, E.; Hartshorne, D.J.; Brautigan, D.L. Differential localization of myosin and myosin phosphatase subunits in smooth muscle cells and migrating fibroblasts. Mol. Biol. Cell 1997, 8, 663–673. [Google Scholar] [CrossRef]
- Deng, M.; Peng, L.; Li, J.; Liu, X.; Xia, X.; Li, G. PPP1R14B Is a Prognostic and Immunological Biomarker in Pan-Cancer. Front. Genet. 2021, 12, 763561. [Google Scholar] [CrossRef]
- Mosquera Orgueira, A.; Antelo Rodríguez, B.; Díaz Arias, J.; Díaz Varela, N.; Bello López, J.L. A Three-Gene Expression Signature Identifies a Cluster of Patients with Short Survival in Chronic Lymphocytic Leukemia. J. Oncol. 2019, 2019, 9453539. [Google Scholar] [CrossRef]
- Worley, M.J., Jr.; Liu, S.; Hua, Y.; Kwok, J.S.; Samuel, A.; Hou, L.; Shoni, M.; Lu, S.; Sandberg, E.M.; Keryan, A.; et al. Molecular changes in endometriosis-associated ovarian clear cell carcinoma. Eur. J. Cancer 2015, 51, 1831–1842. [Google Scholar] [CrossRef]
- Wang, R.; Wu, Y.; Yu, J.; Yang, G.; Yi, H.; Xu, B. Plasma Messenger RNAs Identified Through Bioinformatics Analysis are Novel, Non-Invasive Prostate Cancer Biomarkers. Onco Targets Ther. 2020, 13, 541–548. [Google Scholar] [CrossRef]
- Zhao, M.; Shao, Y.; Xu, J.; Zhang, B.; Li, C.; Gong, J. LINC00466 Impacts Cell Proliferation, Metastasis and Sensitivity to Temozolomide of Glioma by Sponging miR-137 to Regulate PPP1R14B Expression. Onco Targets Ther. 2021, 14, 1147–1159. [Google Scholar] [CrossRef]
- Huang, P.; Xia, L.; Guo, Q.; Huang, C.; Wang, Z.; Huang, Y.; Qin, S.; Leng, W.; Li, D. Genome-wide association studies identify miRNA-194 as a prognostic biomarker for gastrointestinal cancer by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5. Front. Oncol. 2022, 12, 1025594. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Miao, L.; Liao, W.; Liao, W. LncRNA PPP1R14B-AS1 Promotes Tumor Cell Proliferation and Migration via the Enhancement of Mitochondrial Respiration. Front. Genet. 2020, 11, 557614. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, L.; Guan, X.; Dong, Y.I.; Liu, T. Long noncoding RNA PPP1R14B-AS1 imitates microRNA-134-3p to facilitate breast cancer progression by upregulating LIM and SH3 protein 1. Oncol. Res. 2021, 29, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yu, S.; Zhao, B.; Bai, W.; Cui, Y.; Ni, J.; Lyu, Q.; Zhao, J. Development and Validation of a Novel Ferroptosis-Related LncRNA Signature for Predicting Prognosis and the Immune Landscape Features in Uveal Melanoma. Front. Immunol. 2022, 13, 922315. [Google Scholar] [CrossRef]
- Li, H.; Sun, L.; Gao, P.; Hu, H. Lactylation in cancer: Current understanding and challenges. Cancer Cell 2024, 42, 1803–1807. [Google Scholar] [CrossRef]
- Miquel-Serra, L.; Hernandez, D.; Docampo, M.J.; Bassols, A. Differential expression of endoglin in human melanoma cells expressing the V3 isoform of versican by microarray analysis. Mol. Med. Rep. 2010, 3, 1035–1039. [Google Scholar] [CrossRef]
- Zhou, N.; Guo, C.; Du, J.; Xu, Q.; Li, J.; Huang, D.; Zheng, X.; Tu, L. PPP1R14B-mediated phosphorylation enhances protein stability of RPS6KA1 to promote hepatocellular carcinoma tumorigenesis. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119840. [Google Scholar] [CrossRef]
- He, K.; Wang, T.; Huang, X.; Yang, Z.; Wang, Z.; Zhang, S.; Sui, X.; Jiang, J.; Zhao, L. PPP1R14B is a diagnostic prognostic marker in patients with uterine corpus endometrial carcinoma. J. Cell. Mol. Med. 2023, 27, 846–863. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eto, M. Rediscovery of PHI-1/PPP1R14B: Emerging Roles of Cellular PP1 Signaling Mediated by the PPP1R14B Gene Product in Multiple Cancers and Beyond. Biomolecules 2025, 15, 344. https://doi.org/10.3390/biom15030344
Eto M. Rediscovery of PHI-1/PPP1R14B: Emerging Roles of Cellular PP1 Signaling Mediated by the PPP1R14B Gene Product in Multiple Cancers and Beyond. Biomolecules. 2025; 15(3):344. https://doi.org/10.3390/biom15030344
Chicago/Turabian StyleEto, Masumi. 2025. "Rediscovery of PHI-1/PPP1R14B: Emerging Roles of Cellular PP1 Signaling Mediated by the PPP1R14B Gene Product in Multiple Cancers and Beyond" Biomolecules 15, no. 3: 344. https://doi.org/10.3390/biom15030344
APA StyleEto, M. (2025). Rediscovery of PHI-1/PPP1R14B: Emerging Roles of Cellular PP1 Signaling Mediated by the PPP1R14B Gene Product in Multiple Cancers and Beyond. Biomolecules, 15(3), 344. https://doi.org/10.3390/biom15030344