VPS25 Promotes an Immunosuppressive Microenvironment in Head and Neck Squamous Cell Carcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. Data Acquisition
2.3. scRNA-Seq Data Preprocessing
2.4. Analysis of Differentially Expressed Genes and Cell Type Annotation
2.5. Functional Enrichment Analysis
2.6. Tumor Microenvironment Evaluation
2.7. Analysis of Intercellular Communication
2.8. Transcription Factor Regulatory Network Analysis
2.9. Spatial Transcriptomics Data Preprocessing
2.10. Spatial Transcriptomics Deconvolution
2.11. Spatial Distance Analysis
2.12. Prediction of Immunotherapy Efficacy
2.13. Immunohistochemistry Staining
2.14. Construction of VPS25-Knockdown Cells
2.15. Western Blotting
2.16. Cell Proliferation Assay
2.17. Colony Formation Assay
2.18. Wound Healing Assay
2.19. Cell Migration Assay
2.20. Reverse Transcription Quantitative PCR (RT-qPCR)
2.21. Statistical Analysis
3. Results
3.1. The Increased Expression of VPS25 Is Associated with Poor Prognosis in HNSCC
3.2. Increased Expression of VPS25 Promotes Progression of HNSCC
3.3. Knockdown of VPS25 Suppresses the Proliferation and Migration of HNSCC Cells
3.4. VPS25high Cancer Cells Reside in an Immunosuppressive Microenvironment
3.5. Spatial Segregation of VPS25high Cancer Cells from Tumor-Infiltrating Immune Cells
3.6. VPS25high Cancer Cells Exhibit Immunosuppressive Effects Through the PVR-TIGIT Axis
3.7. VPS25 Predicts Immunotherapy Response in HNSCC Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HNSCC | Head and neck squamous cell carcinoma |
ESCRT | Endosomal sorting complex required for transport |
TCGA | The Cancer Genome Atlas |
VPS25 | Vacuolar Protein Sorting 25 Homolog |
HR | Hazard ratio |
NOM | Normal oral mucosa |
OS | Overall survival |
DFS | Disease-free survival |
TMAs | Tissue microarrays |
IHC | Immunohistochemistry |
TME | Tumor microenvironment |
scRNA-seq | Single-cell RNA sequencing |
CNV | Copy number variation |
UMAP | Uniform manifold approximation and projection |
pEMT | Partial epithelial–mesenchymal transition |
ST | Spatial transcriptomics |
DEG | Differentially expressed gene |
GSEA | Gene set enrichment analysis |
NES | Normalized enrichment score |
FDR | False discovery rate |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
GOBP | Gene ontology biological process |
RSS | Regulon specificity score |
TILs | Tumor-infiltrating lymphocytes |
TIMs | Tumor-infiltrating myeloid cells |
TAMs | Tumor-associated macrophages |
MDSCs | Myeloid-derived suppressor cells |
Tregs | Regulatory T cells |
PVR | Poliovirus receptor |
TIDE | Tumor immune dysfunction and exclusion |
ICB | immune checkpoint blockade |
Im | Immunotherapy |
IC | Immunotherapy combined therapy |
R | Response |
NR | Non-response |
CR | Complete response |
PR | Partial response |
SD | Stable disease |
PD | Progressive disease |
References
- Isono, E. ESCRT Is a Great Sealer: Non-Endosomal Function of the ESCRT Machinery in Membrane Repair and Autophagy. Plant Cell Physiol. 2021, 62, 766–774. [Google Scholar] [CrossRef]
- Vietri, M.; Radulovic, M.; Stenmark, H. The Many Functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 2020, 21, 25–42. [Google Scholar] [CrossRef]
- Williams, R.L.; Urbé, S. The Emerging Shape of the ESCRT Machinery. Nat. Rev. Mol. Cell Biol. 2007, 8, 355–368. [Google Scholar] [CrossRef]
- Migliano, S.M.; Wenzel, E.M.; Stenmark, H. Biophysical and Molecular Mechanisms of ESCRT Functions, and Their Implications for Disease. Curr. Opin. Cell Biol. 2022, 75, 102062. [Google Scholar] [CrossRef]
- Mattissek, C.; Teis, D. The Role of the Endosomal Sorting Complexes Required for Transport (ESCRT) in Tumorigenesis. Mol. Membr. Biol. 2014, 31, 111–119. [Google Scholar] [CrossRef]
- Carlton, J.G.; Martin-Serrano, J. Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery. Science 2007, 316, 1908–1912. [Google Scholar] [CrossRef]
- Carstens, M.J.; Krempler, A.; Triplett, A.A.; Van Lohuizen, M.; Wagner, K.-U. Cell Cycle Arrest and Cell Death Are Controlled by P53-Dependent and P53-Independent Mechanisms in Tsg101-Deficient Cells. J. Biol. Chem. 2004, 279, 35984–35994. [Google Scholar] [CrossRef]
- Shao, Z.; Ji, W.; Liu, A.; Qin, A.; Shen, L.; Li, G.; Zhou, Y.; Hu, X.; Yu, E.; Jin, G. TSG101 Silencing Suppresses Hepatocellular Carcinoma Cell Growth by Inducing Cell Cycle Arrest and Autophagic Cell Death. Med. Sci. Monit. 2015, 21, 3371–3379. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.-L.; Yue, Y.-X.; Chen, G.; Xia, H.-F. TSG101 Overexpression Enhances Metastasis in Oral Squamous Cell Carcinoma through Cell Cycle Regulation. Cell Signal. 2025, 125, 111519. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Xu, C.; Sun, W.; You, Z.; Wang, Y.; Zhang, S. CHMP1A Suppresses the Growth of Renal Cell Carcinoma Cells via Regulation of the PI3K/mTOR/P53 Signaling Pathway. Genes. Genom. 2022, 44, 823–832. [Google Scholar] [CrossRef]
- You, Z.; Xin, Y.; Liu, Y.; Sun, J.; Zhou, G.; Gao, H.; Xu, P.; Chen, Y.; Chen, G.; Zhang, L.; et al. Chmp1A Acts as a Tumor Suppressor Gene That Inhibits Proliferation of Renal Cell Carcinoma. Cancer Lett. 2012, 319, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.J.; Mathieu, J.; Sung, H.-H.; Loeser, E.; Rørth, P.; Cohen, S.M. Tumor Suppressor Properties of the ESCRT-II Complex Component Vps25 in Drosophila. Dev. Cell 2005, 9, 711–720. [Google Scholar] [CrossRef]
- Woodfield, S.E.; Graves, H.K.; Hernandez, J.A.; Bergmann, A. De-Regulation of JNK and JAK/STAT Signaling in ESCRT-II Mutant Tissues Cooperatively Contributes to Neoplastic Tumorigenesis. PLoS ONE 2013, 8, e56021. [Google Scholar] [CrossRef]
- Vaccari, T.; Bilder, D. The Drosophila Tumor Suppressor Vps25 Prevents Nonautonomous Overproliferation by Regulating Notch Trafficking. Dev. Cell 2005, 9, 687–698. [Google Scholar] [CrossRef]
- De Visser, K.E.; Joyce, J.A. The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Jin, M.-Z.; Jin, W.-L. The Updated Landscape of Tumor Microenvironment and Drug Repurposing. Signal Transduct. Target. Ther. 2020, 5, 166. [Google Scholar] [CrossRef]
- Ritter, A.T.; Shtengel, G.; Xu, C.S.; Weigel, A.; Hoffman, D.P.; Freeman, M.; Iyer, N.; Alivodej, N.; Ackerman, D.; Voskoboinik, I.; et al. ESCRT-Mediated Membrane Repair Protects Tumor-Derived Cells against T Cell Attack. Science 2022, 376, 377–382. [Google Scholar] [CrossRef]
- Bernareggi, D.; Xie, Q.; Prager, B.C.; Yun, J.; Cruz, L.S.; Pham, T.V.; Kim, W.; Lee, X.; Coffey, M.; Zalfa, C.; et al. CHMP2A Regulates Tumor Sensitivity to Natural Killer Cell-Mediated Cytotoxicity. Nat. Commun. 2022, 13, 1899. [Google Scholar] [CrossRef]
- Worst, T.S.; Meyer, Y.; Gottschalt, M.; Weis, C.-A.; von Hardenberg, J.; Frank, C.; Steidler, A.; Michel, M.S.; Erben, P. RAB27A, RAB27B and VPS36 Are Downregulated in Advanced Prostate Cancer and Show Functional Relevance in Prostate Cancer Cells. Int. J. Oncol. 2017, 50, 920–932. [Google Scholar] [CrossRef]
- Lanng, K.R.B.; Lauridsen, E.L.; Jakobsen, M.R. The Balance of STING Signaling Orchestrates Immunity in Cancer. Nat. Immunol. 2024, 25, 1144–1157. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, X.; Chang, B.; Lin, Y.; Huang, X.; Wang, W.; Ding, S.; Zhan, W.; Wang, S.; Xiao, B.; et al. Intercellular Transfer of Activated STING Triggered by RAB22A-Mediated Non-Canonical Autophagy Promotes Antitumor Immunity. Cell Res. 2022, 32, 1086–1104. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, X.; Planells-Cases, R.; Chu, J.; Wang, L.; Cao, L.; Li, Z.; López-Cayuqueo, K.I.; Xie, Y.; Ye, S.; et al. Transfer of cGAMP into Bystander Cells via LRRC8 Volume-Regulated Anion Channels Augments STING-Mediated Interferon Responses and Anti-Viral Immunity. Immunity 2020, 52, 767–781.e6. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Fang, Y.; Wei, Q.; Shi, H.; Tan, H.; Deng, Y.; Zeng, Z.; Qiu, J.; Chen, C.; Sun, L.; et al. Tumor-Targeted Delivery of a STING Agonist Improvescancer Immunotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2214278119. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Wolf, F.A.; Angerer, P.; Theis, F.J. SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis. Genome Biol. 2018, 19, 15. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; et al. Inferring Tumour Purity and Stromal and Immune Cell Admixture from Expression Data. Nat. Commun. 2013, 4, 2612. [Google Scholar] [CrossRef]
- Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.-H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and Analysis of Cell-Cell Communication Using CellChat. Nat. Commun. 2021, 12, 1088. [Google Scholar] [CrossRef]
- Van De Sande, B.; Flerin, C.; Davie, K.; De Waegeneer, M.; Hulselmans, G.; Aibar, S.; Seurinck, R.; Saelens, W.; Cannoodt, R.; Rouchon, Q.; et al. A Scalable SCENIC Workflow for Single-Cell Gene Regulatory Network Analysis. Nat. Protoc. 2020, 15, 2247–2276. [Google Scholar] [CrossRef]
- Biancalani, T.; Scalia, G.; Buffoni, L.; Avasthi, R.; Lu, Z.; Sanger, A.; Tokcan, N.; Vanderburg, C.R.; Segerstolpe, Å.; Zhang, M.; et al. Deep Learning and Alignment of Spatially Resolved Single-Cell Transcriptomes with Tangram. Nat. Methods 2021, 18, 1352–1362. [Google Scholar] [CrossRef]
- Palla, G.; Spitzer, H.; Klein, M.; Fischer, D.; Schaar, A.C.; Kuemmerle, L.B.; Rybakov, S.; Ibarra, I.L.; Holmberg, O.; Virshup, I.; et al. Squidpy: A Scalable Framework for Spatial Omics Analysis. Nat. Methods 2022, 19, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, K.; Zhang, W.; Wan, C.; Zhang, J.; Jiang, P.; Liu, X.S. Large-Scale Public Data Reuse to Model Immunotherapy Response and Resistance. Genome Med. 2020, 12, 21. [Google Scholar] [CrossRef]
- Necchi, A.; Joseph, R.W.; Loriot, Y.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Petrylak, D.P.; Derleth, C.L.; Tayama, D.; Zhu, Q.; Ding, B.; et al. Atezolizumab in Platinum-Treated Locally Advanced or Metastatic Urothelial Carcinoma: Post-Progression Outcomes from the Phase II IMvigor210 Study. Ann. Oncol. 2017, 28, 3044–3050. [Google Scholar] [CrossRef] [PubMed]
- Puram, S.V.; Tirosh, I.; Parikh, A.S.; Patel, A.P.; Yizhak, K.; Gillespie, S.; Rodman, C.; Luo, C.L.; Mroz, E.A.; Emerick, K.S.; et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017, 171, 1611–1624.e24. [Google Scholar] [CrossRef]
- Cai, C.; Chen, X.; He, J.; Xiang, C.; Liu, Y.; Wu, K.; Luo, K. Correlation between LSM1 Expression and Clinical Outcomes in Glioblastoma and Functional Mechanisms. Int. J. Genom. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Cheng, C.-W.; Tse, E. PIN1 in Cell Cycle Control and Cancer. Front. Pharmacol. 2018, 9, 1367. [Google Scholar] [CrossRef]
- Wang, J.; Dye, B.T.; Rajashankar, K.R.; Kurinov, I.; Schulman, B.A. Insights into Anaphase Promoting Complex TPR Subdomain Assembly from a CDC26–APC6 Structure. Nat. Struct. Mol. Biol. 2009, 16, 987–989. [Google Scholar] [CrossRef]
- Baker, S.J.; Poulikakos, P.I.; Irie, H.Y.; Parekh, S.; Reddy, E.P. CDK4: A Master Regulator of the Cell Cycle and Its Role in Cancer. Genes. Cancer 2022, 13, 21–45. [Google Scholar] [CrossRef]
- Wang, H.; Liu, B.; Wei, J. Beta2-Microglobulin(B2M) in Cancer Immunotherapies: Biological Function, Resistance and Remedy. Cancer Lett. 2021, 517, 96–104. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, M.; Li, K.; Zhang, Z.; Liu, Y.; Gao, M.; Wang, X.; Xiao, X.; Sun, Y.; He, C.; et al. The Epitranscriptional Factor PCIF1 Orchestrates CD8+ T Cell Ferroptosis and Activation to Control Antitumor Immunity. Nat. Immunol. 2025. [Google Scholar] [CrossRef]
- Ibrahim, S.A.E.-F.; Abudu, A.; Johnson, E.; Aftab, N.; Conrad, S.; Fluck, M. The Role of AP-1 in Self-Sufficient Proliferation and Migration of Cancer Cells and Its Potential Impact on an Autocrine/Paracrine Loop. Oncotarget 2019, 9, 34259–34278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Townley, S.L.; Zhang, S.; Liu, M.; Li, M.; Labaf, M.; Patalano, S.; Venkataramani, K.; Siegfried, K.R.; Macoska, J.A.; et al. FOXA2 Rewires AP-1 for Transcriptional Reprogramming and Lineage Plasticity in Prostate Cancer. Nat. Commun. 2024, 15, 4914. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wan, G.-H.; Wu, Y.-M.; Wang, H.-S.; Wang, H.-F.; Zhang, G.; Lu, L.-L.; Li, Z.-Q.; Chan, K.-Y.; Zhou, Y.; et al. AP-1 Confers Resistance to Anti-Cancer Therapy by Activating XIAP. Oncotarget 2018, 9, 14124–14137. [Google Scholar] [CrossRef]
- Saha, S.; Sparkes, A.; Matus, E.I.; Lee, P.; Gariépy, J. The IgV Domain of the Poliovirus Receptor Alone Is Immunosuppressive and Binds to Its Receptors with Comparable Affinity. Sci. Rep. 2023, 13, 4609. [Google Scholar] [CrossRef]
- Chiang, E.Y.; Mellman, I. TIGIT-CD226-PVR Axis: Advancing Immune Checkpoint Blockade for Cancer Immunotherapy. J. Immunother. Cancer 2022, 10, e004711. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, L.; Peng, X.; Tu, J.; Li, S.; He, X.; Li, F.; Qiang, J.; Dong, H.; Deng, Q.; et al. IL1R2 Blockade Alleviates Immunosuppression and Potentiates Anti-PD-1 Efficacy in Triple-Negative Breast Cancer. Cancer Res. 2024, 84, 2282–2296. [Google Scholar] [CrossRef]
- Chen, L.; Huang, H.; Zheng, X.; Li, Y.; Chen, J.; Tan, B.; Liu, Y.; Sun, R.; Xu, B.; Yang, M.; et al. IL1R2 Increases Regulatory T Cell Population in the Tumor Microenvironment by Enhancing MHC-II Expression on Cancer-Associated Fibroblasts. J. Immunother. Cancer 2022, 10, e004585. [Google Scholar] [CrossRef]
- Ganesan, P.; Sekaran, S.; Ramasamy, P.; Ganapathy, D. Systematic Analysis of Chemotherapy, Immunotherapy, and Combination Therapy in Head and Neck Squamous Cell Carcinoma (HNSCC) Clinical Trials: Focusing on Overall Survival and Progression-Free Survival Outcomes. Oral. Oncol. Rep. 2024, 12, 100673. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Najjar, Y.G. Immunotherapy Combination Approaches: Mechanisms, Biomarkers and Clinical Observations. Nat. Rev. Immunol. 2024, 24, 399–416. [Google Scholar] [CrossRef]
- Topalian, S.L.; Taube, J.M.; Pardoll, D.M. Neoadjuvant Checkpoint Blockade for Cancer Immunotherapy. Science 2020, 367, eaax0182. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Burgers, F.; Haanen, J.; Cascone, T. Neoadjuvant Immunotherapy: Leveraging the Immune System to Treat Early-Stage Disease. Am. Soc. Clin. Oncol. Educ. Book. 2022, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, J.S.; Cimino-Mathews, A.; Thompson, E.; Provencio, M.; Forde, P.M.; Spicer, J.; Girard, N.; Wang, D.; Anders, R.A.; Gabrielson, E.; et al. Association between Pathologic Response and Survival after Neoadjuvant Therapy in Lung Cancer. Nat. Med. 2024, 30, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Herz, H.-M.; Chen, Z.; Scherr, H.; Lackey, M.; Bolduc, C.; Bergmann, A. Vps25 Mosaics Display Non-Autonomous Cell Survival and Overgrowth, and Autonomous Apoptosis. Development 2006, 133, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-J.; Lin, M.-C.; Liu, T.-J.; Tsai, Y.-T.; Tsai, M.-T.; Lee, F.-J.S. Endosomal Arl4A Attenuates EGFR Degradation by Binding to the ESCRT-II Component VPS36. Nat. Commun. 2023, 14, 7859. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q.; Liang, J.; Yang, M.; Wang, Z.; Tang, D.; Wang, D. STAM2 Knockdown Inhibits Proliferation, Migration, and Invasion by Affecting the JAK2/STAT3 Signaling Pathway in Gastric Cancer. Acta Biochim. Biophys. Sin. (Shanghai) 2021, 53, 697–706. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, Y.; Chen, T.; Zhang, Y.; Ma, Q.; Rauniyar, S.; Wang, L.; Shi, H. TSG101 Promotes the Proliferation, Migration, and Invasion of Human Glioma Cells by Regulating the AKT/GSK3β/β-Catenin and RhoC/Cofilin Pathways. Mol. Neurobiol. 2021, 58, 2118–2132. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Z.; Du, Y.; Liu, T.; Xiong, Z.; Hu, J.; Chen, L.; Peng, X.; Zhou, F. Identification of STAM-Binding Protein as a Target for the Treatment of Gemcitabine Resistance Pancreatic Cancer in a Nutrient-Poor Microenvironment. Cell Death Dis. 2024, 15, 1–16. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, H.; Zhang, M.; Wu, X.; Jiang, L.; Liu, X.; Lv, K. YTHDC1-Mediated VPS25 Regulates Cell Cycle by Targeting JAK-STAT Signaling in Human Glioma Cells. Cancer Cell Int. 2021, 21, 645. [Google Scholar] [CrossRef]
- Guan, L.; Wu, B.; Li, T.; Beer, L.A.; Sharma, G.; Li, M.; Lee, C.N.; Liu, S.; Yang, C.; Huang, L.; et al. HRS Phosphorylation Drives Immunosuppressive Exosome Secretion and Restricts CD8+ T-Cell Infiltration into Tumors. Nat. Commun. 2022, 13, 4078. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Wang, B.; Lu, Y.; Yang, J.; Zhong, W.; Yu, Z.; Qin, Z.; Xiao, B.; Wang, K.; et al. HRS Mediates Tumor Immune Evasion by Regulating Proteostasis-Associated Interferon Pathway Activation. Cell Rep. 2023, 42, 113352. [Google Scholar] [CrossRef]
- Xiao, B.-L.; Wang, X.-L.; Xia, H.-F.; Zhang, L.-Z.; Wang, K.-M.; Chen, Z.-K.; Zhong, Y.-H.; Jiang, H.-G.; Zhou, F.-X.; Wang, W.; et al. HRS Regulates Small Extracellular Vesicle PD-L1 Secretion and Is Associated with Anti-PD-1 Treatment Efficacy. Cancer Immunol. Res. 2023, 11, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Saddawi-Konefka, R.; Goldenson, B.; Al-Msari, R.; Bernareggi, D.; Thangaraj, J.L.; Tang, S.; Patel, S.H.; Luna, S.M.; Gutkind, J.S.; et al. CHMP2A Regulates Broad Immune Cell-Mediated Antitumor Activity in an Immunocompetent in Vivo Head and Neck Squamous Cell Carcinoma Model. J. Immunother. Cancer 2024, 12, e007187. [Google Scholar] [CrossRef] [PubMed]
- Rühl, S.; Shkarina, K.; Demarco, B.; Heilig, R.; Santos, J.C.; Broz, P. ESCRT-Dependent Membrane Repair Negatively Regulates Pyroptosis Downstream of GSDMD Activation. Science 2018, 362, 956–960. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-G.; Fang, Y.-H.; Wang, K.-M.; Zhang, W.; Chen, G. VPS25 Promotes an Immunosuppressive Microenvironment in Head and Neck Squamous Cell Carcinoma. Biomolecules 2025, 15, 323. https://doi.org/10.3390/biom15030323
Chen L-G, Fang Y-H, Wang K-M, Zhang W, Chen G. VPS25 Promotes an Immunosuppressive Microenvironment in Head and Neck Squamous Cell Carcinoma. Biomolecules. 2025; 15(3):323. https://doi.org/10.3390/biom15030323
Chicago/Turabian StyleChen, Li-Guo, Yu-Han Fang, Kui-Ming Wang, Wei Zhang, and Gang Chen. 2025. "VPS25 Promotes an Immunosuppressive Microenvironment in Head and Neck Squamous Cell Carcinoma" Biomolecules 15, no. 3: 323. https://doi.org/10.3390/biom15030323
APA StyleChen, L.-G., Fang, Y.-H., Wang, K.-M., Zhang, W., & Chen, G. (2025). VPS25 Promotes an Immunosuppressive Microenvironment in Head and Neck Squamous Cell Carcinoma. Biomolecules, 15(3), 323. https://doi.org/10.3390/biom15030323