A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
3. GV and Cancer
3.1. Relationship Between GV and Cancer in Clinical Studies
Study | DM Status and Type | GV: Method of Assessment and Parameters | Study Type Included (n) | Outcome | Risk Associated with GV (95% Confidence Interval) | |
---|---|---|---|---|---|---|
Lin et al. (2012) [21] | T2DM | Visit-to-visit variability of FPG | Cohort (4805) | Cancer | Group (FPG-CV, %) | HR |
≤14.41 | Reference | |||||
14.41–25.10 | 1.66 (1.01, 2.71) * | |||||
>25.10 | 3.03 (1.98, 4.65) * | |||||
Saito et al. (2019) [22] | Any DM | Visit-to-visit variability of HbA1c | Cohort (2640) | Cancer | Group (HbA1c, mean (SD), %) | OR |
6.66 (0.96) | Reference | |||||
6.69 (0.71) | 1.20 (0.88–1.65) | |||||
6.98 (0.98) | 1.43 (1.02–2.00) * | |||||
7.78 (1.51) | 2.19 (1.52–3.17) * | |||||
Yoo et al. (2021) [28] | Any DM | Visit-to-visit variability of FPG | Cohort (674,178) | Hepatocellular carcinoma | Group (Quartile of CV) | HR |
Q1 | Reference | |||||
Q2 | 1.05 (0.97–1.13) * | |||||
Q3 | 1.09 (1.01–1.18) * | |||||
Q4 | 1.23 (1.14–1.33) * | |||||
Mao et al. (2022) [17] | Any DM | Visit-to-visit variability of HbA1c | Cohort (15,286) | Cancer | HR 1.13 (1.03–1.24) * | |
Breast cancer | HR 1.30 (0.97–1.75) | |||||
Liver cancer | HR 1.37 (1.09–1.74) * | |||||
Colorectal cancer | HR 1.08 (0.90–1.30) | |||||
Jun et al. (2022) [26] | No DM | Visit-to-visit variability of FBG | Cohort (246,241) | Cancer | Group (Quintiles of SD) | HR |
Q1: <4.97 | Reference | |||||
Q2: 4.97–7.49 | 0.98 (0.88–1.10) | |||||
Q3: 7.50–10.11 | 1.16 (1.04–1.28) * | |||||
Q4: 10.12–14.19 | 1.10 (0.99–1.22) | |||||
Q5: ≥14.20 | 1.32 (1.19–1.46) * | |||||
Cui et al. (2022) [24] | T2DM | Visit-to-visit variability of FBG | Cohort (46,761) | Cancer | Group | HR |
Normotension | 1.38 (1.13–1.68) * | |||||
Hypertension | 1.02 (0.92–1.13) |
3.2. Potential Mechanisms of GV in Cancer
4. GV and Liver Diseases
4.1. Relationship Between GV and Liver Diseases in Clinical Studies
4.2. Potential Mechanisms of GV in Liver Diseases
5. GV and Bone Disease, Functional Disability
5.1. Relationship Between GV and Bone Disease, Functional Disability in Clinical Studies
Study | DM Status and Type | GV: Method of Assessment and Parameters | Study Type Included (n) | Outcome | Risk Associated with GV (95% Confidence Interval) | |
---|---|---|---|---|---|---|
Lee et al. (2022) [69] | Any DM | Visit-to-visit variability of FPG | Cohort (480,539) | Hip fracture | Group (Quartiles of VIM) | HR |
Q1: | Reference | |||||
Q2: | 0.97 (0.87–1.08) | |||||
Q3: | 1.20 (1.08–1.33) * | |||||
Q4: | 1.34 (1.21–1.48) * | |||||
Lui et al. (2020) [70] | T2DM | Visit-to-visit variability of HbA1c | Cohort (83,282) | Hip fracture | Group (HbA1c-CV) | HR |
Q1: <4.78 | Reference | |||||
Q2: 4.78–7.47 | 1.08 (0.97–1.20) | |||||
Q3: 7.48–11.49 | 1.17 (1.06–1.31) * | |||||
Q4: ≥11.50 | 1.46 (1.32–1.62) * | |||||
Kim et al. (2021) [71] | No DM | Visit-to-visit variability of FPG | Cohort (92,929) | Group (Quartiles of FPG-SD) | HR | |
Total fracture | Q1: | Reference | ||||
Q2: | 1.00 (0.93–1.08) | |||||
Q3: | 0.94 (0.87–1.01) | |||||
Q4: | 1.11 (1.03–1.20) * | |||||
Vertebral fracture | Q1: | Reference | ||||
Q2: | 0.92 (0.80–1.05) | |||||
Q3: | 1.01 (0.88–1.15) | |||||
Q4: | 1.16 (1.02–1.31) * | |||||
Liu et al. (2023) [72] | ALL | Visit-to-visit variability of FPG | Cohort (57,295) | Osteoporotic fracture | Group (FPG-SD) | HR |
T1: <0.33 | Reference | |||||
T2: 0.33–0.60 | 1.07(0.89–1.29) | |||||
T3: ≥0.60 | 1.32(1.10–1.60) * | |||||
Shao et al. (2022) [74] | ALL | Visit-to-visit variability of HbA1c | Cohort (5544) | Functional limitation | Group (FPG-CV) | OR |
mean HbA1c | 0.98 (0.09–1.02) | |||||
HbA1c CV | 1.88 (1.14–3.10) * | |||||
Li et al. (2020) [75] | T2DM | Visit-to-visit variability of FPG, HbA1c | Cohort (27,574) DM duration >3 years | Lower extremity amputation | Group (FPG-CV%) | HR |
<17.5 | Reference | |||||
17.5–34.7 | 1.53 (1.07–2.18) * | |||||
≥34.8 | 1.94 (1.38–2.72) * | |||||
Group (HbA1c-CV%) | HR | |||||
<8.4 | Reference | |||||
8.4–16.6 | 1.18 (0.86–1.60) | |||||
≥16.7 | 1.51 (1.12–2.05) * |
5.2. Potential Mechanisms of GV in Bone Disease and Functional Disability
6. GV and Neuropsychiatric Disorders
6.1. Relationship Between GV and Neuropsychiatric Disorders in Clinical Studies
Study | DM Status and Type | GV: Method of Assessment and Parameters | Study Type Included (n) | Outcome | Risk Associated with GV (95% Confidence Interval) | |
---|---|---|---|---|---|---|
Ravona-Springer et al. (2017) [87] | T2DM | Visit-to-visit variability of HbA1c | Cohort (837) | Depression | Group | IRR |
- | 1.31 (1.03–1.67) * | |||||
Lee et al. (2021) [90] | T2DM | Visit-to-visit variability of HbA1c | Cohort (85,514) | Alzheimer’s disease | Group (Women) | HR |
Severe hypoglycemia | 1.69 (1.14–2.52) * | |||||
Adjusted SD | 1.15 (1.02–1.30) * | |||||
Lee et al. (2022) [91] | Any DM | Visit-to-visit variability of FPG | Cohort (769,554) | Group (VIM) | HR | |
All-cause dementia | Q1: 0–12.7 | Reference | ||||
Q2: 12.8–20.5 | 1 (0.98–1.03) | |||||
Q3: 20.6–31.2 | 1.07 (1.04–1.09) * | |||||
Q4: ≥31.3 | 1.18 (1.15–1.21) * | |||||
Alzheimer’s disease | Q1: 0–12.7 | Reference | ||||
Q2: 12.8–20.5 | 1.01 (0.98–1.04) | |||||
Q3: 20.6–31.2 | 1.08 (1.05–1.11) * | |||||
Q4: ≥31.3 | 1.19 (1.15–1.22) * | |||||
Vascular dementia | Q1: 0–12.7 | Reference | ||||
Q2: 12.8–20.5 | 0.98 (0.91–1.04) | |||||
Q3: 20.6–31.2 | 1.06 (0.99–1.13) | |||||
Q4: ≥31.3 | 1.17 (1.09–1.25) * | |||||
Kang et al. (2023) [93] | ALL | Visit-to-visit variability of FPG | Cohort (9264) | Parkinson’s disease dementia | Group (Quartiles of FPG-CV) | SHR |
Q1: | Reference | |||||
Q2: | 1.30 (1.04–1.63) * | |||||
Q3: | 1.29 (1.02–1.62) * | |||||
Q4: | 1.50 (1.19–1.88) * | |||||
No DM | Q1: | Reference | ||||
Q2: | 1.18 (0.96–1.45) | |||||
Q3: | 1.20 (0.97–1.49) | |||||
Q4: | 1.46 (1.17–1.83) * |
6.2. Potential Mechanisms of GV in Neuropsychiatric Disorders
7. GV and Infection
7.1. Relationship Between GV and Infection in Clinical Studies
Study | DM Status and Type | GV: Method of Assessment and Parameters | Study Type Included (n) | Outcome | Risk Associated with GV (95% Confidence Interval) | |
---|---|---|---|---|---|---|
Goh et al. (2022) [123] | ALL | Visit-to-visit variability of postoperative glucose | Cohort (1983) | Periprosthetic joint infection | Group | OR |
- | 1.02 (1.01–1.03) * | |||||
Jeon et al. (2012) [114] | ALL | Visit-to-visit variability of preoperative and postoperative glucose | Cohort (13,800) | Surgical-site infection | Group (CV) | HR |
Preoperative glucose | 1.11 (1.02–1.21) * | |||||
Postoperative glucose | 1.15 (1.07–1.21) * | |||||
Subramaniam et al. (2014) [124] | ALL | Visit-to-visit variability of postoperative glucose | Cohort (1461) | Postoperative Complications (including sternal infection and pneumonia) | Group (CV) | OR |
- | 1.27 (1.06–1.45) * | |||||
Donati et al. (2014) [118] | ALL | Visit-to-visit variability of glucose | Cohort (2782) | ICU-acquired infections | Group | OR |
- | 5.04 (1.70–15.00) * | |||||
Shohat et al. (2018) [112] | ALL | Visit-to-visit variability of postoperative glucose | Cohort (21,487) | Postoperative Complications | Group (CV) | OR |
Surgical-site infection | 1.14 (1.00–1.31) * | |||||
Periprosthetic joint infection | 1.20 (1.02–1.41) * | |||||
Wang et al. (2020) [115] | ALL | Visit-to-visit variability of glucose | Cohort (665) | Re-infection | Group (CV) | HR |
- | 1.31 (1.03–1.68) * | |||||
Carey et al. (2024) [120] | T2DM | Visit-to-visit variability of HbA1c | Cohort (411,963) | Hospitalization infections | Group (HbA1c Variability Score) | IRR |
0–20 | Reference | |||||
20–50 | 1.22(1.21–1.24) * | |||||
50–80 | 1.45(1.43–1.48) * | |||||
≥80 | 1.67(1.63–1.70) * | |||||
Sopfe et al. (2020) [121] | ALL | Visit-to-visit variability of glucose | Cohort (344) | Infection | Group | HR |
- | 4.91(1.40–17.24) * |
7.2. Potential Mechanisms of GV in Infection
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas 10th edition scientific committee. In IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 978-2-930229-98-0. [Google Scholar]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The Burden and Risks of Emerging Complications of Diabetes Mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Tsilidis, K.K.; Kasimis, J.C.; Lopez, D.S.; Ntzani, E.E.; Ioannidis, J.P.A. Type 2 Diabetes and Cancer: Umbrella Review of Meta-Analyses of Observational Studies. BMJ 2015, 350, g7607. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.A.; Karthikeyan, M.; Lackey, M.; Villavicencio, D.; Potashkin, J.A. Diabetes: A Tipping Point in Neurodegenerative Diseases. Trends Mol. Med. 2023, 29, 1029–1044. [Google Scholar] [CrossRef] [PubMed]
- Abeysekera, K.W.M.; Valenti, L.; Younossi, Z.; Dillon, J.F.; Allen, A.M.; Noureddin, M.; Rinella, M.E.; Tacke, F.; Francque, S.; Ginès, P.; et al. Implementation of a Liver Health Check in People with Type 2 Diabetes. Lancet Gastroenterol. Hepatol. 2024, 9, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Fratiglioni, L.; Vetrano, D.L.; Dove, A.; Welmer, A.-K.; Xu, W. Not Only Diabetes but Also Prediabetes Leads to Functional Decline and Disability in Older Adults. Diabetes Care 2021, 44, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, X.; Zhang, Q.; Zou, R. Diabetes Mellitus and Risk of Falls in Older Adults: A Systematic Review and Meta-Analysis. Age Ageing 2016, 45, 761–767. [Google Scholar] [CrossRef]
- Nouwen, A.; Adriaanse, M.C.; van Dam, K.; Iversen, M.M.; Viechtbauer, W.; Peyrot, M.; Caramlau, I.; Kokoszka, A.; Kanc, K.; de Groot, M.; et al. Longitudinal Associations between Depression and Diabetes Complications: A Systematic Review and Meta-analysis. Diabet. Med. 2019, 36, 1562–1572. [Google Scholar] [CrossRef]
- Pearson-Stuttard, J.; Blundell, S.; Harris, T.; Cook, D.G.; Critchley, J. Diabetes and Infection: Assessing the Association with Glycaemic Control in Population-Based Studies. Lancet Diabetes Endocrinol. 2016, 4, 148–158. [Google Scholar] [CrossRef]
- Pearson-Stuttard, J.; Bennett, J.; Cheng, Y.J.; Vamos, E.P.; Cross, A.J.; Ezzati, M.; Gregg, E.W. Trends in Predominant Causes of Death in Individuals with and without Diabetes in England from 2001 to 2018: An Epidemiological Analysis of Linked Primary Care Records. Lancet Diabetes Endocrinol. 2021, 9, 165–173. [Google Scholar] [CrossRef]
- Pearson-Stuttard, J.; Buckley, J.; Cicek, M.; Gregg, E.W. The Changing Nature of Mortality and Morbidity in Patients with Diabetes. Endocrinol. Metab. Clin. N. Am. 2021, 50, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Biondi, G.; Marrano, N.; Borrelli, A.; Rella, M.; D’Oria, R.; Genchi, V.A.; Caccioppoli, C.; Cignarelli, A.; Perrini, S.; Laviola, L.; et al. The p66Shc Redox Protein and the Emerging Complications of Diabetes. Int. J. Mol. Sci. 2023, 25, 108. [Google Scholar] [CrossRef]
- Julla, J.-B.; Jacquemier, P.; Fagherazzi, G.; Vidal-Trecan, T.; Juddoo, V.; Jaziri, A.; Mersel, H.; Venteclef, N.; Roussel, R.; Massin, P.; et al. Is the Consensual Threshold for Defining High Glucose Variability Implementable in Clinical Practice? Diabetes Care 2021, 44, 1722–1725. [Google Scholar] [CrossRef]
- Ceriello, A.; Monnier, L.; Owens, D. Glycaemic Variability in Diabetes: Clinical and Therapeutic Implications. Lancet Diabetes Endocrinol. 2019, 7, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sun, B.; Huang, S.; Zhu, C.; Bian, M. Glycemic Variability: Adverse Clinical Outcomes and How to Improve It? Cardiovasc. Diabetol. 2020, 19, 102. [Google Scholar] [CrossRef] [PubMed]
- Naaman, S.H.; Mizrak, H.I.; Lind, N.; Laursen, J.C.; Kufaishi, H.; Christensen, M.M.B.; Ranjan, A.G.; Nørgaard, K.; Hansen, C.S. Cardiovascular Autonomic Neuropathy Is Associated with Increased Glucose Variability in People with Type 1 Diabetes. Diabetes Care 2022, 45, 2461–2465. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Lau, E.S.H.; Wu, H.; Yang, A.; Shi, M.; Fan, B.; Tam, C.H.T.; Chow, E.; Kong, A.P.S.; Ma, R.C.W.; et al. Risk Associations of Long-Term HbA1c Variability and Obesity on Cancer Events and Cancer-Specific Death in 15,286 Patients with Diabetes—A Prospective Cohort Study. Lancet Reg. Health-West. Pac. 2022, 18, 100315. [Google Scholar] [CrossRef]
- Ceriello, A.; Lucisano, G.; Prattichizzo, F.; La Grotta, R.; Franzén, S.; Svensson, A.-M.; Eliasson, B.; Nicolucci, A. HbA1c Variability Predicts Cardiovascular Complications in Type 2 Diabetes Regardless of Being at Glycemic Target. Cardiovasc. Diabetol. 2022, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and Cancer: A Consensus Report. CA Cancer J. Clin. 2010, 60, 207–221. [Google Scholar] [CrossRef]
- Muggeo, M.; Zoppini, G.; Bonora, E.; Brun, E.; Bonadonna, R.C.; Moghetti, P.; Verlato, G. Fasting Plasma Glucose Variability Predicts 10-Year Survival of Type 2 Diabetic Patients: The Verona Diabetes Study. Diabetes Care 2000, 23, 45–50. [Google Scholar] [CrossRef]
- Lin, C.-C.; Li, C.-I.; Liu, C.-S.; Lin, W.-Y.; Chen, C.-C.; Yang, S.-Y.; Lee, C.-C.; Li, T.-C. Annual Fasting Plasma Glucose Variation Increases Risk of Cancer Incidence and Mortality in Patients with Type 2 Diabetes: The Taichung Diabetes Study. Endocr-Relat. Cancer 2012, 19, 473–483. [Google Scholar] [CrossRef]
- Saito, Y.; Noto, H.; Takahashi, O.; Kobayashi, D. Visit-to-Visit Hemoglobin A1c Variability Is Associated with Later Cancer Development in Patients with Diabetes Mellitus. Cancer J. 2019, 25, 237–240. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, F.; Xu, W.; Li, J.; Zhu, J.; Zhang, M.; Wu, Z.; Qin, G. Annual Glycemic Variations and Risk of Cancer among Chinese Patients with Type 2 Diabetes Mellitus: A Population-Based Cohort Study in Shanghai. Diabetes Res. Clin. Pract. 2021, 171, 108552. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Li, J.; Yang, Y.; Wu, J.; Xu, H.; Yu, Y.; Qin, G. Long-term Fasting Glucose Variability and Risk of Cancer in Patients with Type 2 Diabetes Mellitus: A Retrospective Population-based Cohort Study in Shanghai. J. Diabetes 2022, 14, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Noh, E.; Kim, J.; Hwang, S.Y.; Kim, J.A.; Lee, Y.-B.; Roh, E.; Choi, K.M.; Baik, S.H.; Cho, G.J.; et al. Fasting Plasma Glucose Variability and Gastric Cancer Risk in Individuals Without Diabetes Mellitus: A Nationwide Population-Based Cohort Study. Clin. Transl. Gastroenterol. 2020, 11, e00221. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.; Lee, J.; Lee, H.A.; Kim, S.-E.; Shim, K.-N.; Jung, H.-K.; Jung, S.-A.; Moon, C.M. Fasting Blood Glucose Variability and Unfavorable Trajectory Patterns Are Associated with the Risk of Colorectal Cancer. Falk. Symp. 2022, 16, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Takao, T.; Matsuyama, Y.; Yanagisawa, H.; Kikuchi, M.; Kawazu, S. Association between HbA1c Variability and Mortality in Patients with Type 2 Diabetes. J. Diabetes Complicat. 2014, 28, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.-J.; Cho, E.J.; Han, K.; Heo, S.S.; Kim, B.-Y.; Shin, D.W.; Yu, S.J. Glucose Variability and Risk of Hepatocellular Carcinoma in Patients with Diabetes: A Nationwide Population-Based Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 974–981. [Google Scholar] [CrossRef]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.A.; Thorpe, J.E.; Testa, R.; Boemi, M.; Giugliano, D. Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress than Mean Glucose in Normal and Type 2 Diabetic Patients. Diabetes 2008, 57, 1349–1354. [Google Scholar] [CrossRef]
- Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.-P.; et al. Normalizing Mitochondrial Superoxide Production Blocks Three Pathways of Hyperglycaemic Damage. Nature 2000, 404, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Humans. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Monnier, L.; Mas, E.; Ginet, C.; Michel, F.; Villon, L.; Cristol, J.-P.; Colette, C. Activation of Oxidative Stress by Acute Glucose Fluctuations Compared with Sustained Chronic Hyperglycemia in Patients with Type 2 Diabetes. JAMA 2006, 295, 1681. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-L.; Ponneri Babuharisankar, A.; Lin, Y.-C.; Lien, H.-W.; Lo, Y.K.; Chou, H.-Y.; Tangeda, V.; Cheng, L.-C.; Cheng, A.N.; Lee, A.Y.-L. Mitochondrial Oxidative Stress in the Tumor Microenvironment and Cancer Immunoescape: Foe or Friend? J. Biomed. Sci. 2022, 29, 74. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yu, Q.; Wu, R.; Tuo, Z.; Wang, J.; Ye, L.; Shao, F.; Chaipanichkul, P.; Yoo, K.H.; Wei, W.; et al. Interactions between Oxidative Stress and Senescence in Cancer: Mechanisms, Therapeutic Implications, and Future Perspectives. Redox Biol. 2024, 73, 103208. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, L.; Daßler-Plenker, J.; Sun, L.; Egeblad, M. Innate Immunity and Cancer Pathophysiology. Annu. Rev. Pathol. Mech. Dis. 2022, 17, 425–457. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-Related Inflammation and Treatment Effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef] [PubMed]
- Toya, T.; Sara, J.D.; Corban, M.T.; Taher, R.; Godo, S.; Herrmann, J.; Lerman, L.O.; Lerman, A. Assessment of Peripheral Endothelial Function Predicts Future Risk of Solid-Tumor Cancer. Eur. J. Prev. Cardiol. 2020, 27, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; Masi, S. The Emerging Role of Endothelial Function in Cardiovascular Oncology. Eur. J. Prev. Cardiol. 2020, 27, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Hisada, Y.; Grover, S.P.; Schug, W.J.; Paul, D.S.; Bergmeier, W.; Mackman, N. Decreased Platelet Reactivity and Function in a Mouse Model of Human Pancreatic Cancer. Thromb. Haemost. 2023, 123, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Santilli, F.; Formoso, G.; Sbraccia, P.; Averna, M.; Miccoli, R.; di Fulvio, P.; Ganci, A.; Pulizzi, N.; Lattanzio, S.; Ciabattoni, G.; et al. Postprandial Hyperglycemia Is a Determinant of Platelet Activation in Early Type 2 Diabetes Mellitus. J. Thromb. Haemost. 2010, 8, 828–837. [Google Scholar] [CrossRef] [PubMed]
- López, J.A. Introduction to a Review Series on Platelets and Cancer. Blood 2021, 137, 3151–3152. [Google Scholar] [CrossRef] [PubMed]
- Goubran, H.A.; Burnouf, T.; Radosevic, M.; El-Ekiaby, M. The Platelet–Cancer Loop. Eur. J. Intern. Med. 2013, 24, 393–400. [Google Scholar] [CrossRef]
- Palacios-Acedo, A.L.; Mège, D.; Crescence, L.; Dignat-George, F.; Dubois, C.; Panicot-Dubois, L. Platelets, Thrombo-Inflammation, and Cancer: Collaborating with the Enemy. Front. Immunol. 2019, 10, 1805. [Google Scholar] [CrossRef]
- Saik, O.V.; Klimontov, V.V. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. Int. J. Mol. Sci. 2020, 21, 8691. [Google Scholar] [CrossRef]
- Jin, S.; Wang, W.; Xu, X.; Yu, Z.; Feng, Z.; Xie, J.; Lv, H. miR-34b-3p-Mediated Regulation of STC2 and FN1 Enhances Chemosensitivity and Inhibits Proliferation in Cervical Cancer. Acta Biochim. Biophys. Sin. 2024, 56, 740–752. [Google Scholar] [CrossRef]
- Lu, X.-Q.; Zhang, J.-Q.; Zhang, S.-X.; Qiao, J.; Qiu, M.-T.; Liu, X.-R.; Chen, X.-X.; Gao, C.; Zhang, H.-H. Identification of Novel Hub Genes Associated with Gastric Cancer Using Integrated Bioinformatics Analysis. BMC Cancer 2021, 21, 697. [Google Scholar] [CrossRef] [PubMed]
- Omatsu, M.; Nakanishi, Y.; Iwane, K.; Aoyama, N.; Duran, A.; Muta, Y.; Martinez-Ordoñez, A.; Han, Q.; Agatsuma, N.; Mizukoshi, K.; et al. THBS1-Producing Tumor-Infiltrating Monocyte-like Cells Contribute to Immunosuppression and Metastasis in Colorectal Cancer. Nat. Commun. 2023, 14, 5534. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zhang, Z.; Zhang, H. Effect of Glucose Variability on Pancreatic Cancer Through Regulation of COL6A1. CMAR 2021, 13, 1291–1298. [Google Scholar] [CrossRef]
- Pang, Y.; Kartsonaki, C.; Turnbull, I.; Guo, Y.; Clarke, R.; Chen, Y.; Bragg, F.; Yang, L.; Bian, Z.; Millwood, I.Y.; et al. Diabetes, Plasma Glucose, and Incidence of Fatty Liver, Cirrhosis, and Liver Cancer: A Prospective Study of 0.5 Million People. Hepatology 2018, 68, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.C.; Cho, Y.K.; Lee, W.Y.; Seo, H.I.; Rhee, E.J.; Park, S.E.; Park, C.Y.; Oh, K.W.; Sung, K.C.; Kim, B.I. Impact of Nonalcoholic Fatty Liver Disease on Insulin Resistance in Relation to HbA1c Levels in Nondiabetic Subjects. Am. J. Gastroenterol. 2010, 105, 2389–2395. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zeng, X.; Xue, Y.; Wang, X.; Liu, S.; Zhu, Z.; Luo, Z.; Ma, Z.; Zhang, H.; Zhan, Q.; et al. Visit-to-Visit Fasting Glucose Variability in Young Adulthood and Nonalcoholic Fatty Liver Disease in Middle Age. J. Clin. Endocr. Metab. 2022, 107, e2301–e2308. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.H.; Kang, M.; Kim, G.; Hur, K.Y.; Kim, J.H.; Sinn, D.H.; Jin, S. Mean and Visit-to-visit Variability of Glycated Hemoglobin, and the Risk of Non-alcoholic Fatty Liver Disease. J. Diabetes Investig. 2021, 12, 1252–1262. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Lee, J.S.; Kim, J.A.; Lee, Y.-B.; Roh, E.; Hee Yu, J.; Kim, N.H.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; et al. Glycemic Variability and the Risk of Nonalcoholic Fatty Liver Disease: A Nationwide Population-Based Cohort Study. Diabetes Res. Clin. Pract. 2021, 177, 108922. [Google Scholar] [CrossRef] [PubMed]
- Dhaver, S.E.; Salah, T.; Al-BadrI, M.; Kibaa, K.; Khater, A.; Mccarragher, R.; Al-Roomi, F.; Demattos, L.; Hamdy, O. 1565-P: Relationship between Glycemic Control, Body Weight, and Nonalcoholic Fatty Liver Disease in Patients with Type 1 Diabetes. Diabetes 2023, 72, 1565-P. [Google Scholar] [CrossRef]
- Hashiba, M.; Ono, M.; Hyogo, H.; Ikeda, Y.; Masuda, K.; Yoshioka, R.; Ishikawa, Y.; Nagata, Y.; Munekage, K.; Ochi, T.; et al. Glycemic Variability Is an Independent Predictive Factor for Development of Hepatic Fibrosis in Nonalcoholic Fatty Liver Disease. PLoS ONE 2013, 8, e76161. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, Y.; Han, K.; Han, E.; Lee, B.W.; Kang, E.S.; Cha, B.-S.; Ko, S.-H.; Lee, Y. Analysis of Severe Hypoglycemia Among Adults with Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. JAMA Netw. Open 2022, 5, e220262. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Adolph, T.E.; Moschen, A.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade. Hepatology 2021, 73, 833–842. [Google Scholar] [CrossRef]
- Costantino, S.; Paneni, F.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Tanese, L.; Russo, G.; Pitocco, D.; Lanza, G.A.; et al. Impact of Glycemic Variability on Chromatin Remodeling, Oxidative Stress, and Endothelial Dysfunction in Patients with Type 2 Diabetes and with Target HbA1c Levels. Diabetes 2017, 66, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Schisano, B.; Tripathi, G.; McGee, K.; McTernan, P.G.; Ceriello, A. Glucose Oscillations, More than Constant High Glucose, Induce P53 Activation and a Metabolic Memory in Human Endothelial Cells. Diabetologia 2011, 54, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Testa, R.; Bonfigli, A.R.; Prattichizzo, F.; La Sala, L.; De Nigris, V.; Ceriello, A. The “Metabolic Memory” Theory and the Early Treatment of Hyperglycemia in Prevention of Diabetic Complications. Nutrients 2017, 9, 437. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.; Nakamura, N.; Matsui, T. Glycation and Cardiovascular Disease in Diabetes: A Perspective on the Concept of Metabolic Memory. J. Diabetes 2017, 9, 141–148. [Google Scholar] [CrossRef]
- Williams, K.H.; Shackel, N.A.; Gorrell, M.D.; McLennan, S.V.; Twigg, S.M. Diabetes and Nonalcoholic Fatty Liver Disease: A Pathogenic Duo. Endocr. Rev. 2013, 34, 84–129. [Google Scholar] [CrossRef] [PubMed]
- Parekh, S.; Anania, F.A. Abnormal Lipid and Glucose Metabolism in Obesity: Implications for Nonalcoholic Fatty Liver Disease. Gastroenterology 2007, 132, 2191–2207. [Google Scholar] [CrossRef] [PubMed]
- Kohnert, K.-D.; Augstein, P.; Zander, E.; Heinke, P.; Peterson, K.; Freyse, E.-J.; Hovorka, R.; Salzsieder, E. Glycemic Variability Correlates Strongly with Postprandialβ-Cell Dysfunction in a Segment of Type 2 Diabetic Patients Using Oral Hypoglycemic Agents. Diabetes Care 2009, 32, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; Gastaldelli, A.; Vanni, E.; Gambino, R.; Cassader, M.; Baldi, S.; Ponti, V.; Pagano, G.; Ferrannini, E.; Rizzetto, M. Insulin Resistance in Non-Diabetic Patients with Non-Alcoholic Fatty Liver Disease: Sites and Mechanisms. Diabetologia 2005, 48, 634–642. [Google Scholar] [CrossRef]
- Yin, X.; Zheng, F.; Pan, Q.; Zhang, S.; Yu, D.; Xu, Z.; Li, H. Glucose Fluctuation Increased Hepatocyte Apoptosis under Lipotoxicity and the Involvement of Mitochondrial Permeability Transition Opening. J. Mol. Endocrinol. 2015, 55, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Czernik, B. Diabetes, Bone and Glucose-Lowering Agents: Basic Biology. Diabetologia 2017, 60, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Starup-Linde, J.; Lykkeboe, S.; Handberg, A.; Vestergaard, P.; Høyem, P.; Fleischer, J.; Hansen, T.K.; Poulsen, P.L.; Laugesen, E. Glucose Variability and Low Bone Turnover in People with Type 2 Diabetes. Bone 2021, 153, 116159. [Google Scholar] [CrossRef]
- Lee, J.; Han, K.; Park, S.H.; Kim, M.K.; Lim, D.-J.; Yoon, K.-H.; Kang, M.-I.; Lee, S.-H. Associations of Variability in Body Weight and Glucose Levels with the Risk of Hip Fracture in People with Diabetes. Metabolism 2022, 129, 155135. [Google Scholar] [CrossRef] [PubMed]
- Lui, D.T.W.; Lee, C.H.; Chan, Y.H.; Chow, W.S.; Fong, C.H.Y.; Siu, D.C.W.; Tse, H.F.; Woo, Y.C.; Lam, K.S.L. HbA1c Variability, in Addition to Mean HbA1c, Predicts Incident Hip Fractures in Chinese People with Type 2 Diabetes. Osteoporos. Int. 2020, 31, 1955–1964. [Google Scholar] [CrossRef]
- Kim, J.A.; Sung Lee, J.; Song, E.; Roh, E.; Hee Yu, J.; Hoon Kim, N.; Jin Yoo, H.; Seo, J.A.; Gon Kim, S.; Hee Kim, N.; et al. Association Between Visit-to-Visit Fasting Plasma Glucose Variability and Osteoporotic Fractures in Nondiabetic Subjects. J. Clin. Endocr. Metab. 2021, 106, e3449–e3460. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gao, L.; Guo, L.; Xu, W.; Wu, S.; Tian, D. The Impact of Fasting Plasma Glucose Variability on Osteoporotic Fractures. Front. Endocrinol. 2023, 14, 1187682. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.; Bickenbach, J.; Ustun, T.B.; Kostanjsek, N.; Chatterji, S. The Definition of Disability: What Is in a Name? Lancet 2006, 368, 1219–1221. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Wang, S.-S.; Sun, J.-W.; Wang, H.-P.; Sun, Q. Association Between Long-Term HbA1c Variability and Functional Limitation in Individuals Aged over 50 Years: A Retrospective Cohort Study. Front. Endocrinol. 2022, 13, 847348. [Google Scholar] [CrossRef]
- Li, C.-I.; Cheng, H.-M.; Liu, C.-S.; Lin, C.-H.; Lin, W.-Y.; Wang, M.-C.; Yang, S.-Y.; Li, T.-C.; Lin, C.-C. Association between Glucose Variation and Lower Extremity Amputation Incidence in Individuals with Type 2 Diabetes: A Nationwide Retrospective Cohort Study. Diabetologia 2020, 63, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Domazetovic, V. Oxidative Stress in Bone Remodeling: Role of Antioxidants. Clin. Cases Miner. Bone Metab. 2017, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- Mody, N. Oxidative Stress Modulates Osteoblastic Differentiation of Vascular and Bone Cells. Free Radic. Biol. Med. 2001, 31, 509–519. [Google Scholar] [CrossRef]
- Prats-Puig, A.; Mas-Parareda, M.; Riera-Pérez, E.; González-Forcadell, D.; Mier, C.; Mallol-Guisset, M.; Díaz, M.; Bassols, J.; de Zegher, F.; Ibáñez, L.; et al. Carboxylation of Osteocalcin Affects Its Association with Metabolic Parameters in Healthy Children. Diabetes Care 2010, 33, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Conte, C.; Pedone, C.; Strotmeyer, E.S.; Barbour, K.E.; Black, D.M.; Samelson, E.J.; Schwartz, A.V. Effect of Insulin Resistance on BMD and Fracture Risk in Older Adults. J. Clin. Endocr. Metab. 2019, 104, 3303–3310. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.; Towler, D.A. Arterial Calcification and Bone Physiology: Role of the Bone–Vascular Axis. Nat. Rev. Endocrinol. 2012, 8, 529–543. [Google Scholar] [CrossRef]
- Lafage-Proust, M.-H.; Roche, B.; Langer, M.; Cleret, D.; Vanden Bossche, A.; Olivier, T.; Vico, L. Assessment of Bone Vascularization and Its Role in Bone Remodeling. Bonekey Rep. 2015, 4, 662. [Google Scholar] [CrossRef] [PubMed]
- Penno, G.; Solini, A.; Bonora, E.; Fondelli, C.; Orsi, E.; Zerbini, G.; Morano, S.; Cavalot, F.; Lamacchia, O.; Laviola, L.; et al. HbA1c Variability as an Independent Correlate of Nephropathy, but Not Retinopathy, in Patients with Type 2 Diabetes. Diabetes Care 2013, 36, 2301–2310. [Google Scholar] [CrossRef]
- Ihnat, M.A.; Thorpe, J.E.; Ceriello, A. Hypothesis: The ‘Metabolic Memory’, the New Challenge of Diabetes. Diabet. Med. 2007, 24, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Chandran, M.; Pierroz, D.D.; Abrahamsen, B.; Schwartz, A.V.; Ferrari, S.L. Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nat. Rev. Endocrinol. 2017, 13, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Cannata, F.; Strollo, R.; Pedone, C.; Leanza, G.; Russo, F.; Greto, V.; Isgrò, C.; Quattrocchi, C.C.; Massaroni, C.; et al. Sclerostin Regulation, Microarchitecture, and Advanced Glycation End-Products in the Bone of Elderly Women with Type 2 Diabetes. J. Bone Miner. Res. 2020, 35, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Zhang, X.Y.; Miao, Y.; Zhu, J.H.; Yan, H.; Wang, B.Y.; Jin, J.; Hu, T.J.; Jia, W.P. The Relationship between Glucose Excursion and Cognitive Function in Aged Type 2 Diabetes Patients. Biomed. Environ. Sci. 2012, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ravona-Springer, R.; Heymann, A.; Schmeidler, J.; Moshier, E.; Guerrero-Berroa, E.; Soleimani, L.; Sano, M.; Leroith, D.; Preiss, R.; Tzukran, R.; et al. Hemoglobin A1c Variability Predicts Symptoms of Depression in Elderly Individuals with Type 2 Diabetes. Diabetes Care 2017, 40, 1187–1193. [Google Scholar] [CrossRef]
- Lebedeva, A.; Borza, T.; Håberg, A.K.; Idland, A.-V.; Dalaker, T.O.; Aarsland, D.; Selbaek, G.; Beyer, M.K. Neuroanatomical Correlates of Late-Life Depression and Associated Cognitive Changes. Neurobiol. Aging 2015, 36, 3090–3099. [Google Scholar] [CrossRef]
- Yu, Z.-B.; Zhu, Y.; Li, D.; Wu, M.-Y.; Tang, M.-L.; Wang, J.-B.; Chen, K. Association between Visit-to-Visit Variability of HbA1c and Cognitive Decline: A Pooled Analysis of Two Prospective Population-Based Cohorts. Diabetologia 2020, 63, 85–94. [Google Scholar] [CrossRef]
- Lee, C.; Lui, D.T.W.; Cheung, C.Y.Y.; Woo, Y.; Fong, C.H.Y.; Yuen, M.M.A.; Shea, Y.; Siu, D.C.W.; Chan, K.; Chow, W.; et al. Different Glycaemia-related Risk Factors for Incident Alzheimer’s Disease in Men and Women with Type 2 Diabetes—A Sex-specific Analysis of the Hong Kong Diabetes Database. Diabetes Metab. Res. Rev. 2021, 37, e3401. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Kim, J.; Park, S.; Park, S.Y.; Yu, J.H.; Seo, J.A.; Kim, N.H.; Yoo, H.J.; Kim, S.G.; Choi, K.M.; et al. Fasting Glucose Variability and the Risk of Dementia in Individuals with Diabetes: A Nationwide Cohort Study. Diabetes Metab. J. 2022, 46, 923–935. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, A.; Liu, S.; Liu, H.; Zhu, W.; Zhang, Z. Glycemic Variability Correlates with Medial Temporal Lobe Atrophy and Decreased Cognitive Performance in Patients with Memory Deficits. Front. Aging Neurosci. 2023, 15, 1156908. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Choi, Y.; Chung, S.J.; Moon, S.-J.; Kim, C.K.; Kim, J.H.; Oh, K.; Yoon, J.S.; Seo, S.W.; Cho, G.J.; et al. Fasting Glucose Variability and Risk of Dementia in Parkinson’s Disease: A 9-Year Longitudinal Follow-up Study of a Nationwide Cohort. Front. Aging Neurosci. 2023, 15, 1292524. [Google Scholar] [CrossRef]
- Hawks, Z.W.; Beck, E.D.; Jung, L.; Fonseca, L.M.; Sliwinski, M.J.; Weinstock, R.S.; Grinspoon, E.; Xu, I.; Strong, R.W.; Singh, S.; et al. Dynamic Associations between Glucose and Ecological Momentary Cognition in Type 1 Diabetes. npj Digit. Med. 2024, 7, 59. [Google Scholar] [CrossRef]
- Paul, S.; Ali, A.; Katare, R. Molecular Complexities Underlying the Vascular Complications of Diabetes Mellitus—A Comprehensive Review. J. Diabetes Complicat. 2020, 34, 107613. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, B.; Liu, Y.; Iqbal, K.; Grundke-Iqbal, I.; Gong, C.-X. Dysregulation of Insulin Signaling, Glucose Transporters, O-GlcNAcylation, and Phosphorylation of Tau and Neurofilaments in the Brain. Am. J. Pathol. 2009, 175, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, W. Molecular Links between Alzheimer’s Disease and Diabetes Mellitus. Neuroscience 2013, 250, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Shen, H.; Liu, H.; Wang, Y.; Bai, Y.; Han, P. Acute Blood Glucose Fluctuation Enhances Rat Aorta Endothelial Cell Apoptosis, Oxidative Stress and pro-Inflammatory Cytokine Expression in Vivo. Cardiovasc. Diabetol. 2016, 15, 109. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Manschot, S.M.; Biessels, G.J.; de Valk, H.; Algra, A.; Rutten, G.E.H.M.; van der Grond, J.; Kappelle, L.J. Metabolic and Vascular Determinants of Impaired Cognitive Performance and Abnormalities on Brain Magnetic Resonance Imaging in Patients with Type 2 Diabetes. Diabetologia 2007, 50, 2388–2397. [Google Scholar] [CrossRef]
- Empana, J.-P.; Boutouyrie, P.; Lemogne, C.; Jouven, X.; van Sloten, T.T. Microvascular Contribution to Late-Onset Depression: Mechanisms, Current Evidence, Association with Other Brain Diseases, and Therapeutic Perspectives. Biol. Psychiatry 2021, 90, 214–225. [Google Scholar] [CrossRef]
- Ashleigh, T.; Swerdlow, R.H.; Beal, M.F. The Role of Mitochondrial Dysfunction in Alzheimer’s Disease Pathogenesis. Alzheimers Dement. 2023, 19, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.R.; Chesselet, M.-F. Mitochondrial Dysfunction and Oxidative Stress in Parkinson’s Disease. Prog. Neurobiol. 2013, 106–107, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Quincozes-Santos, A.; Bobermin, L.D.; de Assis, A.M.; Gonçalves, C.-A.; Souza, D.O. Fluctuations in Glucose Levels Induce Glial Toxicity with Glutamatergic, Oxidative and Inflammatory Implications. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Moin, A.S.M.; Al-Qaissi, A.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. Glucose Excursions in Type 2 Diabetes Modulate Amyloid-Related Proteins Associated with Dementia. J. Transl. Med. 2021, 19, 131. [Google Scholar] [CrossRef]
- Wu, T.; Dejanovic, B.; Gandham, V.D.; Gogineni, A.; Edmonds, R.; Schauer, S.; Srinivasan, K.; Huntley, M.A.; Wang, Y.; Wang, T.-M.; et al. Complement C3 Is Activated in Human AD Brain and Is Required for Neurodegeneration in Mouse Models of Amyloidosis and Tauopathy. Cell Rep. 2019, 28, 2111–2123.e6. [Google Scholar] [CrossRef] [PubMed]
- Pillai, J.A.; Bena, J.; Bekris, L.; Kodur, N.; Kasumov, T.; Leverenz, J.B.; Kashyap, S.R. Metabolic Syndrome Biomarkers Relate to Rate of Cognitive Decline in MCI and Dementia Stages of Alzheimer’s Disease. Alzheimer’s Res. Ther. 2023, 15, 54. [Google Scholar] [CrossRef] [PubMed]
- Moin, A.S.M.; Al-Qaissi, A.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. Hypoglycaemia in Type 2 Diabetes Exacerbates Amyloid-related Proteins Associated with Dementia. Diabetes Obes. Metab. 2021, 23, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Feinkohl, I.; Aung, P.P.; Keller, M.; Robertson, C.M.; Morling, J.R.; McLachlan, S.; Deary, I.J.; Frier, B.M.; Strachan, M.W.J.; Price, J.F. Severe Hypoglycemia and Cognitive Decline in Older People with Type 2 Diabetes: The Edinburgh Type 2 Diabetes Study. Diabetes Care 2014, 37, 507–515. [Google Scholar] [CrossRef]
- Livny, A.; Ravona-Springer, R.; Heymann, A.; Priess, R.; Kushnir, T.; Tsarfaty, G.; Rabinov, L.; Moran, R.; Hoffman, H.; Cooper, I.; et al. Long-Term Variability in Glycemic Control Is Associated with White Matter Hyperintensities in APOE4 Genotype Carriers with Type 2 Diabetes. Diabetes Care 2016, 39, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
- Neu, S.C.; Pa, J.; Kukull, W.; Beekly, D.; Kuzma, A.; Gangadharan, P.; Wang, L.-S.; Romero, K.; Arneric, S.P.; Redolfi, A.; et al. Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease. JAMA Neurol. 2017, 74, 1178. [Google Scholar] [CrossRef]
- Shohat, N.; Restrepo, C.; Allierezaie, A.; Tarabichi, M.; Goel, R.; Parvizi, J. Increased Postoperative Glucose Variability Is Associated with Adverse Outcomes Following Total Joint Arthroplasty. J. Bone Jt. Surg. 2018, 100, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Kheir, M.M.; Anderson, C.G.; Chiu, Y.; Carli, A. Perioperative Glycemic Variability Influences Infection Rates Differently Following Revision Hip and Knee Arthroplasty. J. Arthroplast. 2024. [Google Scholar] [CrossRef]
- Jeon, C.Y.; Furuya, E.Y.; Berman, M.F.; Larson, E.L. The Role of Pre-Operative and Post-Operative Glucose Control in Surgical-Site Infections and Mortality. PLoS ONE 2012, 7, e45616. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Xu, C.; Tan, T.L.; Goswami, K.; Cooper, A.M.; Parvizi, J. Increased Postoperative Glucose Variability Is Associated with Adverse Outcome Following Two-Stage Exchange Arthroplasty for Periprosthetic Joint Infection. J. Arthroplast. 2020, 35, 1368–1373. [Google Scholar] [CrossRef]
- Ashkenazi, I.; Morgan, S.; Graif, N.; Shaked, O.; Shohat, N.; Khoury, A.; Snir, N.; Warschawski, Y. Increased Postoperative Glycemic Variability Is Associated with Increased Mortality in Diabetic Patients Undergoing Hip Arthroplasty for Hip Fracture. Arch. Orthop. Trauma Surg. 2023, 143, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Atamna, A.; Ayada, G.; Akirov, A.; Shochat, T.; Bishara, J.; Elis, A. High Blood Glucose Variability Is Associated with Bacteremia and Mortality in Patients Hospitalized with Acute Infection. QJM 2019, 112, 101–106. [Google Scholar] [CrossRef]
- Donati, A.; Damiani, E.; Domizi, R.; Botticelli, L.; Castagnani, R.; Gabbanelli, V.; Nataloni, S.; Carsetti, A.; Scorcella, C.; Adrario, E.; et al. Glycaemic Variability, Infections and Mortality in a Medical-Surgical Intensive Care Unit. Crit. Care Resusc. 2014, 16, 13–23. [Google Scholar] [CrossRef]
- Chiu, P.-F.; Wu, C.-L.; Huang, C.-H.; Liou, H.-H.; Chang, C.-B.; Chang, H.-R.; Chang, C.-C. Lower Blood Glucose and Variability Are Associated with Earlier Recovery from Renal Injury Caused by Episodic Urinary Tract Infection in Advanced Type 2 Diabetic Chronic Kidney Disease. PLoS ONE 2014, 9, e108531. [Google Scholar] [CrossRef] [PubMed]
- Carey, I.M.; Critchley, J.A.; Chaudhry, U.A.; Cook, D.G.; DeWilde, S.; Limb, E.S.; Bowen, L.; Woolford, S.; Whincup, P.H.; Sattar, N.; et al. Effects of Long-Term HbA1c Variability on Serious Infection Risks in Patients with Type 2 Diabetes and the Influence of Age, Sex and Ethnicity: A Cohort Study of Primary Care Data. Diabetes Res. Clin. Pract. 2024, 211, 111641. [Google Scholar] [CrossRef] [PubMed]
- Sopfe, J.; Campbell, K.; Keating, A.K.; Pyle, L.; Liu, A.K.; Verneris, M.R.; Giller, R.H.; Forlenza, G.P. Glycemic Variability Is Associated with Poor Outcomes in Pediatric Hematopoietic Stem Cell Transplant Patients. Pediatr. Blood Cancer 2020, 67, e28626. [Google Scholar] [CrossRef] [PubMed]
- Prentice, B.J.; Ooi, C.Y.; Strachan, R.E.; Hameed, S.; Ebrahimkhani, S.; Waters, S.A.; Verge, C.F.; Widger, J. Early Glucose Abnormalities Are Associated with Pulmonary Inflammation in Young Children with Cystic Fibrosis. J. Cyst. Fibros. 2019, 18, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.S.; Shohat, N.; Abdelaal, M.S.; Small, I.; Thomas, T.; Ciesielka, K.-A.; Parvizi, J. Serum Glucose Variability Increases the Risk of Complications Following Aseptic Revision Hip and Knee Arthroplasty. J. Bone Jt. Surg. 2022, 104, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, B.; Lerner, A.; Novack, V.; Khabbaz, K.; Paryente-Wiesmann, M.; Hess, P.; Talmor, D. Increased Glycemic Variability in Patients with Elevated Preoperative HbA1C Predicts Adverse Outcomes Following Coronary Artery Bypass Grafting Surgery. Anesth. Analg. 2014, 118, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Hulme, K.D.; Gallo, L.A.; Short, K.R. Influenza Virus and Glycemic Variability in Diabetes: A Killer Combination? Front. Microbiol. 2017, 8, 861. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; Zhang, L.; Zhan, J.; Yang, Q.; Xiong, H.; Hu, W.; Ji, Q.; Huang, J. Hyperglycemia Decreases Epithelial Cell Proliferation and Attenuates Neutrophil Activity by Reducing ICAM-1 and LFA-1 Expression Levels. Front. Genet. 2020, 11, 616988. [Google Scholar] [CrossRef] [PubMed]
- Kavazović, I.; Krapić, M.; Beumer-Chuwonpad, A.; Polić, B.; Turk Wensveen, T.; Lemmermann, N.A.; van Gisbergen, K.P.J.M.; Wensveen, F.M. Hyperglycemia and Not Hyperinsulinemia Mediates Diabetes-Induced Memory CD8 T-Cell Dysfunction. Diabetes 2022, 71, 706–721. [Google Scholar] [CrossRef]
- Nobs, S.P.; Kolodziejczyk, A.A.; Adler, L.; Horesh, N.; Botscharnikow, C.; Herzog, E.; Mohapatra, G.; Hejndorf, S.; Hodgetts, R.-J.; Spivak, I.; et al. Lung Dendritic-Cell Metabolism Underlies Susceptibility to Viral Infection in Diabetes. Nature 2023, 624, 645–652. [Google Scholar] [CrossRef] [PubMed]
Study | DM Status and Type | GV: Method of Assessment and Parameters | Study Type Included (n) | Outcome | Risk Associated with GV (95% Confidence Interval) | |
---|---|---|---|---|---|---|
Hong et al. (2021) [53] | No DM | Visit-to-visit variability of FPG | Cohort (57,636) | MASLD | Group (Quartiles of FPG-CV) | OR |
Q1: 4.7 (1.2) | Reference | |||||
Q2: 7.6 (0.7) | 1.07 (0.99–1.15) | |||||
Q3: 10.3 (0.9) | 1.08 (1.00–1.17) * | |||||
Q4: 15.0 (2.7) | 1.15 (1.06–1.24) * | |||||
Yoo et al. (2021) [52] | ALL | Visit-to-visit variability of HbA1c | Cohort (21,123) | MASLD | Group (CV of HbA1c) | HR |
NGT | 1.01 (0.96–1.07) | |||||
PreDM | 1.02 (0.95–1.09) | |||||
DM | 1.14 (1.01–1.29) * | |||||
Zhou et al. (2022) [51] | T2DM | Visit-to-visit variability of FPG | Cohort (2467) | MASLD | Group (Quartiles of FPG-CV) | OR |
Q1: 4.9 (1.0) | Reference | |||||
Q2: 7.2 (0.6) | 1.83 (1.11–3.03) * | |||||
Q3: 9.4 (0.8) | 1.53 (0.91–2.56) | |||||
Q4: 19.2 (10.9) | 2.80 (1.69–4.64) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cao, Y. A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus. Biomolecules 2025, 15, 188. https://doi.org/10.3390/biom15020188
Wang X, Cao Y. A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus. Biomolecules. 2025; 15(2):188. https://doi.org/10.3390/biom15020188
Chicago/Turabian StyleWang, Xinxin, and Yanli Cao. 2025. "A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus" Biomolecules 15, no. 2: 188. https://doi.org/10.3390/biom15020188
APA StyleWang, X., & Cao, Y. (2025). A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus. Biomolecules, 15(2), 188. https://doi.org/10.3390/biom15020188