miR-155-5p Silencing Does Not Alter BTLA Molecule Expression in CLL T Cells: Implications for Targeted Immunotherapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Peripheral Blood Mononuclear Cell (PBMC) Isolation
2.3. Determination of BTLA mRNA Levels in T Cell Subpopulation
2.4. MicroRNA Studies
2.4.1. In Silico Analysis
2.4.2. Luciferase Test
2.4.3. miR-155-5p Inhibition
2.4.4. Determination of miR-155-5p Expression
2.5. Determination of BTLA mRNA Expression in PBMCs
2.6. Determination of BTLA Protein Expression in T Cell Subpopulation
2.7. Assessment of T Cell Capacity for IL-4 Secretion and Proliferation
2.8. Statistical Analysis
3. Results
3.1. Patient and Control Characteristics for the miR-155-5p Study
3.2. BTLA mRNA Expression in T Cells
3.3. BTLA Molecule Expression in T Cells
3.4. The Impact of BTLA Molecule Expression on T Cell Effector Functions
3.5. miR-155-5p Binding to the 3′UTR of the BTLA Gene
3.6. The Effect of miR-155-5p Inhibition on BTLA Protein Levels in T Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| miR | microRNA |
| RNA | ribonucleic acid |
| CLL | chronic lymphocytic leukemia |
| PBMC | peripheral blood mononuclear cell |
| siRNA | small interfering RNA |
| BTLA | B- and T-lymphocyte attenuator |
| INH | inhibitor |
| mRNA | messenger RNA |
| CD | cluster of differentiation |
| 3′UTR | 3′untranslated region |
| LAG-3 | lymphocyte activation gene-3 |
| TIGIT | T-cell immunoglobulin and ITIM domain |
| NKG2 | natural killer group 2 |
| ILT2 | immunoglobulin-like transcript 2 |
| Grb2 | growth factor receptor-bound protein 2 |
| ITIM | immunoreceptor tyrosine-based inhibitory motif |
| ITSM | immunoreceptor tyrosine-based switch motif |
| HVEM | herpesvirus entry mediator |
| TNFRSF | tumor necrosis factor receptor superfamily |
| SHP | Src homology region 2 domain-containing phosphatase |
| NK | natural killer |
| PD-1 | programmed cell death protein-1 |
| DLBCL | diffuse large B-cell lymphoma |
| RCC | renal cell carcinoma |
| BMI | body index mass |
| ECOG | Eastern Cooperative Oncology Group |
| PBS | phosphate-buffered saline |
| DMSO | dimethyl sulfoxide |
| cDNA | complementary deoxyribonucleic acid |
| PCR | polymerase chain reaction |
| WT | wild type |
| MUT | mutated |
| MFI | mean fluorescein intensity |
| AU | arbitrary unit |
| BD | Becton Dickinson |
| PerCP | peridinin-chlorophyll-protein |
| PE | phycoerythrin |
| FITC | fluorescein |
| RPMI | Roswell Park Memorial Institute |
| PMA | phorbol 12-myristate 23-acetate |
| Ion | ionomycin |
| BFA | brefeldin A |
| MoAb | monoclonal antibody |
| CA | California |
| WBC | white blood cell |
| Hb | hemoglobin |
| LDH | lactate dehydrogenase |
| IL | interleukin |
| IN | inhibitor |
| NC | negative control |
| TP53 | tumor protein p53 gene |
| cdk | cyclin-dependent kinase |
| PI3K | phosphatidylinositol 3-kinase |
| NF-κB | nuclear factor-kappa B |
References
- Hallek, M. Chronic Lymphocytic Leukemia: 2025 Update on the Epidemiology, Pathogenesis, Diagnosis, and Therapy. Am. J. Hematol. 2025, 100, 450–480. [Google Scholar] [CrossRef]
- Kaur, G.; Ruhela, V.; Rani, L.; Gupta, A.; Sriram, K.; Gogia, A.; Sharma, A.; Kumar, L.; Gupta, R. RNA-Seq profiling of deregulated miRs in CLL and their impact on clinical outcome. Blood Cancer J. 2020, 10, 6. [Google Scholar] [PubMed]
- Calin, G.A.; Ferracin, M.; Cimmino, A.; Di Leva, G.; Shimizu, M.; Wojcik, S.E.; Iorio, M.V.; Visone, R.; Sever, N.I.; Fabbri, N.; et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 2005, 353, 1793–1801. [Google Scholar]
- Papakonstantinou, N.; Ntoufa, S.; Chartomatsidou, E.; Papadopoulos, G.; Hatzigeorgiou, A.; Anagnostopoulos, A.; Chlichlia, K.; Ghia, P.; Muzio, M.; Belessi, C.; et al. Differential microRNA profiles and their functional implications in different immunogenetic subsets of chronic lymphocytic leukemia. Mol. Med. 2013, 19, 115–123. [Google Scholar] [CrossRef]
- Visone, R.; Visone, R.; Rassenti, L.Z.; Veronese, A.; Taccioli, C.; Costinean, S.; Aguda, B.D.; Volinia, S.; Ferracin, M.; Palatini, J.; et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 2009, 114, 3872–3879. [Google Scholar] [CrossRef]
- Kiefer, Y.; Schulte, C.; Tiemann, M.; Bullerdiek, J. Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation. Appl. Clin. Genet. 2012, 5, 21–28. [Google Scholar] [PubMed]
- Braga, T.V.; Evangelista, F.C.G.; Gomes, L.C.; Araújo, S.S.D.S.; Carvalho, M.D.G.; Sabino, A.D.P. Evaluation of MiR-15a and MiR-16-1 as prognostic biomarkers in chronic lymphocytic leukemia. Biomed. Pharmacother. 2017, 92, 864–869. [Google Scholar] [CrossRef]
- Deneberg, S.; Kanduri, M.; Ali, D.; Bengtzen, S.; Karimi, M.; Qu, Y.; Kimby, E.; Mansouri, L.; Rosenquist, R.; Lennartsson, A.; et al. microRNA-34b/c on chromosome 11q23 is aberrantly methylated in chronic lymphocytic leukemia. Epigenetics 2014, 9, 910–917. [Google Scholar] [PubMed]
- Negrini, M.; Cutrona, G.; Bassi, C.; Fabris, S.; Zagatti, B.; Colombo, M.; Ferracin, M.; D’Abundo, L.; Saccenti, E.; Matis, S.; et al. microRNAome expression in chronic lymphocytic leukemia: Comparison with normal B-cell subsets and correlations with prognostic and clinical parameters. Clin. Cancer Res. 2014, 20, 4141–4153. [Google Scholar]
- Mraz, M.; Malinova, K.; Kotaskova, J.; Pavlova, S.; Tichy, B.; Malcikova, J.; Stano Kozubik, K.; Smardova, J.; Brychtova, Y.; Doubek, M.; et al. miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia 2009, 23, 1159–1163. [Google Scholar]
- Golovina, E.; Kokavec, J.; Kazantsev, D.; Yurikova, O.; Bajecny, M.; Savvulidi, F.G.; Simersky, R.; Lenobel, R.; Tost, J.; Herynek, V.; et al. Deficiency of miR-155 in Leukemic B-Cells Results in Cell Cycle Arrest and Deregulation of MIR155HG/TP53INP1/CDKN1A/CCND1 network. Arch. Med. Res. 2025, 56, 103124. [Google Scholar] [CrossRef]
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79, 351–379. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.G.; Kontos, C.K.; Diamantopoulos, M.A.; Bouchla, A.; Glezou, E.; Bazani, E.; Pappa, V.; Scorilas, A. MicroRNA-155-5p Overexpression in Peripheral Blood Mononuclear Cells of Chronic Lymphocytic Leukemia Patients Is a Novel, Independent Molecular Biomarker of Poor Prognosis. Dis. Markers 2017, 2017, 2046545. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Anamag, F.T.; Taheri, M. The role of noncoding RNAs in controlling cell cycle related proteins in cancer cells. Front. Oncol. 2020, 10, 608975. [Google Scholar] [CrossRef] [PubMed]
- Autore, F.; Ramassone, A.; Stirparo, L.; Pagotto, S.; Fresa, A.; Innocenti, I.; Visone, R.; Laurenti, L. Role of microRNAs in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2023, 24, 12471. [Google Scholar] [CrossRef]
- Balatti, V.; Pekarky, Y.; Croce, C.M. Role of microRNA in chronic lymphocytic leukemia onset and progression. J. Hematol. Oncol. 2015, 55, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, D.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef]
- Vargova, K.; Pesta, M.; Obrtlikova, P.; Dusilkova, N.; Minarik, L.; Vargova, J.; Berkova, A.; Zemanova, Z.; Michalova, K.; Spacek, M.; et al. MiR-155/miR-150 network regulates progression through the disease phases of chronic lymphocytic leukemia. Blood Cancer J. 2017, 7, e585. [Google Scholar] [CrossRef]
- Katsaraki, K.; Karousi, P.; Artemaki, P.I.; Scorilas, A.; Pappa, V.; Kontos, C.K.; Papageorgiou, S.G. MicroRNAs: Tiny regulators of gene expression with pivotal roles in normal B-Cell development and B-Cell chronic lymphocytic leukemia. Cancers 2021, 13, 593. [Google Scholar]
- Ferrajoli, A.; Shanafelt, T.D.; Ivan, C.; Shimizu, M.; Rabe, K.G.; Nouraee, N.; Ikuo, M.; Ghosh, A.K.; Lerner, S.; Rassenti, L.Z.; et al. Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood 2013, 122, 1891–1899. [Google Scholar] [CrossRef]
- Faraoni, I.; Antonetti, F.R.; Cardone, J.; Bonmassar, E. miR-155 gene: A typical multifunctional microRNA. Biochim. Biophys. Acta. 2009, 1792, 497–505. [Google Scholar] [CrossRef]
- Musilova, K.; Mraz, M. MicroRNAs in B-cell lymphomas: How a complex biology gets more complex. Leukemia 2015, 29, 1004–1017. [Google Scholar] [CrossRef]
- Rodriguez, A.; Vigorito, E.; Clare, S.; Warren, M.V.; Couttet, P.; Soond, D.R.; van Dongen, S.; Grocock, R.J.; Das, P.P.; Miska, E.A.; et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007, 316, 608–611. [Google Scholar] [CrossRef]
- Karabon, L.; Andrzejczak, A.; Ciszak, L.; Tomkiewicz, A.; Szteblich, A.; Bojarska-Junak, A.; Roliński, J.; Wołowiec, D.; Wróbel, T.; Kosmaczewska, A. BTLA expression in CLL: Epigenetic regulation and impact on CLL B cell proliferation and ability to IL-4 production. Cells 2021, 10, 3009. [Google Scholar] [CrossRef] [PubMed]
- Arruga, F.; Gyau, B.B.; Iannello, A.; Vitale, N.; Vaisitti, T.; Deaglio, S. Immune response dysfunction in chronic lymphocytic leukemia: Dissecting molecular mechanisms and microenvironmental conditions. Int. J. Mol. Sci. 2020, 21, 1825. [Google Scholar] [CrossRef] [PubMed]
- Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Gonzalez-Rodriguez, A.P.; Payer, A.R.; Gonzalez-Garcia, E.; Lopez-Soto, A.; Gonzalez, S. LAG-3 blockade with relatlimab (BMS-986016) restores anti-leukemic responses in chronic lymphocytic leukemia. Cancers 2021, 13, 2112. [Google Scholar] [CrossRef]
- Villa-Alvarez, M.; Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Gonzalez-Rodriguez, A.P.; Payer, A.R.; Gonzalez-Garcia, E.; Villa-Alvarez, M.C.; Lopez-Soto, A.; Gonzalez, S. Ig-Like transcript 2 (ILT2) blockade and lenalidomide restore NK cell function in chronic lymphocytic leukemia. Front. Immunol. 2018, 9, 2917. [Google Scholar] [CrossRef]
- McWilliams, E.M.; Mele, J.M.; Cheney, C.; Timmerman, E.; Fiazuddin, F.; Strattan, E.J.; Mo, X.; Byrd, J.C.; Muthusamy, N.; Awan, F.T. Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia. Oncoimmunology 2016, 5, e1226720. [Google Scholar] [CrossRef]
- Catakovic, K.; Gassner, F.J.; Ratswohl, C.; Zaborsky, N.; Rebhandl, S.; Schubert, M.; Steiner, M.; Gutjahr, J.C.; Pleyer, L.; Egle, A.; et al. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncoimmunology 2018, 7, e1371399. [Google Scholar] [CrossRef] [PubMed]
- Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Gonzalez-Rodriguez, A.P.; Payer, A.R.; Gonzalez-Garcia, E.; Lopez-Soto, A.; Gonzalez, S. BTLA/HVEM axis induces NK cell immunosuppression and poor outcome in chronic lymphocytic leukemia. Cancers 2021, 13, 1766. [Google Scholar] [CrossRef]
- Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Martinez-Perez, A.; Gonzalez-Rodriguez, A.P.; Payer, A.R.; Gonzalez-Garcia, E.; Aguilar-Garcia, C.; Gonzalez-Rodriguez, S.; Lopez-Soto, A.S.; García-Torre, A.; et al. BTLA dysregulation correlates with poor outcome and diminished T cell-mediated antitumor responses in chronic lymphocytic leukemia. Cancer Immunol. Immunother. 2023, 72, 2529–2539. [Google Scholar] [CrossRef]
- Karabon, L.; Partyka, A.; Ciszak, L.; Pawlak-Adamska, E.; Tomkiewicz, A.; Bojarska-Junak, A.; Roliński, J.; Wołowiec, D.; Wróvel, T.; Frydecka, I.; et al. Abnormal expression of BTLA and cTLA-4 immune checkpoint molecules in chronic lymphocytic leukemia. J. Immuno. Res. 2020, 2020, 6545921. [Google Scholar] [CrossRef]
- Gavrieli, M.; Sedy, J.; Nelson, C.A.; Murphy, K.M. BTLA and HVEM cross talk regulates inhibition and costimulation. Adv. Immunol. 2006, 92, 157–185. [Google Scholar] [PubMed]
- Gavrieli, M.; Murphy, K.M. Association of Grb-2 and PI3K p85 with phosphotyrosile peptides derived from BTLA. Biochem. Biophys. Res. Commun. 2006, 345, 1440–1445. [Google Scholar] [CrossRef]
- Andrzejczak, A.; Karabon, L. BTLA biology in cancer: From bench discoveries to clinical potentials. Biomark. Res. 2024, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Liu, K.; Xiong, H. Roles of BTLA in Immunity and Immune Disorders. Front. Immunol. 2021, 12, 654960. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; LaPlant, B.R.; Call, T.G.; Parikh, S.A.; Leis, J.F.; He, R.; Shanafelt, T.D.; Sinha, S.; Le-Rademacher, J.; Feldman, A.L.; et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 2017, 129, 3419–3427. [Google Scholar] [CrossRef]
- Kosmaczewska, A.; Ciszak, L.; Frydecka, I.; Pawlak, E.; Szteblich, A.; Wróbel, T.; Wołowiec, D. Increased turnover of nonmalignant T lymphocytes in patients with chronic lymphocytic leukemia may affect clinical progression. Pol. Arch. Intern. Med. 2025, 135, 16955. [Google Scholar]
- Ciszak, L.; Kosmaczewska, A.; Pawlak, E.; Frydecka, I.; Szteblich, A.; Wołowiec, D. Association of Genetic Variants at the CDKN1B and CCND2 Loci Encoding p27Kip1 and Cyclin D2 Cell Cycle Regulators with Susceptibility and Clinical Course of Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2024, 25, 11705. [Google Scholar]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Dohner, H.; Hillmen, P.; Keating, M.J.; Montserrat, E.; Rai, K.R.; et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008, 111, 5446–5456. [Google Scholar] [CrossRef]
- Chomczynski, P.; Mackey, K. Substitution of chloroform by bromo-chloropropane in the single-step method of RNA isolation. Anal. Biochem. 1995, 225, 163–164. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, M.; Ratho, R.; Chawla, Y.; Singh, M.P. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture. Indian J. Med. Microbiol. 2014, 32, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Zare, N.; Haghjooy Javanmard, S.; Mehrzad, V.; Eskandari, N.; Kefayat, A. Evaluation of exosomal miR-155, let-7 g and let-7i levels as a potential noninvasive biomarker among refractory/relapsed patients, responsive patients and patients receiving R-CHOP. Leuk. Lymphoma 2019, 60, 1877–1889. [Google Scholar] [CrossRef]
- Caivano, A.; La Rocca, F.; Simeon, V.; Girasole, M.; Dinarelli, S.; Laurenzana, I.; De Stradis, A.; De Luca, L.; Trino, S.; Traficante, A.; et al. MicroRNA-155 in serum-derived extracellular vesicles as a potential biomarker for hematologic malignancies—A short report. Cell. Oncol. 2017, 40, 97–103. [Google Scholar] [CrossRef]
- Due, H.; Svendsen, P.; Bødker, J.S.; Schmitz, A.; Bøgsted, M.; Johnsen, H.E.; El-Galaly, T.C.; Roug, A.S.; Dybkær, K. miR-155 as a biomarker in B-Cell malignancies. Biomed. Res. Int. 2016, 2016, 9513037. [Google Scholar] [CrossRef]
- Yeh, C.H.; Moles, R.; Nicot, C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol. Cancer 2016, 15, 37. [Google Scholar] [CrossRef]
- Costinean, S.; Zanesi, N.; Pekarsky, Y.; Tili, E.; Volinia, S.; Heerema, N.; Croce, C.M. Pre-B Cell Proliferation and Lymphoblastic Leukemia/High-Grade Lymphoma in E(mu)-mir155 Transgenic Mice. Proc. Natl. Acad. Sci. USA 2006, 103, 7024–7029. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, C.H.; Soneji, S.; Marafioti, T.; Cooper, C.D.O.; Palazzo, S.; Paterson, J.C.; Cattan, H.; Enver, T.; Mager, R.; Boultwood, J.; et al. MicroRNA Expression Distinguishes between Germinal Center B Cell-like and Activated B Cell-like Subtypes of Diffuse Large B Cell Lymphoma. Int. J. Cancer 2007, 121, 1156–1161. [Google Scholar] [CrossRef]
- Faraoni, I.; Laterza, S.; Ardiri, D.; Ciardi, C.; Fazi, F.; Lo-Coco, F. MiR-424 and miR-155 Deregulated Expression in Cytogenetically Normal Acute Myeloid Leukaemia: Correlation with NPM1 and FLT3 Mutation Status. J. Hematol. Oncol. 2012, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Fulci, V.; Chiaretti, S.; Goldoni, M.; Azzalin, G.; Carucci, N.; Tavolaro, S.; Castellano, L.; Magrelli, A.; Citarella, F.; Messina, M.; et al. Quantitative Technologies Establish a Novel MicroRNA Profile of Chronic Lymphocytic Leukemia. Blood 2007, 109, 4944–4951. [Google Scholar] [CrossRef]
- Eis, P.S.; Tam, W.; Sun, L.; Chadburn, A.; Li, Z.; Gomez, M.F.; Lund, E.; Dahlberg, J.E. Accumulation of miR-155 and BIC RNA in Human B Cell Lymphomas. Proc. Natl. Acad. Sci. USA 2005, 102, 3627–3632. [Google Scholar] [CrossRef]
- Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437–447. [Google Scholar] [CrossRef]
- Mucaj, V.; Shay, J.E.; Simon, M.C. Effects of hypoxia and HIFs on cancer metabolism. Int. J. Hematol. 2012, 95, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Lin, Y.C.D.; Cui, S.; Huang, Y.; Tang, Y.; Xu, J.; Bao, J.; Li, Y.; Wen, J.; Zuo, H. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022, 50, D222–D230. [Google Scholar] [CrossRef]
- Babar, I.A.; Cheng, C.J.; Booth, C.J.; Slack, F.J. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc. Natl. Acad. Sci. USA 2012, 109, E1695–E1704. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Ouyang, K.; Xu, X.; Xu, L.; Wen, C.; Zhou, X.; Qin, Z.; Xu, Z.; Sun, W.; Liang, Y. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front. Genet. 2021, 12, 673286. [Google Scholar] [CrossRef]
- Zhang, C.M.; Zhaom, J.; Deng, H.Y. MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J. Biomed. Sci. 2013, 20, 79. [Google Scholar] [CrossRef]
- Cheung, T.C.; Oborne, L.M.; Steinberg, M.W.; Macauley, M.G.; Fukuyama, S.; Sanjo, H.; D’Souza, C.; Norris, P.S.; Pfeffer, K.; Murphy, K.M.; et al. T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment. J. Immunol. 2009, 183, 7286–7296. [Google Scholar] [CrossRef]
- Xin, H.; Zhu, J.; Miao, H.; Gong, Z.; Jiang, X.; Feng, X.; Tong, Y. Adenovirus-mediated CCR7 and BTLA overexpression enhances immune tolerance and migration in immature dendritic cells. BioMed Res. Int. 2017, 2017, 3519745. [Google Scholar] [CrossRef]
- Song, J.; Wu, L. Friend or foe: Prognostic and immunotherapy roles of BTLA in colorectal cancer. Front. Mol. Biosci. 2020, 7, 148. [Google Scholar] [CrossRef] [PubMed]
- Sieklucka, M.; Pozarowski, P.; Bojarska-Junak, A.; Hus, I.; Dmoszynska, A.; Rolinski, J. Apoptosis in B-CLL: The relationship between higher ex vivo spontaneous apoptosis before treatment in III-IV Rai stage patients and poor outcome. Oncol. Rep. 2008, 19, 1611–1620. [Google Scholar]
- Celis-Gutierrez, J.; Blattmann, P.; Zhai, Y.; Jarmuzynski, N.; Ruminski, K.; Grégoire, C.; Ounoughene, Y.; Fiore, F.; Aebersold, R.; Roncagalli, R.; et al. Quantitative interactomics in primary T cells provides a rationale for concomitant PD-1 and BTLA coinhibitor blockade in cancer immunotherapy. Cell Rep. 2019, 27, 3315–3330e7. [Google Scholar] [CrossRef]
- Xu, X.; Hou, B.; Fulzele, A.; Masubuchi, T.; Zhao, Y.; Wu, Z.; Hu, Y.; Jiang, Y.; Ma, Y.; Wanget, H.; et al. PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2. J. Cell. Biol. 2020, 219, e201905085. [Google Scholar] [CrossRef]
- Steinberg, M.; Cheung, T.C.; Ware, C.F. The Signaling Networks of the Herpesvirus Entry Mediator (TNFRSF14) in Immune Regulation. Immunol. Rev. 2011, 244, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.L.; Ngam-ek, A.; Lawton, P.; DeMarinis, J.; Tizard, R.; Chow, E.P.; Hession, C.; O’Brine-Greco, B.; Foley, S.F.; Ware, C.F. Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 1993, 72, 847–856. [Google Scholar] [CrossRef]
- Crowe, P.D.; Van Arsdale, T.L.; Walter, B.N.; Ware, C.F.; Hession, C.; Ehrenfels, B.; Browning, J.L.; Din, W.S.; Goodwin, R.G.; Smith, C.A. A lymphotoxin-beta-specific receptor. Science 1994, 264, 707–710. [Google Scholar] [CrossRef]
- Igawa, T.; Sato, Y.; Takata, K.; Fushimi, S.; Tamura, M.; Nakamura, N.; Maeda, Y.; Orita, Y.; Tanimoto, M.; Yoshino, T. Cyclin D2 is overexpressed in proliferation centers of chronic lymphocytic leukemia/small lymphocytic lymphoma. Cancer Sci. 2011, 102, 2103–2107. [Google Scholar] [CrossRef]
- Jiang, X.; He, J.; Wang, Y.; Liu, J.; Li, X.; He, X.; Cai, H. A pan-cancer analysis of the biological function and clinical value of BTLA in tumors. Biocell 2023, 47, 351–366. [Google Scholar] [CrossRef]
- Van, R.K.; Calin, G.A. MicroRNAs in chronic lymphocytic leukemia: miRacle or miRage for prognosis and targeted therapies? Semin. Oncol. 2016, 43, 209–214. [Google Scholar]
- Zhang, R.R.; Wang, L.M.; Shen, J.J. Overexpression of miR-32 inhibits the proliferation and metastasis of ovarian cancer cells by targeting BTLA. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4671–4678. [Google Scholar] [PubMed]









| Parameter | CLL Patients (n = 20) | Healthy Controls (n = 15) | p-Value |
|---|---|---|---|
| Age (years) | 67.25 ± 10.51 | 62.20 ± 4.93 | 0.0949 |
| Gender | |||
| Female | 7 | 6 | 0.7643 |
| Male | 13 | 9 | |
| Rai stage | |||
| 0 | 9 | None | |
| I | 6 | None | |
| II | 3 | None | |
| III | 0 | None | |
| IV | 2 | None | |
| Binet stage | |||
| A | 15 | None | |
| B | 2 | None | |
| C | 3 | None | |
| Blood parameters | |||
| WBC count (1 × 109/L) | 73.08 ± 62.93 | 5.99 ± 1.41 | 0.000001 |
| Lymphocyte count (1 × 109/L) | 66.61 ± 62.41 | 2.25 ± 0.65 | 0.000001 |
| Hb level (g/dL) | 12.69 ± 1.62 | 13.45 ± 0.56 | 0.0927 |
| Platelet count (1 × 109/L) | 173.05 ± 66.52 | 244.93 ± 48.73 | 0.0006 |
| Biochemical indicators | |||
| LDH (U/L) | 170.71 ± 61.45 | 148.64 ± 21.22 | 0.2007 |
| β2-microglobulin (mg/L) | 3.99 ± 2.21 | 1.38 ± 0.56 | 0.00003 |
| CD3+ Cells | CLL Patients (n = 20) | Healthy Controls (n = 15) | p-Value |
|---|---|---|---|
| BTLA+IL-4+ | 39.12 ± 26.86 (5.70–78.40) | 69.78 ± 26.23 (23.30–95.70) | 0.0016 |
| BTLA-IL-4+ | 63.61 ± 18.70 (30.30–94.10) | 77.16 ± 15.27 (42.70–95.50) | 0.0286 |
| p-Value | 0.0002 | 0.4265 | |
| BTLA+Ki67+ | 9.28 ± 3.18 (1.00–13.80) | 6.75 ± 2.82 (1.60–12.50) | 0.0156 |
| BTLA-Ki67+ | 7.24 ± 4.86 (0.00–18.00) | 2.40 ± 1.79 (0.40–7.30) | 0.0015 |
| p-Value | 0.1454 | 0.0007 |
| CD3+ Cells | CLL Patients (n = 20) | Healthy Controls (n = 15) | p-Value |
|---|---|---|---|
| IL-4 in CD3+BTLA+ | 71.23 ± 52.15 (9.40–165.00) | 76.95 ± 65.77 (8.70–195.50) | 0.7014 |
| IL-4 in CD3+BTLA− | 29.23 ± 22.45 (8.30–59.50) | 30.05 ± 21.65 (5.80–62.90) | 0.8676 |
| p-Value | 0.00009 | 0.0007 | |
| Ki67 in CD3+BTLA+ | 40.24 ± 18.08 (14.60–73.80) | 21.59 ± 8.59 (8.90–38.30) | 0.0008 |
| Ki67 in CD3+BTLA− | 7.17 ± 2.14 (0.00–10.40) | 8.09 ± 3.38 (2.50–16.50) | 0.6527 |
| p-Value | 0.00009 | 0.000005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmaczewska, A.; Ciszak, L.; Andrzejczak, A.; Tomkiewicz, A.; Partyka, A.; Rojek-Gajda, Z.; Frydecka, I.; Wołowiec, D.; Wróbel, T.; Bojarska-Junak, A.; et al. miR-155-5p Silencing Does Not Alter BTLA Molecule Expression in CLL T Cells: Implications for Targeted Immunotherapy. Biomolecules 2025, 15, 1499. https://doi.org/10.3390/biom15111499
Kosmaczewska A, Ciszak L, Andrzejczak A, Tomkiewicz A, Partyka A, Rojek-Gajda Z, Frydecka I, Wołowiec D, Wróbel T, Bojarska-Junak A, et al. miR-155-5p Silencing Does Not Alter BTLA Molecule Expression in CLL T Cells: Implications for Targeted Immunotherapy. Biomolecules. 2025; 15(11):1499. https://doi.org/10.3390/biom15111499
Chicago/Turabian StyleKosmaczewska, Agata, Lidia Ciszak, Anna Andrzejczak, Anna Tomkiewicz, Anna Partyka, Zofia Rojek-Gajda, Irena Frydecka, Dariusz Wołowiec, Tomasz Wróbel, Agnieszka Bojarska-Junak, and et al. 2025. "miR-155-5p Silencing Does Not Alter BTLA Molecule Expression in CLL T Cells: Implications for Targeted Immunotherapy" Biomolecules 15, no. 11: 1499. https://doi.org/10.3390/biom15111499
APA StyleKosmaczewska, A., Ciszak, L., Andrzejczak, A., Tomkiewicz, A., Partyka, A., Rojek-Gajda, Z., Frydecka, I., Wołowiec, D., Wróbel, T., Bojarska-Junak, A., Roliński, J., & Karabon, L. (2025). miR-155-5p Silencing Does Not Alter BTLA Molecule Expression in CLL T Cells: Implications for Targeted Immunotherapy. Biomolecules, 15(11), 1499. https://doi.org/10.3390/biom15111499

