Arctic Diatoms as a Source of Antibiofilm Compounds: Identification of Methyl 3-Hydroxyoctadecanoate and Pheophorbide a
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Strain Isolation
2.2. Mass Cultivation in Photobioreactors
2.3. Biomass Extraction and Fractionation
2.4. Bioactivity Assays
2.5. Re-Fractionation and Compound Purification
2.6. Compound Purification
2.7. Structural Elucidation
2.8. Software
3. Results
3.1. Bioactivity Screening of Arctic Diatoms
3.2. Cultivation Performance and Selection of Lead Strain
3.3. Bioactivity-Guided Fractionation of P. glacialis
3.4. Compound Isolation and Screening of Active Compounds
3.5. Structural Elucidation
4. Discussion
4.1. Bioactivity in Arctic Diatoms
4.2. Antibiofilm Compounds Isolated from P. glacialis
4.3. Implications for Biofouling and Cultivation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Jesus Raposo, M.F.; De Morais, R.M.S.C.; De Morais, A.M.M.B. Health applications of bioactive compounds from marine microalgae. Life Sci. 2013, 93, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Hachicha, R.; Elleuch, F.; Hlima, H.B.; Dubessay, P.; de Baynast, H.; Delattre, C.; Pierre, G.; Hachicha, R.; Abdelkafi, S.; Michaud, P.; et al. Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Appl. Sci. 2022, 12, 1924. [Google Scholar] [CrossRef]
- Patel, A.K.; Albarico, F.P.J.B.; Perumal, P.K.; Vadrale, A.P.; Ntan, C.T.; Chau, H.T.B.; Anwar, C.; Wani, H.M.U.D.; Pal, A.; Saini, R.; et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 2022, 351, 126910. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.G.; Otero, P.; Echave, J.; Carreira-Casais, A.; Chamorro, F.; Collazo, N.; Jaboui, A.; Lourenço-Lopes, C.; Simal-Gandara, J.; Prieto, M.A. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar. Drugs 2021, 19, 188. [Google Scholar] [CrossRef]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef]
- Armbrust, E.V. The life of diatoms in the world’s oceans. Nature 2009, 459, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Marella, T.K.; López-Pacheco, I.Y.; Parra-Saldívar, R.; Dixit, S.; Tiwari, A. Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci. Total Environ. 2020, 724, 137960. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.M.; Tréguer, P.; Brzezinski, M.A.; Leynaert, A.; Quéguiner, B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles 1995, 9, 359–372. [Google Scholar] [CrossRef]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Aliva, C. Chemical war in marine animal forests: Natural products and chemical interactions. In Perspectives on the Marine Animal Forests of the World; Springer: Berlin/Heidelberg, Germany, 2021; pp. 239–307. [Google Scholar]
- Huseby, S.; Degerlund, M.; Eriksen, G.K.; Ingebrigtsen, R.A.; Eilertsen, H.C.; Hansen, E. Chemical Diversity as a Function of Temperature in Six Northern Diatom Species. Mar. Drugs 2013, 11, 4232–4245. [Google Scholar] [CrossRef]
- Nappo, M.; Berkov, S.; Codina, C.; Avila, C.; Messina, P.; Zupo, V.; Bastida, J. Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J. Appl. Phycol. 2008, 21, 295–306. [Google Scholar] [CrossRef]
- Ingebrigtsen, R.A.; Hansen, E.; Andersen, J.H.; Eilertsen, H.C. Light and temperature effects on bioactivity in diatoms. J. Appl. Phycol. 2016, 28, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.Ø.; Romano, G.; Ianora, A. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar] [CrossRef]
- Svenning, J.B.; Vasskog, T.; Campbell, K.; Bæverud, A.H.; Myhre, T.N.; Dalheim, L.; Forgereau, Z.L.; Osanen, J.E.; Hansen, E.H.; Bernstein, H.C. Lipidome Plasticity Enables Unusual Photosynthetic Flexibility in Arctic vs. Temperate Diatoms. Mar. Drugs 2024, 22, 67. [Google Scholar] [CrossRef] [PubMed]
- Litchman, E.; Klausmeier, C.A. Trait-Based Community Ecology of Phytoplankton. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 615–639. [Google Scholar] [CrossRef]
- Steinrücken, P.; Erga, S.R.; Mjøs, S.A.; Kleivdal, H.; Prestegard, S.K. Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies. Algal Res. 2017, 26, 392–401. [Google Scholar] [CrossRef]
- Steinrücken, P.; Mjøs, S.A.; Prestegard, S.K.; Erga, S.R. Enhancing EPA content in an Arctic diatom: A factorial design study to evaluate interactive effects of growth factors. Front. Plant Sci. 2018, 9, 491. [Google Scholar] [CrossRef]
- Huang, C.B.; Ebersole, J.L. A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives. Mol. Oral Microbiol. 2010, 25, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Ward, O.P.; Singh, A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 2005, 40, 3627–3652. [Google Scholar] [CrossRef]
- Daboussi, F.; Leduc, S.; Maréchal, A.; Dubois, G.; Guyot, V.; Perez-Michaut, C.; Amato, A.; Falciatore, A.; Juillerat, A.; Beurdeley, M.; et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 2014, 5, 3831. [Google Scholar] [CrossRef]
- Marella, T.K.; Tiwari, A. Cultivation of diatoms in photobioreactors. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 207–228. [Google Scholar] [CrossRef]
- D’Alessandro, E.B.; Filho, N.R.A. Concepts and studies on lipid and pigments of microalgae: A review. Renew. Sustain. Energy Rev. 2016, 58, 832–841. [Google Scholar] [CrossRef]
- Osvik, R.D.; Andersen, J.H.; Eilertsen, H.C.; Geneviere, A.M.; Hansen, E.H. Bioactivity of a Marine Diatom (Porosira glacialis [Grunow] Jörgensen 1905) Cultivated with and without Factory Smoke CO2. Ind. Biotechnol. 2021, 17, 38–48. [Google Scholar] [CrossRef]
- Osvik, R.D.; Ingebrigtsen, R.A.; Norrbin, M.F.; Andersen, J.H.; Eilertsen, H.C.; Hansen, E.H. Adding Zooplankton to the OSMAC Toolkit: Effect of Grazing Stress on the Metabolic Profile and Bioactivity of a Diatom. Mar. Drugs 2021, 19, 87. [Google Scholar] [CrossRef] [PubMed]
- Trentin, R.; Moschin, E.; Custódio, L.; Moro, I. Bioprospection of the Antarctic Diatoms Craspedostauros ineffabilis IMA082A and Craspedostauros zucchelli IMA088A. Mar. Drugs 2024, 22, 35. [Google Scholar] [CrossRef]
- León-Vaz, A.; León, R.; Vigara, J.; Funk, C. Exploring Nordic microalgae as a potential novel source of antioxidant and bioactive compounds. N. Biotechnol. 2023, 73, 1–8. [Google Scholar] [CrossRef]
- Lauritano, C.; Martín, J.; De La Cruz, M.; Reyes, F.; Romano, G.; Ianora, A. First identification of marine diatoms with anti-tuberculosis activity. Sci. Rep. 2018, 8, 2284. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, C.; Helland, K.; Riccio, G.; Andersen, J.H.; Ianora, A.; Hansen, E.H. Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrotheca closterium with Anti-Inflammatory Activity. Mar. Drugs 2020, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- Seth, K.; Kumar, A.; Rastogi, R.P.; Meena, M.; Vinayak, V.; Harish. Bioprospecting of fucoxanthin from diatoms—Challenges and perspectives. Algal Res. 2021, 60, 102475. [Google Scholar] [CrossRef]
- Bhattacharjya, R.; Marella, T.K.; Tiwari, A.; Saxena, A.; Singh, P.K.; Mishra, B. Bioprospecting of marine diatoms Thalassiosira, Skeletonema and Chaetoceros for lipids and other value-added products. Bioresour. Technol. 2020, 318. [Google Scholar] [CrossRef]
- Guieysse, B.; Plouviez, M. Microalgae cultivation: Closing the yield gap from laboratory to field scale. Front. Bioeng. Biotechnol. 2024, 12, 1359755. [Google Scholar] [CrossRef]
- Eilertsen, H.C.; Eriksen, G.K.; Bergum, J.S.; Strømholt, J.; Elvevoll, E.; Eilertsen, K.E.; Heimstad, E.S.; Giæver, I.H.; Israelsen, L.; Svenning, J.B.; et al. Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration. Appl. Sci. 2022, 12, 3082. [Google Scholar] [CrossRef]
- Eilertsen, H.C.; Strømholt, J.; Bergum, J.S.; Eriksen, G.K.; Ingebrigtsen, R. Mass Cultivation of Microalgae: II. A Large Species Pulsing Blue Light Concept. BioTech 2023, 12, 40. [Google Scholar] [CrossRef]
- Radić, T.M.; Čačković, A.; Penezić, A.; Dautović, J.; Lončar, J.; Omanović, D.; Juraić, K.; Ljubešić, Z. Physiological and morphological response of marine diatom Cylindrotheca closterium (Bacillariophyceae) exposed to Cadmium. Eur. J. Phycol. 2021, 56, 24–36. [Google Scholar] [CrossRef]
- Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps Using ‘ggplot2’. [R Package Version 2.2.0]. 2024. Available online: https://mikkovihtakari.github.io/ggOceanMaps (accessed on 15 October 2025).
- Degerlund, M.; Huseby, S.; Zingone, A.; Sarno, D.; Landfald, B. Functional diversity in cryptic species of Chaetoceros socialis Lauder (Bacillariophyceae). J. Plankton Res. 2012, 34, 416–431. [Google Scholar] [CrossRef]
- Eilertsen, H.C.; Elvevoll, E.; Giæver, I.H.; Svenning, J.B.; Dalheim, L.; Svalheim, R.A.; Vang, B.; Siikavuopio, S.; Dragøy, R.; Ingebrigtsen, R.A.; et al. Inclusion of photoautotrophic cultivated diatom biomass in salmon feed can deter lice. PLoS ONE 2021, 16, e0255370. [Google Scholar] [CrossRef] [PubMed]
- Vanelslander, B.; Paul, C.; Grueneberg, J.; Prince, E.K.; Gillard, J.; Sabbe, K.; Pohnert, G.; Vyverman, W. Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proc. Natl. Acad. Sci. USA 2012, 109, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Mougin, J.; Pavaux, A.S.; Fanesi, A.; Lopez, J.; Pruvost, E.; Guihéneuf, F.; Sciandra, A.; Briandet, R.; Lopes, F. Bacterial adhesion inhibition by microalgal EPSs from Cylindrotheca closterium and Tetraselmis suecica biofilms. Appl. Microbiol. Biotechnol. 2024, 108, 168. [Google Scholar] [CrossRef] [PubMed]
- Le Norcy, T.; Niemann, H.; Proksch, P.; Linossier, I.; Vallée-Réhel, K.; Hellio, C.; Faÿ, F. Anti-Biofilm Effect of Biodegradable Coatings Based on Hemibastadin Derivative in Marine Environment. Int. J. Mol. Sci. 2017, 18, 1520. [Google Scholar] [CrossRef]
- Moreno-Garrido, I.; Hampel, M.; Lubián, L.M.; Blasco, J. Sediment toxicity tests using benthic marine microalgae Cylindrotheca closterium (Ehremberg) Lewin and Reimann (Bacillariophyceae). Ecotoxicol. Environ. Saf. 2003, 54, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Glaser, K.; Karsten, U. Salinity tolerance in biogeographically different strains of the marine benthic diatom Cylindrotheca closterium (Bacillariophyceae). J. Appl. Phycol. 2020, 32, 3809–3816. [Google Scholar] [CrossRef]
- Amato, A.; Kooistra, W.H.C.F.; Ghiron, J.H.L.; Mann, D.G.; Pröschold, T.; Montresor, M. Reproductive Isolation among Sympatric Cryptic Species in Marine Diatoms. Protist 2007, 158, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Huseby, S.; Degerlund, M.; Zingone, A.; Hansen, E. Metabolic fingerprinting reveals differences between northern and southern strains of the cryptic diatom Chaetoceros socialis. Eur. J. Phycol. 2012, 47, 480–489. [Google Scholar] [CrossRef]
- Jovanović, O.; Radulović, N.; Palić, R.; Zlatković, B. Volatiles of Minuartia recurva (all.) schinz et thell. subsp. recurva (caryophyllaceae) from Serbia. J. Essent. Oil Res. 2009, 21, 429–432. [Google Scholar] [CrossRef]
- Matebie, W.A.; Zhang, W.; Zhang, S.; Xie, G. Triterpenoids from Acokanthera schimperi in Ethiopia. Rec. Nat. Prod. 2019, 13, 182–188. [Google Scholar] [CrossRef]
- Knoche, H.W.; Shively, J.M. The Structure of an Ornithine-containing Lipid from Thiobacillus thiooxidans. J. Biol. Chem. 1972, 247, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Pino, J.A.; Marbot, R.; Agüero, J. Volatile Components of Geneps (Melicocca bijuga L.). Fruit 2002, 14, 247–248. [Google Scholar] [CrossRef]
- Nieman, C. Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol. Rev. 1954, 18, 147–163. [Google Scholar] [CrossRef]
- Lang, I.; Hodac, L.; Friedl, T.; Feussner, I. Fatty acid profiles and their distribution patterns in microalgae: A comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Zhukova, N. Fatty acid composition of 15 species of marine microalgae. Phytochemistry 1995, 39, 351–356. [Google Scholar] [CrossRef]
- Coraça-Huber, D.C.; Steixner, S.; Wurm, A.; Nogler, M. Antibacterial and anti-biofilm activity of omega-3 polyunsaturated fatty acids against periprosthetic joint infections-isolated multi-drug resistant strains. Biomedicines 2021, 9, 334. [Google Scholar] [CrossRef] [PubMed]
- Svenning, J.B.; Dalheim, L.; Eilertsen, H.C.; Vasskog, T. Temperature dependent growth rate, lipid content and fatty acid composition of the marine cold-water diatom Porosira glacialis. Algal Res. 2019, 37, 11–16. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2009, 85, 1629–1642. [Google Scholar] [CrossRef]
- Naviner, M.; Bergé, J.-P.; Durand, P.; Le Bris, H. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 1999, 174, 15–24. [Google Scholar] [CrossRef]
- Cooper, S.; Battat, A.; Marsot, P.; Sylvestre, M. Production of antibacterial activities by two Bacillariophyceae grown in dialysis culture. Can. J. Microbiol. 1983, 29, 338–341. [Google Scholar] [CrossRef]
- Duff, D.C.B.; Bruce, D.L.; Antia, N.J. The antibacterial activity of marine planktonic algae. Can. J. Microbiol. 1966, 12, 877–884. [Google Scholar] [CrossRef]
- Findlay, J.A.; Patil, A.D. Antibacterial Constituents of the Diatom Navicula delognei. J. Nat. Prod. 1984, 47, 815–818. [Google Scholar] [CrossRef]
- Imada, N.; Kobayashi, K.; Isomura, K.; Saito, H.; Kimura, S.; Tahara, K.; Oshima, Y. Studies on the Autoinhibitor Produced by Skeletonema costatum-II. Isolation and Identification of an Autoinhibitor Produced by Skeletonema costatum. Nippon Suisan Gakkaishi 1992, 58, 1687–1692. [Google Scholar] [CrossRef]
- Benkendorff, K.; Davis, A.R.; Rogers, C.N.; Bremner, J.B. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J. Exp. Mar. Bio. Ecol. 2005, 316, 29–44. [Google Scholar] [CrossRef]
- Alamsjah, M.A.; Hirao, S.; Ishibashi, F.; Oda, T.; Fujita, Y. Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton. J. Appl. Phycol. 2007, 20, 713–720. [Google Scholar] [CrossRef]
- Wu, J.-T.; Chiang, Y.-R.; Huang, W.-Y.; Jane, W.-N. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat. Toxicol. 2006, 80, 338–345. [Google Scholar] [CrossRef]
- Rohrer, L.; Winterhalter, K.H.; Eckert, J.; Köhler, P. Killing of Giardia lamblia by human milk is mediated by unsaturated fatty acids. Antimicrob. Agents Chemother. 1986, 30, 254–257. [Google Scholar] [CrossRef]
- Hilmarsson, H.; Larusson, L.V.; Thormar, H. Virucidal effect of lipids on visna virus, a lentivirus related to HIV. Arch. Virol. 2006, 151, 1217–1224. [Google Scholar] [CrossRef]
- Cepas, V.; Gutiérrez-Del-río, I.; López, Y.; Redondo-Blanco, S.; Gabasa, Y.; Iglesias, M.J.; Soengas, R.; Fernández-Lorenzo, A.; López-Ibáñez, S.; Villar, C.J.; et al. Microalgae and Cyanobacteria Strains as Producers of Lipids with Antibacterial and Antibiofilm Activity. Mar. Drugs 2021, 19, 675. [Google Scholar] [CrossRef]
- López, Y.; Soto, S.M. The Usefulness of Microalgae Compounds for of Microalgae Preventing Biofilm Infections Compounds for Preventing Biofilm Infections. Antibiotics 2020, 9. [Google Scholar] [CrossRef]
- Kumar, P.; Lee, J.H.; Beyenal, H.; Lee, J. Fatty Acids as Antibiofilm and Antivirulence Agents. Trends Microbiol. 2020, 28, 753–768. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Saranya, G.; Ramachandra, T.V. Scope for biodiesel and bioactive compounds production in the diatom Nitzschia punctata. Fuel 2021, 300, 120985. [Google Scholar] [CrossRef]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae; National Renewable Energy Laboratory: Golden, CO, USA, 1998. [Google Scholar] [CrossRef]
- Vijay, K.; Kiran, G.S.; Divya, S.; Thangavel, K.; Thangavelu, S.; Dhandapani, R.; Selvin, J. Fatty Acid Methyl Esters From the Coral-Associated Bacterium Pseudomonas aeruginosa Inhibit Virulence and Biofilm Phenotypes in Multidrug Resistant Staphylococcus aureus: An in vitro Approach. Front. Microbiol. 2021, 12, 631853. [Google Scholar] [CrossRef] [PubMed]
- Saide, A.; Lauritano, C.; Ianora, A. Pheophorbide a: State of the Art. Mar. Drugs 2020, 18, 257. [Google Scholar] [CrossRef] [PubMed]
- Ratnoglik, S.L.; Aoki, C.; Sudarmono, P.; Komoto, M.; Deng, L.; Shoji, I.; Fuchino, H.; Kawahara, N.; Hotta, H. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus. Microbiol. Immunol. 2014, 58, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Lee, H.S.; Kang, I.J.; Won, M.H.; You, S. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem. 2011, 127, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Yoon, H.E.; Yoon, J.H.; Ko, H.; Kim, Y.C. Synthesis of pheophorbide-a conjugates with anticancer drugs as potential cancer diagnostic and therapeutic agents. Bioorganic Med. Chem. 2011, 19, 5383–5391. [Google Scholar] [CrossRef] [PubMed]
- Sampathkumar, S.J.; Srivastava, P.; Ramachandran, S.; Sivashanmugam, K.; Gothandam, K.M. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microb. Pathog. 2019, 135, 103658. [Google Scholar] [CrossRef] [PubMed]
- Bannister, J.; Sievers, M.; Bush, F.; Bloecher, N. Biofouling in marine aquaculture: A review of recent research and developments. Biofouling 2019, 35, 631–648. [Google Scholar] [CrossRef] [PubMed]







| Strain ID | Species Name | Identification | Scalar Irradiance (μmol photons m−2 s−1) 3 | Temperature (°C) 4 | Origin |
|---|---|---|---|---|---|
| AMB99 | Bacteriosira bathyomphala | LM 1 | 80 | 8 | Sediment, Bear Island |
| AMB108 | Chaetoceros karianus | LM | 130 | 8.2 | Sediment, Bear Island |
| AMBS8-11 | Cylindrotheca closterium | LM | 80 | 3.4 | Sediment, Rijpfjorden, North Svalbard |
| TEM 2 | 130 | 8 | |||
| AMB70 | Odontella aurita | LM | 130 | 8 | Sediment, West Svalbard |
| AMB100 | Thalassiosira hyalina | LM | 130 | 8.1 | Sediment, West Svalbard |
| AMB109 | T. antarctica var. hyperborea | LM | 130 | 9 | Sediment, Bear Island |
| AMB49.2D | Porosira glacialis | LM | 36–50 | 5.5 | Water sample, Tromsøysund |
| Feature | Compound D | Compound E |
|---|---|---|
| Observed [M+H]+ (m/z) | 315.2895 | 593.2765 |
| Calculated [M+H]+ (m/z) | 315.2899 (C19H39O3+) | 593.2764 (C35H37O5N4+) |
| Mass error (ppm) | 1.2687 | 0.1686 |
| Neutral molecular formula | C19H38O3 | C35H36O5N4 |
| Neutral monoisotopic mass | 314.2821 Da | 592.2686 Da |
| Key fragment ions (m/z) | 297.1855 | 533.2545 |
| 283.1069 | 461.2328 | |
| 255.1128 | 575.2652 | |
| 547.2698 | ||
| Identification | Methyl 3-hydroxyoctadecanoate | Pheophorbide a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huizer, M.; Osvik, R.; Hansen, E.H.; Vasskog, T.; Andersen, J.H.; van Wezel, K.; Eilertsen, H.C.; Isaksson, J.; Hansen, K.Ø.; Ingebrigtsen, R.A. Arctic Diatoms as a Source of Antibiofilm Compounds: Identification of Methyl 3-Hydroxyoctadecanoate and Pheophorbide a. Biomolecules 2025, 15, 1482. https://doi.org/10.3390/biom15101482
Huizer M, Osvik R, Hansen EH, Vasskog T, Andersen JH, van Wezel K, Eilertsen HC, Isaksson J, Hansen KØ, Ingebrigtsen RA. Arctic Diatoms as a Source of Antibiofilm Compounds: Identification of Methyl 3-Hydroxyoctadecanoate and Pheophorbide a. Biomolecules. 2025; 15(10):1482. https://doi.org/10.3390/biom15101482
Chicago/Turabian StyleHuizer, Marit, Renate Osvik, Espen H. Hansen, Terje Vasskog, Jeanette H. Andersen, Kim van Wezel, Hans Christian Eilertsen, Johan Isaksson, Kine Ø. Hansen, and Richard A. Ingebrigtsen. 2025. "Arctic Diatoms as a Source of Antibiofilm Compounds: Identification of Methyl 3-Hydroxyoctadecanoate and Pheophorbide a" Biomolecules 15, no. 10: 1482. https://doi.org/10.3390/biom15101482
APA StyleHuizer, M., Osvik, R., Hansen, E. H., Vasskog, T., Andersen, J. H., van Wezel, K., Eilertsen, H. C., Isaksson, J., Hansen, K. Ø., & Ingebrigtsen, R. A. (2025). Arctic Diatoms as a Source of Antibiofilm Compounds: Identification of Methyl 3-Hydroxyoctadecanoate and Pheophorbide a. Biomolecules, 15(10), 1482. https://doi.org/10.3390/biom15101482

