The Role of Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) in Hemoglobinopathy Management—Techniques, Accuracy, and the Balancing of Benefits and Drawbacks
Abstract
1. Introduction
2. Overview of Hemoglobinopathies
3. Preimplantation Genetic Testing and Stages of Embryo Biopsy
4. The Technical Outcomes of PGT-M for Hemoglobinopathies
4.1. Whole Genome Amplification for PGT-M
4.2. Genetic Testing Techniques
4.2.1. PCR-Based Method (Table 2)
Disease (n of Embryos) | Mutations | Methods | Results | PGT | Pregnancy Outcomes | Interpretation | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amplification Rate (%) | ADO Rate (%) | Conclusive (%) | Unaffected (%) | Euploid (%) | HLA Matched (%) | Number of CP/FET (%) | Number of LB/ FET (%) | PGT Accuracy (PND) | ||||||
Thal (%) | Ploidy (%) | |||||||||||||
Comparative Outcomes for Whole Genome Amplification | ||||||||||||||
Blastomere Biopsy | ||||||||||||||
β thalassemia (4) * blastomere biopsy | IVSII-1 (G→A) CD 39 (C→T)
|
① Alkaline lysis buffer method ② Lysis buffer contained NaOH ③ N-lauroylsarcosine salt buffer method ④ Proteinase K/SDS lysis method
| ① 96.5 ② 96.5 ③ 84.4 ④ 98.2 | ① 7.1 ② 8.9 ③ 17.3 ④ 1.7 | 4/4 (100) | 3/4 (75) | N/A | 2/4 (50) | 1/1 (100) | 1/1 (100) | N/A | N/A | ④ could be used as a more acceptable lysis method with a lower rate of ADO and less amplification failure rates. | [35] |
Trophectoderm Biopsy | ||||||||||||||
β thalassemia (2315) * Trophectoderm biopsy | 41–42 (–CTTT), −28(A→G), CD 17 (A→T), IVS-II-654, CD 71–72 (+A), −29 (A→G), CD 26 (G→A), CD43 (G→C), CD14–15(+G), CD 27–28 (+C), −32(C→A), −30(T→G), IVS-I-1 (G→T), IVS-I-5 (G→C), CAP+40– +43 (–AAAC) and CD 31(–C) | ① MDA group (n = 1463)
| N/A | 1419/ 1463 (96.99) | 1054/ 1419 (74.28) | N/A | N/A | 123/ 281 (43.7) | 102/ 281 (35.9) | N/A | N/A | Using MDA as the 1st step in PGT-M for β-thalassemia could increase diagnostic efficiency. | [39] | |
② PCR group (n = 852)
| N/A | 751/ 852 (88.15) | 488/ 751 (64.98) | N/A | 79/ 192 (41.1) | 67/192 (34.9) | N/A | N/A | ||||||
thalassemia (253) * Trophectoderm biopsy | --SEA, CS, 3.7, - 4.2 |
| ① 71/72 (98.61) ② 179/181 (98.89) (p value = 0.85) | ① 2.27% ± 3.57% ② 0.97% ± 1.4% (p value = 0.45) | Consistency between SNP and gap PCR/sanger sequencing | N/A | 24/32 (75) 13/24 ongoing pregnancy | 11/32 (34.3) | 11/11 (100) | 11/11 (100) | MDA was superior to MALBAC for PGT of deletional -thalassemia in consistency between SNP/PCR and sanger sequencing, but no significant difference in amplification rate and ADO rate. | [13] | ||
① 50% ② 83.43% |
Short Tandem Repeat-Based Linkage Analysis
Single Nucleotide Polymorphism-Based Haplotyping
Disease (n of Embryos) | Mutations | Methods | Results | PGT | Pregnancy outcomes | Interpretation | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amplification Rate (%) | ADO Rate (%) | Conclusive (%) | Unaffected (%) | Euploid (%) | HLA Matched (%) | Number of CP/FET (%) | Number of LB/ FET (%) | PGT Accuracy (PND) | ||||||
Thal (%) | Ploidy (%) | |||||||||||||
PCR based method (Directed variant analysis) | ||||||||||||||
β thalassemia/sickle cell (907) * blastomere biopsy | β mutation: IVSI 110 (G→A) |
| N/A | N/A | 824/907 (90.8) | 602/824 (73.1) | N/A | 164/824 (19.9) | 102/331 (30.8) | 98/331 (29.6) | 98/98 (100) | N/A | Multiplex PCR could achieve high conclusive results. | [43] |
β thalassemia (52) * blastomere biopsy | β mutation: Codon 39, IVS-I-1, IVSII-1, IVSI-6, IVSI-110, FSC 6, Sic |
| 35/52 (67.3) | 10/52 (19) | 26/52 (50) | 17/52 (32.69) | N/A | N/A | 6/9 (66.7) | 2/9 (22.2) | 4/4 (100) | N/A | The PGD cycles for thalassemia major was carried out using DGGE for mutation analysis with a moderate conclusive result. | [38] |
Hb H disease (37) * Trophectoderm biopsy | --SEA/-3.7 |
| HBA2 97.3, HBA1 100 Internal control 0 | HBA2 2.7, HBA1 0 Internal control0 | 37/37 (100) | 37/37 (100) 15 normal, 22--/-3.7 | N/A | N/A | N/A | N/A | N/A | N/A | A novel PCR primer ( + thalassemia −3.7 kb deletion) was invented to detect Hb H disease using multiplex fluorescent PCR with high conclusive results. | [4] |
PCR based with linkage analysis | ||||||||||||||
| ||||||||||||||
β thalassemia/sickle cell (331, 38) * blastomere biopsy | β- mutation: HBS, Codon 30 (A>G), Codon 6 (–A), IVS-I-110 (G>A) Hb S [β6(A3)Glu-Val] mutation Codon 39 (C>T) IVS-I-1 (G>A), IVS-I-5 (G>A) IVS-I-6 (T>C) IVS-II-745 (C>G) IVS-II-1 (G>A) –44 bp deletion –28 (A>G) –101 (C>T) |
D11SZ2-② D11S2362-③ β gene-④
| ① 91 ② 91 ③ 86 ④ 92 | ① 4.8 ② 0.01 ③ 4.7 ④ 7.3 | 279/331 (84.2) | with STR 174/279 (62.3)without STR 149/279 (53.4) | N/A | N/A | 14/108 (12.9) | N/A | N/A | N/A | STRs marker facilitated robust assignment of β hemoglobinopathy genotypes, increasing the number of transferrable embryos by decreasing ADO rate. | [37] |
β thalassemia (278) * blastomere biopsy | β-mutation: IVSI 110 (G>A) |
| 266/278 (95.7) | 12/278 (4.31) | 250/266 (94) | 15 with HLA matched | N/A | 255/266 (95.9) | N/A | N/A | N/A | N/A | Minisequencing-based HLA typing combined with HLA STR haplotyping was a reliable strategy for preimplantation HLA matching. | [8] |
β thalassemia (51) * blastomere biopsy | β-mutation |
| 48/51 (94.11) | N/A | 44/51 (86.27) | With HLA matched 5/44 (11.36) | N/A | N/A | 1/8 | 2/8 | N/A | N/A | The optimized one-step touchdown multiplex protocol showed good outcomes and significantly reduced time. | [36] |
Timing | ||||||||||||||
The optimized one-step touchdown multiplex | 7 h | |||||||||||||
HLA-PGD procedure, employing WGA | 17 h | |||||||||||||
thalassemia (440, 89) * Trophectoderm biopsy | --SEA |
| 424/440 (96.36) | N/A | 424/424 (100) | Unaffected and Euploid 278/424 (65.5) | N/A | 65/89 (73.0) | 36/89 (40.4) | 36/36 (100) | 36/36 (100) | Using STR as markers for PGD had feasibility, credibility, and high conclusive results. | [44] | |
PCR-Single nucleotide polymorphisms (PCR-SNP)/karyomapping | ||||||||||||||
β thalassemia /Hb E disease * Trophectoderm biopsy | 2 families ① c.41_42delTCTT & c.26G>A ② c.17 & c.26G>A |
| 13/13 (100) | N/A | 13/13 (100) | 7/13 (53.8) | 10/13 (76.9) | N/A | 1/1 (100) | 1/1 (100) | 1/1 (100) | Multiplex PCR with mini- sequencing confirmed karyomapping results can be performed in β-thalassemia and bthal/hbE disease. | [6] | |
11/11 (100) | 11/11 (100) | 8/11 (7.27) | 6/9 (66.6) | 1/1 (100) | 1/1 (100) | 1/1 (100) | ||||||||
β thalassemia (1205) * Trophectoderm biopsy | β mutation | Karyomapping human karyomapping-12beadschip (illumina) (n = 851)
| 22 | N/A | 820/851 (96.36) | 614/820 (74.88) | 551/827 (66.6) | N/A | N = 42 | N/A | N/A | Karyomapping contributed to accurate selection of matched embryos, along with aneuploidy screening. | [16] | |
N/A | 820/851 (96.36) | - | - | N/A | ||||||||||
PCR-STR (n = 354)
| 20 | 333/354 (94.35) | 257/334 (76.95) | - | - | N = 12 | N/A | N/A | ||||||
N/A | 325/354 (91.81) | 245/325 (75.38) | - | - | ||||||||||
N/A | 326/354 (92.09) | - | - | 48/334 (14.37) |
HLA Matching
4.2.2. Next-Generation Sequencing-Based Methods (Table 3)
5. The Future Directions
Noninvasive to Minimally Invasive Preimplantation Genetic Testing for Monogenic Disorders (Table 4)
Disease (nof Embryos,nof Family) | Mutations | Methods | Results | PGT | Pregnancy Outcomes | Interpretation | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amplification Rate | ADO Rate (%) | Conclusive (%) | Unaffected (%) | Euploid (%) | HLA Matched (%) | Number of CP/ET (%) | Number of LB/ ET (%) | PGT Accuracy (PND) | ||||||
Thal (%) | Ploidy (%) | |||||||||||||
NGS based method | ||||||||||||||
double thalassemia (112, 12) | mutation: --SEA,
CS, -
3.7, -
4.2 mutation: CD 17, CD 41–42, BE, B-28, B IVSII-654 |
| 112/112 (100) | N/A | 107/112 (95.5) | 56/107 (52.3) | Euploid & unaffected 37/56 | N/A | 11/16 (68.8) | 11/16 (68.8) | 7/7 (100) | 7/7 (100) | NGS-SNP achieved high conclusive results and eliminated the need for multiple biopsies. | [52] |
double thalassemia (35, 3) | mutation: --SEA, -
3.7, -
4.2 mutation: CD 17, CD 41–42 |
| 33/35 (94.3) | 0 | 33/33 (100) | 17/33 (51.5) | 9/17 (52.9) | 5/9 (55.5) | N/A | 2/3 (66.6) | 2/2 (100) | 2/2 (100) | NGS-SNP combined with appropriate WGA technologies could achieve at least quadruple purposes testing in one PGT cycle. | [41] |
or
thalassemia (217) | --SEA |
| 94.71 | 4.26 | 217/217 (100) | 160/ 217 (73.7) | 112/ 160 (70) | N/A | 32/53 (60.1) | 23/53 (43.4) | N/A | N/A | PGT-M could perform without probands and parental pedigrees and high success rate with 100% conclusive results. | [42] |
thalassemia (282) | ①
Thal ② Thal with HLA |
| ① 254 /259 (98) ② 23/23 (100) | N/A | ① 254/254 (100) ② 23/23 (100) | ① 146/254 (57.5) ② 6/23 (26.09) | ① 231/259 (89.19) ② 3/23 (13) | ② 23/23 (100) | ① 19/33 (57.3) ② 1/1 (100) | ① 17/32 (53.1) ② 1/1 (100) | N/A | N/A | NGS technologies could achieve at multiple purposes testing in one PGT cycle with high conclusive result. | [10] |
thalassemia /Hb E disease (106) | c.126_129 delCTTT c.52A>T c.316–197 C>T c.2T>G c.92+5 G>C |
| 100/ 106 (94.3) | 3.89 | 96/100 (96) | 53/100 (53) | 100/ 100 (100) | N/A | 9/15 (60) | 8/15 (53.3) | 8/8 (100) | 8/8 (100) | NGS is able to perform PGT-A and PGT-M simultaneously and resulted in high accuracy. | [61] |
thalassemia (21) | C92 +6 T→C C118 C→ T C93–21 G→A, C316–106 (C→G) C95 +5 G→C |
| 21/21 (100) | 1/21 (4.8) | 20/21 (95.2) | 10/21 (47.61) | N/A | N/A | N/A | N/A | N/A | N/A | NGS could provide a rapid, streamlined and potentially cost-effective solution. | [62] |
thalassemia (10, 2) | --SEA |
| 10/10 (100) | 0 | 10/10 (100) | 9/10 (90) | N/A | N/A | 2/2 (100) | 1/2 (50) 1st TM abortion = 1 | 1/1 (100) | N/A | HLRS was easy to perform, rich SNPs, no need for familial samples, and high conclusive results. | [53] |
thalassemia (32, 3) | βIVS-II-654 β-90 CD 43 |
| N/A | 10/32 (31.2) range 10, 25, 50% in each family | N/A | Haplotype linkage analysis 24/33 (72.7) Correlate with NGS based | N/A | N/A | N/A | N/A | N/A | N/A | Long-read sequencing was the potential tool for preimplantation haplotype linkage analysis for whom cannot receive conventional NGS-SNP. | [45] |
thalassemia (10) | C92 +6 T→C C58 del C |
| Allele 84/90 (93.3) | N/A | 84/84 (100) | EBs 6/10 (60) | N/A | N/A | N/A | N/A | N/A | N/A | The feasibility of a NGS of preimplantation HLA sequencing was investigated via combining the state-of-the-art techniques used in single-cell whole genome amplification, PGD, and high-resolution HLA typing. | [47] |
Disease | Sample (n) ① SCM ②BF+ SCM | PGT | Method Collected Sample | WGA Techniques | PCR Techniques | Outcomes | Interpretation | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PGT-A | PGT-M | PGT-SR | PGT-P | Amplification Rate (%) | ADO Rate (%) | Concordance Rate (%) | |||||||
thalassemia | ① (202) ∇ compared with biopsied blastomere (413) | / | ① collected SCM after moving the blastocyst ∇ biopsied blastomere or cels of embryo day 3 | MDA | Quantitative PCR | DNA conc. | ① 12 | Diagnosis efficiency | The diagnosis efficiency of SCM is significantly increased compared with biopsy based. The optimaltime for medium-based -thalassemia-SEA detection was Day 5 (D5) following IVF from higher DNA concentration and higher diagnosis efficiency. | [59] | |||
D4: 14.24, D5 48.78, D6 54.35 | D4: 19.67, D5 90.16, D6 88.46 | ||||||||||||
∇ 82.1 | |||||||||||||
thalassemia | ① (33) ② (26) | / | ① collected SCM after moving the blastocyst to another drop ②using laser hits zona pellucida to release BF into SCM | MALBAC | NGS | DNA conc. ① 41.5 ± 31.7 ② 147.6 ± 69.8 | ① 45.5% ② 100% | Detection rate with niPGT using ② was higher than ①. Fragmentation is associated with DNA concentration in ② | [56] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADO | allele drop-out |
CP | clinical pregnancy |
EB | embryo |
ET | embryo transfer |
LB | livebirth |
MALBAC | multiple annealing and looping-based amplification cycles |
MDA | multiple displacement amplification |
NGS | next-generation sequencing |
PCR | polymerase chain reaction |
PGD | preimplantation genetic diagnosis |
PGT | preimplantation genetic testing |
PGT-A | preimplantation genetic testing for aneuploidy |
PGT-M | preimplantation genetic testing for monogenic disorder |
SNP | single nucleotide polymorphism |
STR | short tandem repeat |
WGA | whole genome amplification |
References
- Mamas, T.; Kakourou, G.; Vrettou, C.; Traeger-Synodinos, J. Hemoglobinopathies and preimplantation diagnostics. Int. J. Lab. Hematol. 2022, 44 (Suppl. S1), 21–27. [Google Scholar] [CrossRef]
- Olivieri, N.F.; Pakbaz, Z.; Vichinsky, E. HbE/β-thalassemia: Basis of marked clinical diversity. Hematol. Oncol. Clin. N. Am. 2010, 24, 1055–1070. [Google Scholar] [CrossRef] [PubMed]
- Orkin, S.H.; Kazazian, H.H., Jr.; Antonarakis, S.E.; Ostrer, H.; Goff, S.C.; Sexton, J.P. Abnormal RNA processing due to the exon mutation of beta E-globin gene. Nature 1982, 300, 768–769. [Google Scholar] [CrossRef]
- Somboonchai, P.; Charoenkwan, P.; Piyamongkol, S.; Lattiwongsakorn, W.; Pantasri, T.; Piyamongkol, W. Development of pre-implantation genetic testing protocol for monogenic disorders (PGT-M) of Hb H disease. BMC Genom. 2024, 25, 668. [Google Scholar] [CrossRef]
- Tuo, Y.; Li, Y.; Li, Y.; Ma, J.; Yang, X.; Wu, S.; Jin, J.; He, Z. Global, regional, and national burden of thalassemia, 1990–2021: A systematic analysis for the global burden of disease study 2021. eClinicalMedicine 2024, 72, 102619. [Google Scholar] [CrossRef] [PubMed]
- Piyamongkol, S.; Mongkolchaipak, S.; Charoenkwan, P.; Sirapat, R.; Suriya, W.; Pantasri, T.; Tongsong, T.; Piyamongkol, W. The successful strategy of comprehensive pre-implantation genetic testing for beta-thalassaemia-haemoglobin E disease and chromosome balance using karyomapping. J. Obstet. Gynaecol. 2022, 42, 2433–2441. [Google Scholar] [CrossRef]
- Modell, B.; Darlison, M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 2008, 86, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.; Biricik, A.; Karadayi, H.; Berkil, H.; Karlikaya, G.; Sertyel, S.; Podini, D.; Baldi, M.; Magli, M.C.; Gianaroli, L.; et al. Development and clinical application of a strategy for preimplantation genetic diagnosis of single gene disorders combined with HLA matching. Mol. Hum. Reprod. 2004, 10, 445–460. [Google Scholar] [CrossRef]
- Group, E.P.-M.W.; Carvalho, F.; Moutou, C.; Dimitriadou, E.; Dreesen, J.; Gimenez, C.; Goossens, V.; Kakourou, G.; Vermeulen, N.; Zuccarello, D.; et al. ESHRE PGT Consortium good practice recommendations for the detection of monogenic disorders. Hum. Reprod. Open 2020, 2020, hoaa018. [Google Scholar] [CrossRef]
- Tiewsiri, K.; Manipalviratn, S.; Sutheesophon, W.; Vanichsetakul, P.; Thaijaroen, P.; Ketcharoon, P.; Bradley, C.K.; McArthur, S.J.; Krutsawad, W.; Marshall, J.T.A.; et al. The First Asian, Single-Center Experience of Blastocyst Preimplantation Genetic Diagnosis with HLA Matching in Thailand for the Prevention of Thalassemia and Subsequent Curative Hematopoietic Stem Cell Transplantation of Twelve Affected Siblings. Biomed. Res. Int. 2020, 2020, 5292090. [Google Scholar] [CrossRef]
- Shestak, A.G.; Bukaeva, A.A.; Saber, S.; Zaklyazminskaya, E.V. Allelic Dropout Is a Common Phenomenon That Reduces the Diagnostic Yield of PCR-Based Sequencing of Targeted Gene Panels. Front. Genet. 2021, 12, 620337. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Hu, Z.; Lian, Y.; Han, Y.; Zhou, X.; Li, Y.; Xiang, L.; Jiang, W.; Li, M.; Zeng, P.; et al. The diagnostic accuracy of preimplantation genetic testing (PGT) in assessing the genetic status of embryos: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2025, 23, 39. [Google Scholar] [CrossRef]
- Lan, Y.; Zhou, H.; He, S.; Shu, J.; Liang, L.; Wei, H.; Luo, J.; Wang, C.; Zhao, X.; Qiu, Q.; et al. Appropriate whole genome amplification and pathogenic loci detection can improve the accuracy of preimplantation genetic diagnosis for deletional alpha-thalassemia. Front. Endocrinol. 2023, 14, 1176063. [Google Scholar]
- Piyamongkol, W.; Vutyavanich, T.; Sanguansermsri, T. Preimplantation genetic diagnosis of alpha-thalassemia-SEA using novel multiplex fluorescent PCR. J. Assist. Reprod. Genet. 2012, 29, 95–102. [Google Scholar] [CrossRef]
- Yang, S.; Xu, B.; Zhuang, Y.; Zhang, Q.; Li, J.; Fu, X. Current research status and clinical applications of noninvasive preimplantation genetic testing: A review. Medicine 2024, 103, e39964. [Google Scholar] [CrossRef]
- Wang, J.; Lu, B.M.; Li, R.; Guo, J.; Xu, Y.; Pan, J.F.; Zeng, Y.H.; Zhou, C.Q.; Xu, Y.W. Karyomapping in preimplantation genetic testing for beta-thalassemia combined with HLA matching: A systematic summary. J. Assist. Reprod. Genet. 2019, 36, 2515–2523. [Google Scholar] [CrossRef]
- Chen, M.; Tan, A.S.; Cheah, F.S.; Saw, E.E.; Chong, S.S. Identification of novel microsatellite markers <1 Mb from the HBB gene and development of a single-tube pentadecaplex PCR panel of highly polymorphic markers for preimplantation genetic diagnosis of beta-thalassemia. Electrophoresis 2015, 36, 2914–2924. [Google Scholar]
- Nienhuis, A.W.; Nathan, D.G. Pathophysiology and Clinical Manifestations of the β-Thalassemias. Cold Spring Harb. Perspect. Med. 2012, 2, a011726. [Google Scholar] [CrossRef] [PubMed]
- Elendu, C.; Amaechi, D.C.; Alakwe-Ojimba, C.E.; Elendu, T.C.; Elendu, R.C.; Ayabazu, C.P.; Aina, T.O.; Aborisade, O.; Adenikinju, J.S. Understanding Sickle cell disease: Causes, symptoms, and treatment options. Medicine 2023, 102, e35237. [Google Scholar] [CrossRef] [PubMed]
- Handyside, A.H.; Kontogianni, E.H.; Hardy, K.; Winston, R.M.L. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990, 344, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Verlinsky, Y.; Ginsberg, N.; Lifchez, A.; Valle, J.; Moise, J.; Strom, C.M. Analysis of the first polar body: Preconception genetic diagnosis. Hum. Reprod. 1990, 5, 826–829. [Google Scholar] [CrossRef]
- Dokras, A.; Sargent, I.L.; Ross, C.; Gardner, R.L.; Barlow, D.H. Trophectoderm biopsy in human blastocysts. Hum. Reprod. 1990, 5, 821–825. [Google Scholar] [CrossRef]
- Takeuchi, K. Pre-implantation genetic testing: Past, present, future. Reprod. Med. Biol. 2021, 20, 27–40. [Google Scholar] [CrossRef]
- Cimadomo, D.; Rienzi, L.; Capalbo, A.; Rubio, C.; Innocenti, F.; Garcia-Pascual, C.M.; Ubaldi, F.M.; Handyside, A. The dawn of the future: 30 years from the first biopsy of a human embryo. The detailed history of an ongoing revolution. Hum. Reprod. Update 2020, 26, 453–473. [Google Scholar] [CrossRef]
- Marom Haham, L.; Aizer, A.; Arad, A.; Haas, J.; Lebovitz, O.; Zilberberg, E.; Nahum, R.; Orvieto, R. The outcomes of blastocyst versus cleavage stage embryo biopsy for preimplantation genetic testing for monogenic diseases. Front. Endocrinol. 2025, 16, 1518760. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.T., Jr.; Upham, K.M.; Forman, E.J.; Zhao, T.; Treff, N.R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: A randomized and paired clinical trial. Fertil. Steril. 2013, 100, 624–630. [Google Scholar] [CrossRef]
- Practice Committee and Genetic Counseling Professional Group of the American Society for Reproductive Medicine. Indications and management of preimplantation genetic testing for monogenic conditions: A committee opinion. Fertil. Steril. 2023, 120, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Petch, S.; Crosby, D. Updates in preimplantation genetic testing (PGT). Best Pract. Res. Clin. Obstet. Gynaecol. 2024, 96, 102526. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Liu, H.; Pan, W.; Ren, J.; Zheng, X.; Tan, Y.; Chen, Z.; Deng, Y.; He, N.; et al. Recent advances and application of whole genome amplification in molecular diagnosis and medicine. MedComm 2020, 3, e116. [Google Scholar] [CrossRef]
- Bonnette, M.D.; Pavlova, V.R.; Rodier, D.N.; Thompson, L.P.; Boone, E.L.; Brown, K.L.; Meyer, K.M.; Trevino, M.B.; Champagne, J.R.; Cruz, T.D. dcDegenerate oligonucleotide primed-PCR for multilocus, genome-wide analysis from limited quantities of DNA. Diagn. Mol. Pathol. 2009, 18, 165–175. [Google Scholar] [CrossRef]
- Kwok, P.Y. Making ‘random amplification’ predictable in whole genome analysis. Trends Biotechnol. 2002, 20, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Mai, M.; Hoyer, J.D.; McClure, R.F. Use of multiple displacement amplification to amplify genomic DNA before sequencing of the alpha and beta haemoglobin genes. J. Clin. Pathol. 2004, 57, 637–640. [Google Scholar] [CrossRef]
- Dadzie, F.A.; Beaudry, M.S.; Deyanov, A.; Slanis, H.; Duong, M.Q.; Turner, R.; Khan, A.; Arias, C.A.; Kissinger, J.C.; Glenn, T.C.; et al. Evaluating the Benefits and Limits of Multiple Displacement Amplification with Whole-Genome Oxford Nanopore Sequencing. bioRxiv 2024. [Google Scholar] [CrossRef]
- Chapman, A.R.; He, Z.; Lu, S.; Yong, J.; Tan, L.; Tang, F.; Xie, X.S. Single cell transcriptome amplification with MALBAC. PLoS ONE 2015, 10, e0120889. [Google Scholar] [CrossRef]
- Khosravi, S.; Salehi, M.; Ramezanzadeh, M.; Mirzaei, H.; Salehi, R. Novel Multiplex Fluorescent PCR-Based Method for HLA Typing and Preimplantational Genetic Diagnosis of beta-Thalassemia. Arch. Med. Res. 2016, 47, 293–298. [Google Scholar] [CrossRef]
- Kakourou, G.; Destouni, A.; Vrettou, C.; Traeger-Synodinos, J.; Kanavakis, E. A generic, flexible protocol for preimplantation human leukocyte antigen typing alone or in combination with a monogenic disease, for rapid case work-up and application. Hemoglobin 2014, 38, 49–55. [Google Scholar] [CrossRef]
- Zachaki, S.; Vrettou, C.; Destouni, A.; Kokkali, G.; Traeger-Synodinos, J.; Kanavakis, E. Novel and known microsatellite markers within the beta-globin cluster to support robust preimplantation genetic diagnosis of beta-thalassemia and sickle cell syndromes. Hemoglobin 2011, 35, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Kanavakis, E.; Vrettou, C.; Palmer, G.; Tzetis, M.; Mastrominas, M.; Traeger-Synodinos, J. Preimplantation genetic diagnosis in 10 couples at risk for transmitting β-thalassaemia major: Clinical experience including the initiation of six singleton pregnancies. Prenat. Diagn. 1999, 19, 1217–1222. [Google Scholar] [CrossRef]
- Fu, Y.; Shen, X.; Chen, D.; Wang, Z.; Zhou, C. Multiple displacement amplification as the first step can increase the diagnostic efficiency of preimplantation genetic testing for monogenic disease for beta-thalassemia. J. Obstet. Gynaecol. Res. 2019, 45, 1515–1521. [Google Scholar] [CrossRef]
- Farashi, S.; Harteveld, C.L. Molecular basis of α-thalassemia. Blood Cells Mol. Dis. 2018, 70, 43–53. [Google Scholar] [CrossRef]
- Chen, D.; Shen, X.; Xu, Y.; Ding, C.; Ye, Q.; Zhong, Y.; Xu, Y.; Zhou, C. Successful four-factor preimplantation genetic testing: Alpha- and beta-thalassemia, human leukocyte antigen typing, and aneuploidy screening. Syst. Biol. Reprod. Med. 2021, 67, 151–159. [Google Scholar] [CrossRef]
- Ou, Z.; Deng, Y.; Liang, Y.; Chen, Z.; Sun, L. Using affected embryos to establish linkage phase in preimplantation genetic testing for thalassemia. Reprod. Biol. Endocrinol. 2022, 20, 75. [Google Scholar] [CrossRef]
- Kuliev, A.; Pakhalchuk, T.; Verlinsky, O.; Rechitsky, S. Preimplantation genetic diagnosis for hemoglobinopathies. Hemoglobin 2011, 35, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Ha Vuong, V.V.; Nguyen, P.-D.; Thi, N.N.; Le Thi, P.; Minh Nguyet, D.T.; Nguyen, M.H.; Tran, H.A.; Dang-Tran, N.-M.; Bui, T.-H.; Tran, T.H.; et al. Application of short tandem repeats (STRs) in the preimplantation genetic diagnosis (PGD) of α-thalassemia. Taiwan. J. Obstet. Gynecol. 2024, 63, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, D.; Zhao, Q.; Shen, X.; Liao, Y.; Li, P.; Chiu, P.C.N.; Zhou, C. Long-read sequencing on the SMRT platform enables efficient haplotype linkage analysis in preimplantation genetic testing for beta-thalassemia. J. Assist. Reprod. Genet. 2022, 39, 739–746. [Google Scholar] [CrossRef]
- Natesan, S.A.; Bladon, A.J.; Coskun, S.; Qubbaj, W.; Prates, R.; Munne, S.; Coonen, E.; Dreesen, J.C.; Stevens, S.J.; Paulussen, A.D.; et al. Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet. Med. 2014, 16, 838–845. [Google Scholar] [CrossRef]
- Rafati, M.; Akhondi, M.M.; Sadeghi, M.R.; Tara, S.Z.; Ghaffari, S.R. Preimplantation High-Resolution HLA Sequencing Using Next Generation Sequencing. Biol. Blood Marrow Transplant. 2018, 24, 1575–1580. [Google Scholar] [CrossRef] [PubMed]
- Krüger, J.; Schleinitz, D. Genetic Fingerprinting Using Microsatellite Markers in a Multiplex PCR Reaction: A Compilation of Methodological Approaches from Primer Design to Detection Systems In Methods and Protocals; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1492, pp. 1–15. [Google Scholar]
- Foissac, A.; Salhi, M.; Cambon-Thomsen, A. Microsatellites in the HLA region: 1999 update. Tissue Antigens 2000, 55, 477–509. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef]
- Mardis, E.R. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 2013, 6, 287–303. [Google Scholar] [CrossRef]
- Chen, D.; Shen, X.; Wu, C.; Xu, Y.; Ding, C.; Zhang, G.; Xu, Y.; Zhou, C. Eleven healthy live births: A result of simultaneous preimplantation genetic testing of alpha- and beta-double thalassemia and aneuploidy screening. J. Assist. Reprod. Genet. 2020, 37, 549–557. [Google Scholar] [CrossRef]
- Li, Q.; Mao, Y.; Li, S.; Du, H.; He, W.; He, J.; Kong, L.; Zhang, J.; Liang, B.; Liu, J. Haplotyping by linked-read sequencing (HLRS) of the genetic disease carriers for preimplantation genetic testing without a proband or relatives. BMC Med. Genom. 2020, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Minasi, M.G.; Fiorentino, F.; Ruberti, A.; Biricik, A.; Cursio, E.; Cotroneo, E.; Varricchio, M.T.; Surdo, M.; Spinella, F.; Greco, E. Genetic diseases and aneuploidies can be detected with a single blastocyst biopsy: A successful clinical approach. Hum. Reprod. 2017, 32, 1770–1777. [Google Scholar] [CrossRef]
- Chen, H.F.; Chen, M.; Ho, H.N. An overview of the current and emerging platforms for preimplantation genetic testing for aneuploidies (PGT-A) in in vitro fertilization programs. Taiwan. J. Obstet. Gynecol. 2020, 59, 489–495. [Google Scholar] [CrossRef]
- Ou, Z.; Deng, Y.; Liang, Y.; Chen, Z.; Sun, L. Improved Non-Invasive Preimplantation Genetic Testing for Beta-Thalassemia Using Spent Embryo Culture Medium Containing Blastocoelic Fluid. Front. Endocrinol. 2021, 12, 793821. [Google Scholar] [CrossRef]
- Karami, N.; Iravani, F.; Bakhshandeh Bavarsad, S.; Asadollahi, S.; Mehdi Hoseini, S.; Montazeri, F.; Mehdi Kalantar, S. Comparing the advantages, disadvantages and diagnostic power of different non-invasive pre-implantation genetic testing: A literature review. Int. J. Reprod. Biomed. 2023, 22, 177–190. [Google Scholar] [CrossRef]
- Hammond, E.R.; Shelling, A.N.; Cree, L.M. Nuclear and mitochondrial DNA in blastocoele fluid and embryo culture medium: Evidence and potential clinical use. Hum. Reprod. 2016, 31, 1653–1661. [Google Scholar] [CrossRef]
- Wu, H.; Ding, C.; Shen, X.; Wang, J.; Li, R.; Cai, B.; Xu, Y.; Zhong, Y.; Zhou, C. Medium-based noninvasive preimplantation genetic diagnosis for human α-thalassemias-SEA. Medicine 2015, 94, e669. [Google Scholar] [CrossRef]
- Herreros, M.; Marti, L.; Diaz, N.; Tio, M.C.; Rodriguez-Arnedo, A.; Guerrero, J.; Ortiz, J.A.; Bernabeu, A.; Bernabeu, R.; Ten, J. Impact of Group vs Individual Embryo Culture Strategies on Blastocyst and Clinical Outcomes. Reprod. Sci. 2024, 31, 1705–1711. [Google Scholar] [CrossRef]
- Satirapod, C.; Sukprasert, M.; Panthan, B.; Charoenyingwattana, A.; Chitayanan, P.; Chantratita, W.; Choktanasiri, W.; Trachoo, O.; Hongeng, S. Clinical utility of combined preimplantation genetic testing methods in couples at risk of passing on beta thalassemia/hemoglobin E disease: A retrospective review from a single center. PLoS ONE 2019, 14, e0225457. [Google Scholar] [CrossRef] [PubMed]
- Kubikova, N.; Babariya, D.; Sarasa, J.; Spath, K.; Alfarawati, S.; Wells, D. Clinical application of a protocol based on universal next-generation sequencing for the diagnosis of beta-thalassaemia and sickle cell anaemia in preimplantation embryos. Reprod. Biomed. Online 2018, 37, 136–144. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chantrasiri, R.; Pantasri, T.; Chattipakorn, S.; Chattipakorn, N.; Kumfu, S.; Piyamongkol, W. The Role of Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) in Hemoglobinopathy Management—Techniques, Accuracy, and the Balancing of Benefits and Drawbacks. Biomolecules 2025, 15, 1472. https://doi.org/10.3390/biom15101472
Chantrasiri R, Pantasri T, Chattipakorn S, Chattipakorn N, Kumfu S, Piyamongkol W. The Role of Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) in Hemoglobinopathy Management—Techniques, Accuracy, and the Balancing of Benefits and Drawbacks. Biomolecules. 2025; 15(10):1472. https://doi.org/10.3390/biom15101472
Chicago/Turabian StyleChantrasiri, Rasrawee, Tawiwan Pantasri, Siriporn Chattipakorn, Nipon Chattipakorn, Sirinart Kumfu, and Wirawit Piyamongkol. 2025. "The Role of Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) in Hemoglobinopathy Management—Techniques, Accuracy, and the Balancing of Benefits and Drawbacks" Biomolecules 15, no. 10: 1472. https://doi.org/10.3390/biom15101472
APA StyleChantrasiri, R., Pantasri, T., Chattipakorn, S., Chattipakorn, N., Kumfu, S., & Piyamongkol, W. (2025). The Role of Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) in Hemoglobinopathy Management—Techniques, Accuracy, and the Balancing of Benefits and Drawbacks. Biomolecules, 15(10), 1472. https://doi.org/10.3390/biom15101472