The Clinical Implications of Progesterone in Preeclampsia
Abstract
1. Introduction
2. P4 Synthesis and Metabolism
2.1. P4 Synthesis Process
2.2. Key Enzyme or Metabolite Abnormalities During P4 Synthesis in PE
2.3. P4 Synthesis Regulation
2.4. hCG Abnormalities in PE
2.5. P4 Metabolism
2.6. Key Enzyme or Metabolite Abnormalities During P4 Metabolism in PE
3. The Potential of P4 Supplementation in Preventing PE
3.1. Animal Research
3.2. Clinical Research
PMID | Study Design | Results |
---|---|---|
37941309 [5] | A systematic review and meta-analysis: Meta-analyses with random-effects model MEDLINE, PubMed, CENTRAL, Embase, and ClinicalTrials.gov (until 20230620) 11 RCTs (3 single center, 8 multiple centers) 11640 patients (5267 patients in 3 RCTs initiated vaginal P4 in the first trimester; 6373 patients in 8 RCTs initiated vaginal P4 in the second and third trimester) Vaginal micronized P4 (100–800 mg/d) Subgroup analysis: 400 mg/bid vs. 400 mg/qd | Vaginal P4 in the first trimester: HDP (RR 0.71, 95%CI 0.53–0.93, 2 RCTs, n = 4431, moderate-certainty evidence) Subgroup analysis: a benefit in using the 400 mg/bid regimen (RR 0.74, 95%CI 0.55–0.99, 1 RCT, n = 4153) PE (RR 0.61, 95%CI 0.41–0.92, 3 RCTs, n = 5267, moderate-certainty evidence) Subgroup analysis: a benefit in using the 400 mg/bid regimen (RR 0.65, 95%CI 0.42–0.99, 2 RCTs, n = 4989) Vaginal P4 in the second or third trimesters: HDP (RR 1.19, 95%CI 0.67–2.12, 3 RCTs, n = 1602, low-certainty evidence) PE (RR 0.97, 95%CI 0.71–1.31, 5 RCTs, n = 4274, low-certainty evidence) |
34732210 [6] | A systematic review and meta-analysis: Pairwise meta-analyses with random-effects model MEDLINE, Cochrane Library, Embase and ClinicalTrials.gov (until 20210403) 9 RCTs, 6125 singleton pregnancies Study group: 3055 women treated with P4 before 20 weeks gestation (8 RCTs used oral or vaginal P4; 1 RCTs used rectal P4) Control group: 3070 women unexposed | P4 group: PE (OR 0.64, 95%CI 0.42–0.98, 3 RCTs, n = 3982, moderate-certainty evidence) Subgroup analysis: a benefit in using vaginal P4 (OR 0.62, 95%CI 0.40–0.96) |
38621482 [55] | A retrospective cohort study: 1800 twin pregnancies managed at a tertiary referral center in the UK (200001–202311) P4 group: 69 treated with P4 only P4+aspirin group: 105 treated with P4 and aspirin in the first trimester Aspirin group: 1156 treated with aspirin only Control group: 470 treated with no medication | PE incidence: Control group vs. Aspirin group vs. P4 group vs. P4+aspirin group: 7% vs. 4.6% vs. 5.8% vs. 7.6% HR for PE: Aspirin group: 0.62, 95%CI 0.40–0.97, p = 0.036 P4 group: 0.83, 95%CI 0.37–1.83, p = 0.637 P4+aspirin group: 0.71, 95%CI 0.25–2.03, p = 0.527 |
31876197 [7] | Comparative retrospective study: 406 pregnancies with risk factors of PE Study group: 169 pregnancies with dydrogesterone supplementation (30 mg/d) at 6–20 weeks gestation Control group: 237 pregnancies without dydrogesterone supplementation | PE: 13.1% and 71.4%, p < 0.001 Hypertension: 3.2% and 71.2%, p < 0.001 Proteinuria: 0.0% vs. 66.18%, p < 0.001 FGR: 2.2% vs. 21.58%, p < 0.001 Destroy of uteri-placenta velocity: 3.2% vs. 21.58%, p < 0.001 PL: 8.6% vs. 53.95%, p < 0.001 |
39722356 [60] | A secondary data analysis study based on 2 randomized control trials (2008–2011 and 2013–2018) at 2 university hospitals in Sweden 227 singleton pregnancies of NC-FET Study group: 136 pregnancies with luteal phase vaginal P4 supplementation from ET to 8 weeks gestation 56 pregnancies, 2008–2011, micronized P4, 400 mg/bid, as a vaginal suppository 80 pregnancies, 2013–2018, P4, 100 mg/bid, as a vaginal tablet Control group: 91 pregnancies, receive standard of care, without P4 supplementation | Study group vs. Control group: Birth weights: 82.4% vs. 70.3%, p = 0.033 HDP: 4.4% vs. 11.1%, p = 0.058 Mild/moderate PE: 1.5% vs. 3.3% Severe PE: 1.5% vs. 2.2% |
24552449 [58] | A prospective cross-sectional comparative study: 232 primigravidae in a tertiary center (201001-201012) Study group: 116 primigravidae with dydrogesterone supplementation (10 mg/tid) following ART or IUI up to 16 weeks gestation Control group: 116 primigravidae, age and race matched spontaneous pregnancies at 16 weeks, without dydrogesterone supplementation | Study group vs. Control group: HDP: 1.7% vs. 12.9%, p = 0.001 fetal distress: 4.3% vs. 18.1%, p = 0.001 |
26910749 [59] | A retrospective comparative analysis: 1140 pregnancies in a tertiary center (200601–201503) Study group: 570 with P4 support following ART or IUI until 14–16 weeks gestation Control group: 570 without P4 support | Study group vs. Control group: PE: 8.4% vs. 14.2%, p < 0.05 Subgroup analysis: Dydrogesterone only (10 mg, n = 276) vs. Dydrogesterone+hydroxyprogesterone (intramuscular injection of 500 mg, n = 294): PE: 6.9% vs. 9.9%, p = 0.2 |
4. P4’s Genomic and Non-Genomic Mechanisms of Action
4.1. P4 Classical Signaling Pathway: Genomic Receptor Mechanism (Nuclear)
4.2. P4 Non-Classical Signaling Pathway: Non-Genomic Receptor Mechanism (Extranuclear)
4.2.1. mPRs
4.2.2. PGRMC
- PGRMC1
- PGRMC2
5. P4 Might Protect Against PE by Regulating Vascular Endothelial Function
5.1. P4 Might Protect Against PE by Regulating VEGF Signaling
5.2. P4 Might Protect Against PE by Regulating eNOS/NO Expression
6. P4 Might Protect Against PE by Regulating Immune Response at the Maternal–Fetal Interface
6.1. P4 Might Protect Against PE by Regulating Immune Cells at Maternal–Fetal Interface
6.1.1. Th1/Th2
6.1.2. Treg Cells
6.1.3. CD8+T Cells
6.1.4. Macrophage and DCs
6.1.5. NK Cell
6.1.6. Cytokine
6.2. P4 Might Protect Against PE by Regulating Trophoblasts for Immune Tolerance
7. P4 Might Protect Against PE by Promoting Trophoblast Proliferation and Adhesion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S.; et al. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Maski, M.R.; Bajracharya, S.; Wenger, J.B.; Zhang, D.; Salahuddin, S.; Shahul, S.S.; Thadhani, R.; Seely, E.W.; Karumanchi, S.A.; et al. Epidemiology and Mechanisms of De Novo and Persistent Hypertension in the Postpartum Period. Circulation 2015, 132, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, Y.; Zhang, K.; Yan, Y.; Wu, J.; Wang, F.; Zhao, Y.; Xu, H.; Jiang, W.; Yu, D.; et al. Progesterone attenuates hypertension and autoantibody levels to the angiotensin II type 1 receptor in response to elevated cadmium during pregnancy. Placenta 2018, 62, 16–24. [Google Scholar] [CrossRef]
- Melo, P.; Devall, A.; Shennan, A.H.; Vatish, M.; Becker, C.M.; Granne, I.; Papageorghiou, A.T.; Mol, B.W.; Coomarasamy, A. Vaginal micronised progesterone for the prevention of hypertensive disorders of pregnancy: A systematic review and meta-analysis. Int. J. Obstet. Gynaecol. 2024, 131, 727–739. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, S.; Lin, X.; He, J.; Wang, S.; Zhou, P. Pregnancy-related complications and perinatal outcomes following progesterone supplementation before 20 weeks of pregnancy in spontaneously achieved singleton pregnancies: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2021, 19, 165. [Google Scholar] [CrossRef]
- Tskhay, V.; Schindler, A.; Shestakova, M.; Klimova, O.; Narkevich, A. The role of progestogen supplementation (dydrogesterone) in the prevention of preeclampsia. Gynecol. Endocrinol. 2020, 36, 698–701. [Google Scholar] [CrossRef]
- Tskhay, V.B.; Kovtun, N.M.; Schindler, A.E. Successful prevention of preeclampsia in a high-risk pregnancy using progestogen dydrogesterone: A clinical case. Horm. Mol. Biol. Clin. Investig. 2016, 27, 85–88. [Google Scholar] [CrossRef]
- Bencker, C.; Gschwandtner, L.; Nayman, S.; Grikšienė, R.; Nguyen, B.; Nater, U.M.; Guennoun, R.; Sundström-Poromaa, I.; Pletzer, B.; Bixo, M.; et al. Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females. Front. Neuroendocrinol. 2025, 76, 101160. [Google Scholar] [CrossRef]
- Vondra, S.; Kunihs, V.; Eberhart, T.; Eigner, K.; Bauer, R.; Haslinger, P.; Haider, S.; Windsperger, K.; Klambauer, G.; Schütz, B.; et al. Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages. J. Lipid Res. 2019, 60, 1922–1934. [Google Scholar] [CrossRef]
- Shin, Y.Y.; Jeong, J.S.; Park, M.; Lee, J.; An, S.; Cho, W.; Kim, S.C.; An, B.; Lee, K. Regulation of steroid hormones in the placenta and serum of women with preeclampsia. Mol. Med. Rep. 2018, 17, 2681–2688. [Google Scholar] [CrossRef]
- Shin, Y.Y.; An, S.-M.; Jeong, J.S.; Yang, S.Y.; Lee, G.-S.; Hong, E.-J.; Jeung, E.-B.; Kim, S.C.; An, B.-S. Comparison of steroid hormones in three different preeclamptic models. Mol. Med. Rep. 2021, 23, 252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, K.; Meng, Z.; Jia, R.; Lian, F.; Lin, F. Cadmium-induced preeclampsia-like phenotype in the rat is related to decreased progesterone synthesis in the placenta. Xenobiotica 2022, 52, 625–632. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Xu, W.; Chen, Y.; Liu, X.; Xi, M. Abnormal apoptosis of trophoblastic cells is related to the up-regulation of CYP11A gene in placenta of preeclampsia patients. PLoS ONE 2013, 8, e59609. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Zhang, X.; Li, Y.; He, G.; Dinnyés, A.; Sun, Q.; Xu, W. CYP11A1 Upregulation Leads to Trophoblast Oxidative Stress and Fetal Neurodevelopmental Toxicity That can be Rescued by Vitamin D. Front. Mol. Biosci. 2020, 7, 608447. [Google Scholar] [CrossRef]
- Pan, T.; He, G.; Chen, M.; Bao, C.; Chen, Y.; Liu, G.; Zhou, M.; Li, S.; Xu, W.; Liu, X. Abnormal CYP11A1 gene expression induces excessive autophagy, contributing to the pathogenesis of preeclampsia. Oncotarget 2017, 8, 89824–89836. [Google Scholar] [CrossRef]
- Przygrodzka, E.; Bhinderwala, F.; Powers, R.; McFee, R.M.; Cupp, A.S.; Wood, J.R.; Davis, J.S. Metabolic control of luteinizing hormone-responsive ovarian steroidogenesis. J. Biol. Chem. 2025, 301, 108042. [Google Scholar] [CrossRef]
- Barjaktarovic, M.; Korevaar, T.I.M.; Jaddoe, V.W.V.; de Rijke, Y.B.; Peeters, R.P.; Steegers, E.A.P. Human chorionic gonadotropin and risk of pre-eclampsia: Prospective population-based cohort study. Ultrasound Obstet. Gynecol. 2019, 54, 477–483. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, X.; Wu, B.; Jiang, C.; Yin, Y. Relationship between increased maternal serum free human chorionic gonadotropin levels in the second trimester and adverse pregnancy outcomes: A retrospective cohort study. BMC Womens Health 2024, 24, 323. [Google Scholar] [CrossRef]
- Hasija, A.; Balyan, K.; Debnath, E.; V., R.; Kumar, M. Prediction of hypertension in pregnancy in high risk women using maternal factors and serial placental profile in second and third trimester. Placenta 2021, 104, 236–242. [Google Scholar] [CrossRef]
- Norris, W.; Nevers, T.; Sharma, S.; Kalkunte, S. Review: hCG, preeclampsia and regulatory T cells. Placenta 2011, 32, S182–S185. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, L.; Wang, X.; Liu, Y. Association between serum beta-human chorionic gonadotropin and inflammation, oxidative stress in pregnancy-induced hypertension. Microvasc. Res. 2021, 135, 104130. [Google Scholar] [CrossRef] [PubMed]
- Elazab, R.; Alkhiary, M.; Bedairi, M.; Wageh, A. Simultaneous use of Tumor Necrosis Factor, Lipid Profile, and beta-hCG As Markers of Severity of Preeclampsia. J. Obstet. Gynaecol. India 2022, 72, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Khanam, Z.; Mittal, P.; Suri, J. Does the Addition of Serum PAPP-A and beta-hCG Improve the Predictive Value of Uterine Artery Pulsatility Index for Preeclampsia at 11-14 Weeks of Gestation? A Prospective Observational Study. J. Obstet. Gynaecol. India 2021, 71, 226–234. [Google Scholar] [CrossRef]
- Lu, Y.; Ding, Z.; Li, W.; Mei, L.; Shen, L.; Shan, H. Prediction of twin pregnancy preeclampsia based on clinical risk factors, early pregnancy serum markers, and uterine artery pulsatility index. Pak. J. Med. Sci. 2021, 37, 1727–1733. [Google Scholar] [CrossRef]
- Murmu, S.; Dwivedi, J. Second-Trimester Maternal Serum Beta-Human Chorionic Gonadotropin and Lipid Profile as a Predictor of Gestational Hypertension, Preeclampsia, and Eclampsia: A Prospective Observational Study. Int. J. Appl. Basic Med. Res. 2020, 10, 49–53. [Google Scholar] [CrossRef]
- Skogler, J.; Moberg, T.; Tancredi, L.; Styrmisdóttir, L.; Hedayati, E.; Alarcon-Ruiz, C.A.; Khamis, A.; Persad, E.; Iskandarani, G.; Hansson, S.R.; et al. Association between human chorionic gonadotropin (hCG) levels and adverse pregnancy outcomes: A systematic review and meta-analysis. Pregnancy Hypertens. 2023, 34, 124–137. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, H. The role of serum markers PAPP-A beta-hCG, AFP, and uE3 in predicting the risk of preeclampsia in early, middle, and late pregnancy. Technol. Health Care 2023, 31, 1027–1037. [Google Scholar] [CrossRef]
- Zhang, X.; Huangfu, Z.; Shi, F.; Xiao, Z. Predictive Performance of Serum beta-hCG MoM Levels for Preeclampsia Screening: A Meta-Analysis. Front. Endocrinol. 2021, 12, 619530. [Google Scholar] [CrossRef]
- Deng, Y.; Jin, H. Effects of menopausal hormone therapy-based on the role of estrogens, progestogens, and their metabolites in proliferation of breast cancer cells. Cancer Biol. Med. 2021, 19, 432–449. [Google Scholar] [CrossRef]
- Klein, J. Progesterone Metabolism in Digitalis and Other Plants-60 Years of Research and Recent Results. Plant Cell Physiol. 2024, 65, 1500–1514. [Google Scholar] [CrossRef]
- Trummer, O.; Stern, C.; Reintar, S.; Mayer-Pickel, K.; Cervar-Zivkovic, M.; Dischinger, U.; Kurlbaum, M.; Huppertz, B.; Fluhr, H.; Obermayer-Pietsch, B. Steroid Profiles and Precursor-to-Product Ratios Are Altered in Pregnant Women with Preeclampsia. Int. J. Mol. Sci. 2024, 25, 12704. [Google Scholar] [CrossRef] [PubMed]
- Shaw, I.W.; Kirkwood, P.M.; Rebourcet, D.; Cousins, F.L.; Ainslie, R.J.; Livingstone, D.E.W.; Smith, L.B.; Saunders, P.T.; Gibson, D.A. A role for steroid 5 alpha-reductase 1 in vascular remodeling during endometrial decidualization. Front. Endocrinol. 2022, 13, 1027164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, H.; Feng, Y.; Wu, W.; Li, S.; Thompson, B.; Xie, B.; Guo, P.; Li, M.; Wang, Y.; et al. Polymorphisms in Sex Hormone Metabolism Genes and Risk of Preeclampsia in Taiyuan, China. Gynecol. Obstet. Investig. 2018, 83, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Jia, X.; Deng, Z.; Liu, X.; Liu, H.; Yu, H.; Liu, S. Exploration of CYP21A2 and CYP17A1 polymorphisms and preeclampsia risk among Chinese Han population: A large-scale case-control study based on 5021 subjects. Hum. Genom. 2020, 14, 33. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, J.; Gu, X.; Li, L.; Han, J. Downregulation of aromatase plays a dual role in preeclampsia. Mol. Hum. Reprod. 2021, 27, gaab013. [Google Scholar] [CrossRef]
- Lau, S.L.; Yuen, L.Y.; Ho, C.S.; Chan, M.H.M.; Ma, R.C.W.; Tam, W.H. Gestational Age-specific Reference Intervals for Androgens in Pregnancy. J. Clin. Endocrinol. Metab. 2024, 110, 176–184. [Google Scholar] [CrossRef]
- Othman, M.A.; Badawy, E.R.; Sobh, A.M.A.; Shaltout, A.S.; Mostafa, S.A. Effect of 17-Hydroxyprogesterone Caproate on Interleukin-6 and Tumor necrosis factor-alpha in expectantly managed early-onset preeclampsia. Egypt J. Immunol. 2023, 30, 109–118. [Google Scholar] [CrossRef]
- Amaral, L.M.; Faulkner, J.L.; Elfarra, J.; Cornelius, D.C.; Cunningham, M.W.; Ibrahim, T.; Vaka, V.R.; McKenzie, J.; LaMarca, B. Continued Investigation Into 17-OHPC: Results From the Preclinical RUPP Rat Model of Preeclampsia. Hypertension 2017, 70, 1250–1255. [Google Scholar] [CrossRef]
- Elfarra, J.T.; Cottrell, J.N.; Cornelius, D.C.; Cunningham, M.W., Jr.; Faulkner, J.L.; Ibrahim, T.; Lamarca, B.; Amaral, L.M. 17-Hydroxyprogesterone caproate improves T cells and NK cells in response to placental ischemia; new mechanisms of action for an old drug. Pregnancy Hypertens. 2020, 19, 226–232. [Google Scholar] [CrossRef]
- Kiprono, L.V.; Wallace, K.; Moseley, J.; Martin, J., Jr.; LaMarca, B. Progesterone blunts vascular endothelial cell secretion of endothelin-1 in response to placental ischemia. Am. J. Obstet. Gynecol. 2013, 209, 44.e1–44.e6. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.M.; Cottrell, J.N.; Comley, K.M.; Cunningham, M.W., Jr.; Witcher, A.; Vaka, V.R.; Ibrahim, T.; LaMarca, B. 17-Hydroxyprogesterone caproate improves hypertension and renal endothelin-1 in response to sFlt-1 induced hypertension in pregnant rats. Pregnancy Hypertens. 2020, 22, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Keiser, S.D.; Veillon, E.W.; Parrish, M.R.; Bennett, W.; Cockrell, K.; Fournier, L.; Granger, J.P.; Martin, J.N.; LaMarca, B. Effects of 17-hydroxyprogesterone on tumor necrosis factor-alpha-induced hypertension during pregnancy. Am. J. Hypertens. 2009, 22, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yu, L.; Ding, Y.; Peng, M.; Deng, Y. Progesterone Enhances the Invasion of Trophoblast Cells by Activating PI3K/AKT Signaling Pathway to Prevent Preeclampsia. Cell Transplant. 2023, 32, 09636897221145682. [Google Scholar] [CrossRef]
- Uddin, M.N.; Horvat, D.; Jones, R.O.; Beeram, M.R.; Zawieja, D.C.; Perger, L.; Sprague, D.C.C.; Kuehl, T.J. Suppression of aldosterone and progesterone in preeclampsia. J. Matern. Fetal Neonatal Med. 2015, 28, 1296–1301. [Google Scholar] [CrossRef]
- Pei, J.; Liu, Z.; Wang, C.; Chu, N.; Liu, L.; Tang, Y.; Liu, H.; Xiang, Q.; Cheng, H.; Li, M.; et al. Progesterone Attenuates SIRT1-Deficiency-Mediated Pre-Eclampsia. Biomolecules 2022, 12, 422. [Google Scholar] [CrossRef]
- Cottrell, J.N.; Witcher, A.C.; Comley, K.; Cunningham, M.W., Jr.; Ibrahim, T.; Cornelius, D.C.; LaMarca, B.; Amaral, L.M. Progesterone-induced blocking factor improves blood pressure, inflammation, and pup weight in response to reduced uterine perfusion pressure (RUPP). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R719–R727. [Google Scholar] [CrossRef]
- Meadors, A.; Comley, K.; Cottrell, J.N.; Ibhahim, T.; Cunningham, M.W., Jr.; Amaral, L.M. Progesterone-induced blocking factor blockade causes hypertension in pregnant rats. Am. J. Reprod. Immunol. 2024, 91, e13805. [Google Scholar] [CrossRef]
- Green, E.S.; Moldenhauer, L.M.; Groome, H.M.; Sharkey, D.J.; Chin, P.Y.; Care, A.S.; Robker, R.L.; McColl, S.R.; Robertson, S.A. Regulatory T cells are paramount effectors in progesterone regulation of embryo implantation and fetal growth. JCI Insight 2023, 8, e162995. [Google Scholar] [CrossRef]
- Kale, K.; Vishwekar, P.; Balsarkar, G.; Jassawalla, M.J.; Sawant, G.; Madan, T. Differential levels of surfactant protein A, surfactant protein D, and progesterone to estradiol ratio in maternal serum before and after the onset of severe early-onset preeclampsia. Am. J. Reprod. Immunol. 2020, 83, e13208. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Wang, Y.; Peng, W.; Zhang, N.; Ye, Y. Progesterone inhibited endoplasmic reticulum stress associated apoptosis induced by interleukin-1beta via the GRP78/PERK/CHOP pathway in BeWo cells. J. Obstet. Gynaecol. Res. 2018, 44, 463–473. [Google Scholar] [CrossRef]
- Wan, J.; Hu, Z.; Zeng, K.; Yin, Y.; Zhao, M.; Chen, M.; Chen, Q. The reduction in circulating levels of estrogen and progesterone in women with preeclampsia. Pregnancy Hypertens. 2018, 11, 18–25. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, A.; Lu, X.; Chen, B.; Hua, Y.; Ma, Y. Association of phthalates exposure and sex steroid hormones with late-onset preeclampsia: A case-control study. BMC Pregnancy Childbirth 2024, 24, 577. [Google Scholar] [CrossRef]
- Zheng, J.J.; Wang, H.O.; Huang, M.; Zheng, F.Y. Assessment of ADMA, estradiol, and progesterone in severe preeclampsia. Clin. Exp. Hypertens. 2016, 38, 347–351. [Google Scholar] [CrossRef]
- Yaghi, O.; Prasad, S.; Boorman, H.; Kalafat, E.; Khalil, A. Is micronized vaginal progesterone effective for the prevention of preeclampsia in twin pregnancies? Am. J. Obstet. Gynecol. 2024, 231, e72–e75. [Google Scholar] [CrossRef]
- Razi, Z.R.M.; Schindler, A.E. Review on role of progestogen (dydrogesterone) in the prevention of gestational hypertension. Horm. Mol. Biol. Clin. Investig. 2016, 27, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Schindler, A.E. Present and future aspects of dydrogesterone in prevention or treatment of pregnancy disorders: An outlook. Horm. Mol. Biol. Clin. Investig. 2016, 27, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.R.Z.; Lim, J.F.; Nawawi, N.H.M.; Luqman, M.; Zolkeplai, M.F.; Rangkuty, H.S.; Nor, N.A.M.; Tamil, A.; Shah, S.A.; Tham, S.W.; et al. A pilot study to determine whether progestogen supplementation using dydrogesterone during the first trimester will reduce the incidence of gestational hypertension in primigravidae. Gynecol. Endocrinol. 2014, 30, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.B.; Ahmad, M.F.B.; Kwang, N.B.; Shan, L.P.; Shafie, N.M.; Omar, M.H. Dydrogesterone support following assisted reproductive technique (ART) reduces the risk of pre-eclampsia. Horm. Mol. Biol. Clin. Investig. 2016, 27, 93–96. [Google Scholar] [CrossRef]
- Elenis, E.; Joelsson, L.S.; Stavreus-Evers, A.; Wånggren, K. Perinatal outcomes of progesterone in natural frozen-thawed embryo transfer pregnancies: Insights from 2 randomized controlled trials. Fertil. Steril. 2024, 124, 104–112. [Google Scholar] [CrossRef]
- Conrad, K.P.; von Versen-Höynck, F.; Baker, V.L. Potential role of the corpus luteum in maternal cardiovascular adaptation to pregnancy and preeclampsia risk. Am. J. Obstet. Gynecol. 2022, 226, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Grimm, S.L.; Hartig, S.M.; Edwards, D.P. Progesterone Receptor Signaling Mechanisms. J. Mol. Biol. 2016, 428, 3831–3849. [Google Scholar] [CrossRef] [PubMed]
- Taraborrelli, S. Physiology, production and action of progesterone. Acta Obstet. Gynecol. Scand. 2015, 94 (Suppl. S161), 8–16. [Google Scholar] [CrossRef] [PubMed]
- Garg, D.; Ng, S.S.M.; Baig, K.M.; Driggers, P.; Segars, J. Progesterone-Mediated Non-Classical Signaling. Trends Endocrinol. Metab. 2017, 28, 656–668. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, C.; Zhao, S.; Wang, B.; Wang, H.; Zhang, J.; Wang, Y.; Cheng, H.; Zhu, L.; Shen, R.; et al. Exposure to DEHP or its metabolite MEHP promotes progesterone secretion and inhibits proliferation in mouse placenta or JEG-3 cells. Environ. Pollut. 2020, 257, 113593. [Google Scholar] [CrossRef]
- De Guzman, R.M.; Jacobskind, J.S.; Rosinger, Z.J.; Rybka, K.A.; Parra, K.E.; Caballero, A.L.; Sharif, M.S.; Justice, N.J.; Zuloaga, D.G. Hormone Regulation of Corticotropin-Releasing Factor Receptor 1 in the Female Mouse Brain. Neuroendocrinology 2024, 114, 1139–1157. [Google Scholar] [CrossRef]
- Chiang, S. Recent advances in smooth muscle tumors with PGR and PLAG1 gene fusions and myofibroblastic uterine neoplasms. Genes Chromosomes Cancer 2021, 60, 138–146. [Google Scholar] [CrossRef]
- Goldman, S.; Shalev, E. Difference in progesterone-receptor isoforms ratio between early and late first-trimester human trophoblast is associated with differential cell invasion and matrix metalloproteinase 2 expression. Biol. Reprod. 2006, 74, 13–22. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, J.H.; Park, T.C.; Lee, H.J. Relationship Between Gonadotropin-Releasing Hormone/Gonadotropin-Releasing Hormone Receptor Signaling and Progesterone Receptors in Human Trophoblasts. J. Reprod. Med. 2016, 61, 275–281. [Google Scholar]
- Park, M.; Park, K.; Lee, J.; Shin, Y.Y.; An, S.; Kang, S.S.; Cho, W.; An, B.; Kim, S.C. The expression and activation of sex steroid receptors in the preeclamptic placenta. Int. J. Mol. Med. 2018, 41, 2943–2951. [Google Scholar] [CrossRef]
- Ferreira, L.M.R.; Meissner, T.B.; Mikkelsen, T.S.; Mallard, W.; O’dOnnell, C.W.; Tilburgs, T.; Gomes, H.A.B.; Camahort, R.; Sherwood, R.I.; Gifford, D.K.; et al. A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface. Proc. Natl. Acad. Sci. USA 2016, 113, 5364–5369. [Google Scholar] [CrossRef]
- Pavličev, M.; Wagner, G.P.; Chavan, A.R.; Owens, K.; Maziarz, J.; Dunn-Fletcher, C.; Kallapur, S.G.; Muglia, L.; Jones, H. Single-cell transcriptomics of the human placenta: Inferring the cell communication network of the maternal-fetal interface. Genome Res. 2017, 27, 349–361. [Google Scholar] [CrossRef]
- Tilburgs, T.; Crespo, Â.C.; van der Zwan, A.; Rybalov, B.; Raj, T.; Stranger, B.; Gardner, L.; Moffett, A.; Strominger, J.L. Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes. Proc. Natl. Acad. Sci. USA 2015, 112, 7219–7224. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ferreira, L.M.; Mazzanti, A.; Yu, H.; Gu, B.; Meissner, T.B.; Li, Q.; Strominger, J.L. Progesterone-mediated remodeling of the maternal-fetal interface by a PGRMC1-dependent mechanism. J. Reprod. Immunol. 2024, 163, 104244. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, A.; Pereira, M.T.; Aslan, S.; Payan-Carreira, R.; Reichler, I.M.; Agaoglu, R.A.; Kowalewski, M.P. Membrane-bound progesterone receptors in the canine uterus and placenta; possible targets in the maintenance of pregnancy. Theriogenology 2023, 210, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Bairagi, S.; Grazul-Bilska, A.T.; Borowicz, P.P.; Reyaz, A.; Valkov, V.; Reynolds, L.P. Placental development during early pregnancy in sheep: Progesterone and estrogen receptor protein expression. Theriogenology 2018, 114, 273–284. [Google Scholar] [CrossRef]
- Grazul-Bilska, A.T.; Bairagi, S.; Kraisoon, A.; Dorsam, S.T.; Reyaz, A.; Navanukraw, C.; Borowicz, P.P.; Reynolds, L.P. Placental development during early pregnancy in sheep: Nuclear estrogen and progesterone receptor mRNA expression in the utero-placental compartments. Domest. Anim. Endocrinol. 2019, 66, 27–34. [Google Scholar] [CrossRef]
- Steinhauser, C.; Bazer, F.; Burghardt, R.; Johnson, G. Expression of progesterone receptor in the porcine uterus and placenta throughout gestation: Correlation with expression of uteroferrin and osteopontin. Domest. Anim. Endocrinol. 2017, 58, 19–29. [Google Scholar] [CrossRef]
- Garrido-Gomez, T.; Castillo-Marco, N.; Clemente-Ciscar, M.; Cordero, T.; Muñoz-Blat, I.; Amadoz, A.; Jimenez-Almazan, J.; Monfort-Ortiz, R.; Climent, R.; Perales-Marin, A.; et al. Disrupted PGR-B and ESR1 signaling underlies defective decidualization linked to severe preeclampsia. Elife 2021, 10, e70753. [Google Scholar] [CrossRef]
- Zhou, P.; Ouyang, L.; Jiang, T.; Tian, Y.; Deng, W.; Wang, H.; Kong, S.; Lu, Z. Progesterone and cAMP synergistically induce SHP2 expression via PGR and CREB1 during uterine stromal decidualization. FEBS J. 2024, 291, 142–157. [Google Scholar] [CrossRef]
- Tsuru, A.; Yoshie, M.; Suzuki, M.; Mochizuki, H.; Kametaka, S.; Ohmaru-Nakanishi, T.; Azumi, M.; Kusama, K.; Kato, K.; Tamura, K. Downregulation of PGRMC1 accelerates differentiation and fusion of a human trophoblast cell line. J. Endocrinol. 2024, 260, e230163. [Google Scholar] [CrossRef]
- Tsuru, A.; Yoshie, M.; Kojima, J.; Yonekawa, R.; Azumi, M.; Kusama, K.; Nishi, H.; Tamura, K. PGRMC1 Regulates Cellular Senescence via Modulating FOXO1 Expression in Decidualizing Endometrial Stromal Cells. Biomolecules 2022, 12, 1046. [Google Scholar] [CrossRef]
- Tsuru, A.; Yoshie, M.; Negishi, R.; Mukoyama, T.; Yonekawa, R.; Kojima, J.; Azumi, M.; Kusama, K.; Nishi, H.; Tamura, K. Regulatory action of PGRMC1 on cyclic AMP-mediated COX2 expression in human endometrial cells. J. Pharmacol. Sci. 2023, 153, 188–196. [Google Scholar] [CrossRef]
- Yokouchi-Konishi, T.; Liu, Y.; Feng, L. Progesterone receptor membrane component 2 is critical for human placental extravillous trophoblast invasion. Biol. Reprod. 2023, 109, 759–771. [Google Scholar] [CrossRef]
- Medina-Laver, Y.; Gonzalez-Martin, R.; de Castro, P.; Diaz-Hernandez, I.; Alama, P.; Quiñonero, A.; Palomar, A.; Dominguez, F. Deciphering the role of PGRMC2 in the human endometrium during the menstrual cycle and in vitro decidualization using an in vitro approach. Hum. Reprod. 2024, 39, 1042–1056. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.S.; Pierron, V.; Michalovich, D.; Astle, S.; Thornton, S.; Peltoketo, H.; Lam, E.W.-F.; Gellersen, B.; Huhtaniemi, I.; Allen, J.; et al. Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J. Endocrinol. 2005, 187, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Dong, J.; Thomas, P. Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor-alpha. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E899–E911. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Pang, Y.; Dong, J.; Groenen, P.; Kelder, J.; de Vlieg, J.; Zhu, Y.; Tubbs, C. Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evolutionary origins. Endocrinology 2007, 148, 705–718. [Google Scholar] [CrossRef]
- Lu, J.; Reese, J.; Zhou, Y.; Hirsch, E. Progesterone-induced activation of membrane-bound progesterone receptors in murine macrophage cells. J. Endocrinol. 2015, 224, 183–194. [Google Scholar] [CrossRef]
- Intlekofer, K.A.; Petersen, S.L. 17beta-estradiol and progesterone regulate multiple progestin signaling molecules in the anteroventral periventricular nucleus, ventromedial nucleus and sexually dimorphic nucleus of the preoptic area in female rats. Neuroscience 2011, 176, 86–92. [Google Scholar] [CrossRef]
- Peluso, J.J. Progesterone Signaling and Mammalian Ovarian Follicle Growth Mediated by Progesterone Receptor Membrane Component Family Members. Cells 2022, 11, 1632. [Google Scholar] [CrossRef]
- Pru, J.K. Pleiotropic Actions of PGRMC Proteins in Cancer. Endocrinology 2022, 163, bqac078. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [PubMed]
- Willibald, M.; Bayer, G.; Stahlhut, V.; Poschmann, G.; Stühler, K.; Gierke, B.; Pawlak, M.; Seeger, H.; Mueck, A.O.; Niederacher, D.; et al. Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells. Oncotarget 2017, 8, 72480–72493. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Zhang, Y.; Mueck, A.O.; Willibald, M.; Seeger, H.; Fehm, T.; Brucker, S.; Neubauer, H. Increased expression of progesterone receptor membrane component 1 is associated with aggressive phenotype and poor prognosis in ER-positive and negative breast cancer. Menopause 2017, 24, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Schneck, H.; Ruan, X.; Seeger, H.; Cahill, M.A.; Fehm, T.; Mueck, A.O.; Neubauer, H. Membrane-receptor initiated proliferative effects of dienogest in human breast cancer cells. Gynecol. Endocrinol. 2013, 29, 160–163. [Google Scholar] [CrossRef]
- Lintao, R.C.V.; Richardson, L.S.; Kammala, A.K.; Chapa, J.; Yunque-Yap, D.A.; Khanipov, K.; Golovko, G.; Dalmacio, L.M.M.; Menon, R. PGRMC2 and HLA-G regulate immune homeostasis in a microphysiological model of human maternal-fetal membrane interface. Commun. Biol. 2024, 7, 1041. [Google Scholar] [CrossRef]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Remus, E.W.; Sayeed, I.; Won, S.; Lyle, A.N.; Stein, D.G. Progesterone protects endothelial cells after cerebrovascular occlusion by decreasing MCP-1- and CXCL1-mediated macrophage infiltration. Exp. Neurol. 2015, 271, 401–408. [Google Scholar] [CrossRef]
- Faulkner, J.L.; Kennard, S.; Huby, A.-C.; Antonova, G.; Lu, Q.; Jaffe, I.Z.; Patel, V.S.; Fulton, D.J.R.; de Chantemèle, E.J.B. Progesterone Predisposes Females to Obesity-Associated Leptin-Mediated Endothelial Dysfunction via Upregulating Endothelial MR (Mineralocorticoid Receptor) Expression. Hypertension 2019, 74, 678–686. [Google Scholar] [CrossRef]
- Park, Y.G.; Choi, J.; Seol, J.W. Angiopoietin-2 regulated by progesterone induces uterine vascular remodeling during pregnancy. Mol. Med. Rep. 2020, 22, 1235–1242. [Google Scholar] [CrossRef]
- Mallawarachchi, S.; Cebecioglu, R.E.; Althumayri, M.; Beker, L.; Fernando, S.; Koydemir, H.C. Systematic design and evaluation of aptamers for VEGF and PlGF biomarkers of Preeclampsia. BMC Biotechnol. 2024, 24, 64. [Google Scholar] [CrossRef]
- Witvrouwen, I.; Mannaerts, D.; Ratajczak, J.; Boeren, E.; Faes, E.; Van Craenenbroeck, A.H.; Jacquemyn, Y.; Van Craenenbroeck, E.M. MicroRNAs targeting VEGF are related to vascular dysfunction in preeclampsia. Biosci. Rep. 2021, 41, BSR20210874. [Google Scholar] [CrossRef]
- Chen, X.; Jin, X.; Liu, L.; Man, C.W.; Huang, J.; Wang, C.C.; Zhang, S.; Li, T.C. Differential expression of vascular endothelial growth factor angiogenic factors in different endometrial compartments in women who have an elevated progesterone level before oocyte retrieval, during in vitro fertilization-embryo transfer treatment. Fertil. Steril. 2015, 104, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, S.; Sharifi, M.; Rashidi, B. Ovarian stimulation and exogenous progesterone affect the endometrial miR-16-5p, VEGF protein expression, and angiogenesis. Microvasc. Res. 2021, 133, 104074. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, S.; Sharifi, M.; Rashidi, B. Evaluating the effect of ovarian stimulation and exogenous progesterone on CD31-positive cell density, VEGF protein, and miR-17-5p expression of endometrium immediately before implantation. Biomed. Pharmacother. 2021, 133, 110922. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, H.J.; Seol, J.W.; Jang, J.Y.; Cho, Y.; Kim, K.R.; Choi, Y.; Lydon, J.P.; DeMayo, F.J.; Shibuya, M.; et al. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. EMBO Mol. Med. 2013, 5, 1415–1430. [Google Scholar] [CrossRef]
- Canumil, V.A.; Bogetti, E.; de la Cruz Borthiry, F.L.; Ribeiro, M.L.; Beltrame, J.S. Steroid hormones and first trimester vascular remodeling. Vitam. Horm. 2021, 116, 363–387. [Google Scholar] [CrossRef]
- Cutini, P.H.; Massheimer, V.L. In vitro effects of progesterone and the synthetic progestin medroxyprogesterone acetate on vascular remodeling. Mol. Cell Endocrinol. 2019, 498, 110543. [Google Scholar] [CrossRef]
- Alawadhi, M.; Kilarkaje, N.; Mouihate, A.; Al-Bader, M.D. Role of progesterone on dexamethasone-induced alterations in placental vascularization and progesterone receptors in ratsdagger. Biol. Reprod. 2023, 108, 133–149. [Google Scholar] [CrossRef]
- Yu, P.; Li, S.; Zhang, Z.; Wen, X.; Quan, W.; Tian, Q.; Gao, C.; Su, W.; Zhang, J.; Jiang, R. Progesterone-mediated angiogenic activity of endothelial progenitor cell and angiogenesis in traumatic brain injury rats were antagonized by progesterone receptor antagonist. Cell Prolif. 2017, 50, e12362. [Google Scholar] [CrossRef]
- Xu, X.; Ruan, X.; Ju, R.; Wang, Z.; Yang, Y.; Cheng, J.; Gu, M.; Mueck, A.O. Progesterone Receptor Membrane Component-1 May Promote Survival of Human Brain Microvascular Endothelial Cells in Alzheimer’s Disease. Am. J. Alzheimers Dis. Other Dement. 2022, 37, 15333175221109749. [Google Scholar] [CrossRef]
- Xia, Z.; Xiao, J.; Dai, Z.; Chen, Q. Membrane progesterone receptor alpha (mPRalpha) enhances hypoxia-induced vascular endothelial growth factor secretion and angiogenesis in lung adenocarcinoma through STAT3 signaling. J. Transl. Med. 2022, 20, 72. [Google Scholar] [CrossRef]
- Kim, S.; Shim, S.; Kwon, J.; Ryoo, S.; Byeon, J.; Hong, J.; Lee, J.H.; Kwon, Y.G.; Kim, J.Y.; Kim, Y.M. Alleviation of preeclampsia-like symptoms through PlGF and eNOS regulation by hypoxia- and NF-kappaB-responsive miR-214-3p deletion. Exp. Mol. Med. 2024, 56, 1388–1400. [Google Scholar] [CrossRef]
- Ssengonzi, R.; Wang, Y.; Maeda-Smithies, N.; Li, F. Endothelial Nitric Oxide synthase (eNOS) in Preeclampsia: An Update. J. Pregnancy Child Health 2024, 6, 121. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.H.; Fan, Y.Y.; Yang, C.R.; Gao, X.R.; Zhang, L.L.; Hu, Y.; Wang, Y.Q.; Jun, H. Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells. J. Steroid Biochem. Mol. Biol. 2016, 155, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Thomas, P. Additive effects of low concentrations of estradiol-17beta and progesterone on nitric oxide production by human vascular endothelial cells through shared signaling pathways. J. Steroid Biochem. Mol. Biol. 2017, 165, 258–267. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Tan, W.; Guo, Y.; Luo, M.; Shang, F.-F.; Xia, Y.; Luo, S. Progesterone promotes endothelial nitric oxide synthase expression through enhancing nuclear progesterone receptor-SP-1 formation. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H341–H348. [Google Scholar] [CrossRef]
- Khorram, O.; Han, G. Influence of progesterone on endometrial nitric oxide synthase expression. Fertil. Steril. 2009, 91, 2157–2162. [Google Scholar] [CrossRef]
- Ellmann, S.; Sticht, H.; Thiel, F.; Beckmann, M.W.; Strick, R.; Strissel, P.L. Estrogen and progesterone receptors: From molecular structures to clinical targets. Cell Mol. Life Sci. 2009, 66, 2405–2426. [Google Scholar] [CrossRef]
- Thomas, P.; Pang, Y. Protective actions of progesterone in the cardiovascular system: Potential role of membrane progesterone receptors (mPRs) in mediating rapid effects. Steroids 2013, 78, 583–588. [Google Scholar] [CrossRef]
- Collier, A.Y.; Smith, L.A.; Karumanchi, S.A. Review of the immune mechanisms of preeclampsia and the potential of immune modulating therapy. Hum. Immunol. 2021, 82, 362–370. [Google Scholar] [CrossRef]
- Pianta, S.; Magatti, M.; Vertua, E.; Signoroni, P.B.; Muradore, I.; Nuzzo, A.M.; Rolfo, A.; Silini, A.; Quaglia, F.; Todros, T.; et al. Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls. J. Cell. Mol. Med. 2016, 20, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Mobley, Y.; Henson, J.; Davies, M.; Skariah, A.; Dambaeva, S.; Gilman-Sachs, A.; Beaman, K.; Lampley, C.; Kwak-Kim, J. Early pregnancy immune biomarkers in peripheral blood may predict preeclampsia. J. Reprod. Immunol. 2018, 125, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Leavey, K.; Grynspan, D.; Cox, B.J. Both “canonical” and “immunological” preeclampsia subtypes demonstrate changes in placental immune cell composition. Placenta 2019, 83, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Milosevic-Stevanovic, J.; Krstic, M.; Radovic-Janosevic, D.; Popovic, J.; Tasic, M.; Stojnev, S. Number of decidual natural killer cells & macrophages in pre-eclampsia. Indian J. Med. Res. 2016, 144, 823–830. [Google Scholar] [CrossRef]
- Buckley, R.; Whitley, G.; Dumitriu, I.; Cartwright, J. Macrophage polarisation affects their regulation of trophoblast behaviour. Placenta 2016, 47, 73–80. [Google Scholar] [CrossRef]
- ento-Tormo, R.; Efremova, M.; Botting, R.A.; Turco, M.Y.; Vento-Tormo, M.; Meyer, K.B.; Park, J.-E.; Stephenson, E.; Polański, K.; Goncalves, A.; et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 2018, 563, 347–353. [Google Scholar] [CrossRef]
- Aneman, I.; Pienaar, D.; Suvakov, S.; Simic, T.P.; Garovic, V.D.; McClements, L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front. Immunol. 2020, 11, 1864. [Google Scholar] [CrossRef]
- Du, M.; Wang, W.; Huang, L.; Guan, X.; Lin, W.; Yao, J.; Li, L. Natural killer cells in the pathogenesis of preeclampsia: A double-edged sword. J. Matern. Fetal Neonatal Med. 2022, 35, 1028–1035. [Google Scholar] [CrossRef]
- Fukui, A.; Yokota, M.; Funamizu, A.; Nakamua, R.; Fukuhara, R.; Yamada, K.; Kimura, H.; Fukuyama, A.; Kamoi, M.; Tanaka, K.; et al. Changes of NK cells in preeclampsia. Am. J. Reprod. Immunol. 2012, 67, 278–286. [Google Scholar] [CrossRef]
- Quinn, K.H.; Lacoursiere, D.Y.; Cui, L.; Bui, J.; Parast, M.M. The unique pathophysiology of early-onset severe preeclampsia: Role of decidual T regulatory cells. J. Reprod. Immunol. 2011, 91, 76–82. [Google Scholar] [CrossRef]
- Steinborn, A.; Schmitt, E.; Kisielewicz, A.; Rechenberg, S.; Seissler, N.; Mahnke, K.; Schaier, M.; Zeier, M.; Sohn, C. Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin. Exp. Immunol. 2012, 167, 84–98. [Google Scholar] [CrossRef]
- Solano, M.E. Decidual immune cells: Guardians of human pregnancies. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 60, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Arck, P.C.; Hecher, K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat. Med. 2013, 19, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Griesinger, G.; Tournaye, H.; Macklon, N.; Petraglia, F.; Arck, P.; Blockeel, C.; van Amsterdam, P.; Pexman-Fieth, C.; Fauser, B.C. Dydrogesterone: Pharmacological profile and mechanism of action as luteal phase support in assisted reproduction. Reprod. Biomed. Online 2019, 38, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Persson, G.; Stæhr, C.S.; Klok, F.S.; Lebech, M.; Hviid, T.V.F. Evidence for a shift in placental HLA-G allelic dominance and the HLA-G isoform profile during a healthy pregnancy and preeclampsiadagger. Biol. Reprod. 2021, 105, 846–858. [Google Scholar] [CrossRef]
- Johnsen, G.M.; Fjeldstad, H.E.S.; Drabbels, J.J.M.; Haasnoot, G.W.; Eikmans, M.; Størvold, G.L.; Alnaes-Katjavivi, P.; Jacobsen, D.P.; Scherjon, S.A.; Redman, C.W.G.; et al. A possible role for HLA-G in development of uteroplacental acute atherosis in preeclampsia. J. Reprod. Immunol. 2021, 144, 103284. [Google Scholar] [CrossRef]
- Motomura, K.; Miller, D.; Galaz, J.; Liu, T.N.; Romero, R.; Gomez-Lopez, N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J. Steroid Biochem. Mol. Biol. 2023, 229, 106254. [Google Scholar] [CrossRef]
- Shah, N.M.; Lai, P.F.; Imami, N.; Johnson, M.R. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front. Endocrinol. 2019, 10, 198. [Google Scholar] [CrossRef]
- Szekeres-Bartho, J.; Schindler, A.E. Progestogens and immunology. Best. Pract. Res. Clin. Obstet. Gynaecol. 2019, 60, 17–23. [Google Scholar] [CrossRef]
- Raghupathy, R.; Szekeres-Bartho, J. Progesterone: A Unique Hormone with Immunomodulatory Roles in Pregnancy. Int. J. Mol. Sci. 2022, 23, 1333. [Google Scholar] [CrossRef]
- Raghupathy, R.; Al Mutawa, E.; Makhseed, M.; Azizieh, F.; Szekeres-Bartho, J. Modulation of cytokine production by dydrogesterone in lymphocytes from women with recurrent miscarriage. Int. J. Obstet. Gynaecol. 2005, 112, 1096–1101. [Google Scholar] [CrossRef]
- Raghupathy, R.; Al-Mutawa, E.; Al-Azemi, M.; Makhseed, M.; Azizieh, F.; Szekeres-Bartho, J. Progesterone-induced blocking factor (PIBF) modulates cytokine production by lymphocytes from women with recurrent miscarriage or preterm delivery. J. Reprod. Immunol. 2009, 80, 91–99. [Google Scholar] [CrossRef]
- Szekeres-Bartho, J.; Wegmann, T.G. A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J. Reprod. Immunol. 1996, 31, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Csabai, T.; Pallinger, E.; Kovacs, A.F.; Miko, E.; Bognar, Z.; Szekeres-Bartho, J. Altered Immune Response and Implantation Failure in Progesterone-Induced Blocking Factor-Deficient Mice. Front. Immunol. 2020, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Hudic, I.; Szekeres-Bartho, J.; Vrtacnik, E.B.; Klun, I.V.; Brkic, S.; Frangez, H.B.; Jancar, N.; Mesalic, L.; Bogdan, A.; Hudic, L.D. Progesterone induced blocking factor (PIBF) taken in early pregnancy predicts the pregnancy outcome in women undergoing in vitro fertilization procedure. J. Reprod. Immunol. 2020, 140, 103150. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, A.; Dauven, D.; Zenclussen, A.C. Progesterone-driven local regulatory T cell induction does not prevent fetal loss in the CBA/JxDBA/2J abortion-prone model. Am. J. Reprod. Immunol. 2017, 77, e12626. [Google Scholar] [CrossRef]
- Yang, Q.; Li, M.; Zhao, M.; Lu, F.; Yu, X.; Li, L.; Gu, Z.; Deng, Y.; Guan, R. Progesterone modulates CD4(+) CD25(+) FoxP3(+) regulatory T Cells and TGF-beta1 in the maternal-fetal interface of the late pregnant mouse. Am. J. Reprod. Immunol. 2022, 88, e13541. [Google Scholar] [CrossRef]
- Severance, A.L.; Kinder, J.M.; Xin, L.; Burg, A.R.; Shao, T.-Y.; Pham, G.; Tilburgs, T.; Goodman, W.A.; Mesiano, S.; Way, S.S. Maternal-fetal conflict averted by progesterone- induced FOXP3+ regulatory T cells. iScience 2022, 25, 104400. [Google Scholar] [CrossRef]
- Thiele, K.; Hierweger, A.M.; Riquelme, J.I.A.; Solano, M.E.; Lydon, J.P.; Arck, P.C. Impaired Progesterone-Responsiveness of CD11c(+) Dendritic Cells Affects the Generation of CD4(+) Regulatory T Cells and Is Associated With Intrauterine Growth Restriction in Mice. Front. Endocrinol. 2019, 10, 96. [Google Scholar] [CrossRef]
- Furcron, A.E.; Romero, R.; Plazyo, O.; Unkel, R.; Xu, Y.; Hassan, S.S.; Chaemsaithong, P.; Mahajan, A.; Gomez-Lopez, N. Vaginal progesterone, but not 17alpha-hydroxyprogesterone caproate, has antiinflammatory effects at the murine maternal-fetal interface. Am. J. Obstet. Gynecol. 2015, 213, 846.e1–846.e19. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Tseng, J.T.; Wang, C.Y.; Su, M.T.; Huang, J.Y.; Kuo, P.L. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage. Mol. Cell. Endocrinol. 2017, 452, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Solano, M.E.; Arck, P.C. Steroids, Pregnancy and Fetal Development. Front. Immunol. 2019, 10, 3017. [Google Scholar] [CrossRef] [PubMed]
- Xiu, F.; Anipindi, V.C.; Nguyen, P.V.; Boudreau, J.; Liang, H.; Wan, Y.; Snider, D.P.; Kaushic, C. High Physiological Concentrations of Progesterone Reverse Estradiol-Mediated Changes in Differentiation and Functions of Bone Marrow Derived Dendritic Cells. PLoS ONE 2016, 11, e0153304. [Google Scholar] [CrossRef] [PubMed]
- Szekeres-Bartho, J. The Role of Progesterone in Feto-Maternal Immunological Cross Talk. Med. Princ. Pract. 2018, 27, 301–307. [Google Scholar] [CrossRef]
- Szekeres-Bartho, J.; Kinsky, R.; Chaouat, G. The effect of a progesterone-induced immunologic blocking factor on NK-mediated resorption. Am. J. Reprod. Immunol. 1990, 24, 105–107. [Google Scholar] [CrossRef]
- Szekeres-Bartho, J.; Par, G.; Dombay, G.; Smart, Y.C.; Volgyi, Z. The antiabortive effect of progesterone-induced blocking factor in mice is manifested by modulating NK activity. Cell. Immunol. 1997, 177, 194–199. [Google Scholar] [CrossRef]
- Klossner, R.; Groessl, M.; Schumacher, N.; Fux, M.; Escher, G.; Verouti, S.; Jamin, H.; Vogt, B.; Mohaupt, M.G.; Gennari-Moser, C. Steroid hormone bioavailability is controlled by the lymphatic system. Sci. Rep. 2021, 11, 9666. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, H.; Li, B.; Liu, M.; Liu, D.; Deng, M.; Wang, Y.; Xia, X.; Jiang, Q.; Chen, D. Effects of human chorionic gonadotropin, estradiol, and progesterone on interleukin-18 expression in human decidual tissues. Gynecol. Endocrinol. 2017, 33, 265–269. [Google Scholar] [CrossRef]
- Ren, J.; Hou, H.; Zhao, W.; Wang, J.; Peng, Q. Administration of Exogenous Progesterone Protects Against Brucella abortus Infection-Induced Inflammation in Pregnant Mice. J. Infect. Dis. 2021, 224, 532–543. [Google Scholar] [CrossRef]
- Sanchon-Sanchez, P.; Herraez, E.; Macias, R.I.; Estiu, M.C.; Fortes, P.; Monte, M.J.; Marin, J.J.; Romero, M.R. Relationship between cholestasis and altered progesterone metabolism in the placenta-maternal liver tandem. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166926. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yan, Y.; Li, S.; Xu, Y.; Parolia, A.; Rizvi, S.; Wang, W.; Zhai, Y.; Xiao, R.; Li, X.; et al. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024, 187, 4713–4732e19. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torres, J.; Espino-Y-Sosa, S.; Martinez-Portilla, R.; Borboa-Olivares, H.; Estrada-Gutierrez, G.; Acevedo-Gallegos, S.; Ruiz-Ramirez, E.; Velasco-Espin, M.; Cerda-Flores, P.; Ramirez-Gonzalez, A.; et al. A Narrative Review on the Pathophysiology of Preeclampsia. Int. J. Mol. Sci. 2024, 25, 7569. [Google Scholar] [CrossRef] [PubMed]
- Hayder, H.; Shan, Y.; Chen, Y.; O’bRien, J.A.; Peng, C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front. Cell Dev. Biol. 2022, 10, 995462. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Y.; Zhang, X.; Wang, C.; Pei, J.; Gu, W. Transcriptomic profiling in hypoxia-induced trophoblast cells for preeclampsia. Placenta 2023, 136, 8–17. [Google Scholar] [CrossRef]
- Qu, H.; Khalil, R.A. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H661–H681. [Google Scholar] [CrossRef]
- Qin, J.; Lv, B.; Yao, Y.; Han, X.; Xue, Z.; Lin, C.-P.; Xue, J.; Ji, Y. CTNND1 affects trophoblast proliferation and specification during human embryo implantation. Biol. Reprod. 2025, 112, 46–53. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, L.; Wang, L.; Yu, H.; Yu, X.; Zou, Y. PUM1 modulates trophoblast cell proliferation and migration through LRP6. Biochem. Cell Biol. 2021, 99, 735–740. [Google Scholar] [CrossRef]
- Cui, X.; Sun, J.; Liang, C.; Zheng, Q.; Yang, X.; Liu, S.; Yan, Q. Progesterone promotes embryo adhesion by upregulating c-Fos/c-Jun transcription factor-mediated poFUT1 expressiondagger. Biol. Reprod. 2019, 101, 675–685. [Google Scholar] [CrossRef]
- Morimoto, H.; Ueno, M.; Tanabe, H.; Kono, T.; Ogawa, H. Progesterone depletion results in Lamin B1 loss and induction of cell death in mouse trophoblast giant cells. PLoS ONE 2021, 16, e0254674. [Google Scholar] [CrossRef]
PMID | Animal Models | Symptoms | Treatment | Results |
---|---|---|---|---|
29405962 [4] | PE-like rat model: intraperitoneally administrating cadmium (0.125 mg/kg) on GD9-12 | hypertension, proteinuria and placental abnormalities | Intraperitoneal injection with P4 (3 mg/kg) from GD9 to delivery | The symptoms were improved after treatment with P4 |
36593749 [44] | PE-like rat model: subcutaneously injecting L-NAME (125 mg/kg/d) from GD12 for 7 days | hypertension, proteinuria, and downregulation of MMP2 and MMP9 in serum | Oral treatment with P4 (0, 10−8, 10−6, 10−4) daily from GD9 | The symptoms were improved after treatment with P4 |
35327614 [46] | Systematic SIRT1+/− mice: | hypertension, proteinuria, FGR, kidney injury, placental injury | Intraperitoneal injection with P4 (3 mg/kg) daily at GD7.5-18 | The symptoms were improved after treatment with P4 |
33533305 [47] | PE-like rat model: Performing RUPP on GD14 | hypertension, FGR, and inflammation (Circulating and placental cytolytic NK cells, IL-17, and IL-6 increased while IL-4 and Th2 cells decreased) | Intraperitoneal injection with PIBF (2.0 μg/mL) at GD15 | The symptoms were improved after treatment with PIBF |
38282604 [48] | PE-like rat model: intraperitoneally injecting rabbit anti-PIBF IgG (0.25 mg/mL; 0.50 mg/mL) on GD15 | MAP elevated, cytolytic NK cells and TNF-α in plasma increased, IL4 and IL10 in plasm decreased | —— | —— |
37191999 [49] | Model luteal phase P4 deficiency: Injecting P4 antagonist RU486 (0.5–8 mg/kg) on GD0.5 and GD3.5 | Fetal loss and FGR, impaired Treg number and function | —— | —— |
Receptor Type | Expression in Placenta | The Relationship with PE | Function in Trophoblast | Function in ESCs |
---|---|---|---|---|
PGR | stromal cells, spiral arteries, myometrium [68]; whether PGR is expressed in trophoblasts is controversial [68,69,70,71,72,73,74] | Increase in placentas of PE [70] | Promote cyclin D1 in JEG3 cells [65] | Promote decidualization of ESCs [80] |
PGRMC1 | highly expressed in placenta [71,72,73,74] | —— | Promote invasion of JEG3 cells [74] Inhibit differentiation and fusion of BeWo cells [81] | Inhibit differentiation, decidualization, and senescence of ESCs [82,83] |
PGRMC2 | highly expressed in placenta [71,72,73,74] | —— | Promote proliferation, invasion, and angiogenesis of EVTs by activating HIF-1α signaling [84] | Promote decidualization of ESCs to support trophoblast expansion [85] |
mPRα (PAQR7) | highly expressed in the placenta [86] | Product NO in HUVECs for vasodilatation by activating MAPK and PI3K/AKT pathways [87] | —— | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Gu, W. The Clinical Implications of Progesterone in Preeclampsia. Biomolecules 2025, 15, 1458. https://doi.org/10.3390/biom15101458
Liu Z, Gu W. The Clinical Implications of Progesterone in Preeclampsia. Biomolecules. 2025; 15(10):1458. https://doi.org/10.3390/biom15101458
Chicago/Turabian StyleLiu, Zhenzhen, and Weirong Gu. 2025. "The Clinical Implications of Progesterone in Preeclampsia" Biomolecules 15, no. 10: 1458. https://doi.org/10.3390/biom15101458
APA StyleLiu, Z., & Gu, W. (2025). The Clinical Implications of Progesterone in Preeclampsia. Biomolecules, 15(10), 1458. https://doi.org/10.3390/biom15101458