Mucopolysaccharidoses—What Clinicians Need to Know: A Clinical, Biochemical, and Molecular Overview
Abstract
1. Background
2. Biochemical, Molecular, and Cellular Disorders in MPSs
3. Clinical Manifestation of MPSs
3.1. Main Clinical Symptoms Regarding Accumulated GAGs
3.2. Growth Dynamics
3.3. Skeletal Features
3.4. Hernias
3.5. Liver Enlargement
3.6. Heart
3.7. Ear, Nose, and Throat (ENT) and Respiratory Manifestations
3.8. CNS Manifestation
3.9. Ocular Features
3.10. Non-Immune Hydrops Fetalis
4. Biochemical Diagnostics
5. Molecular Diagnostics
5.1. MPS I
5.2. MPS II
5.3. MPS III
5.4. MPS IV
5.5. MPS VI
5.6. MPS VII
5.7. MPS IX
5.8. MPS X
5.9. MPS-Plus
6. Brief Overview of Available and Emerging Therapies for MPSs
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiśniewska, K.; Wolski, J.; Gaffke, L.; Cyske, Z.; Pierzynowska, K.; Węgrzyn, G. Misdiagnosis in mucopolysaccharidoses. J. Appl. Genet. 2022, 63, 475–495. [Google Scholar] [CrossRef]
- Khan, S.A.; Nidhi, F.; Leal, A.F.; Celik, B.; Herreño-Pachón, A.M.; Saikia, S.; Benincore-Flórez, E.; Ago, Y.; Tomatsu, S. Glycosaminoglycans in mucopolysaccharidoses and other disorders. Adv. Clin. Chem. 2024, 122, 1–52. [Google Scholar] [CrossRef]
- Amendum, P.C.; Khan, S.; Yamaguchi, S.; Kobayashi, H.; Ago, Y.; Suzuki, Y.; Celik, B.; Rintz, E.; Hossain, J.; Xiao, W.; et al. Glycosaminoglycans as Biomarkers for Mucopolysaccharidoses and Other Disorders. Diagnostics 2021, 11, 1563. [Google Scholar] [CrossRef]
- Minami, K.; Morimoto, H.; Morioka, H.; Imakiire, A.; Kinoshita, M.; Yamamoto, R.; Hirato, T.; Sonoda, H. Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int. J. Mol. Sci. 2022, 23, 11724. [Google Scholar] [CrossRef]
- Khan, S.A.; Mason, R.W.; Kobayashi, H.; Yamaguchi, S.; Tomatsu, S. Advances in glycosaminoglycan detection. Mol. Genet. Metab. 2020, 130, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, B.; Lamanna, W.C.; Lawrence, R.; Damme, M.; Stroobants, S.; Padva, M.; Kalus, I.; Frese, M.A.; Lübke, T.; Lüllmann-Rauch, R.; et al. Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 10310–10315. [Google Scholar] [CrossRef]
- Wiśniewska, K.; Wolski, J.; Żabińska, M.; Szulc, A.; Gaffke, L.; Pierzynowska, K.; Węgrzyn, G. Mucopolysaccharidosis Type IIIE: A Real Human Disease or a Diagnostic Pitfall? Diagnostics 2024, 14, 1734. [Google Scholar] [CrossRef] [PubMed]
- Lipiński, P.; Szczałuba, K.; Buda, P.; Zakharova, E.Y.; Baydakova, G.; Ługowska, A.; Różdzyńska-Świątkowska, A.; Cyske, Z.; Węgrzyn, G.; Pollak, A.; et al. Mucopolysaccharidosis-Plus Syndrome: Report on a Polish Patient with a Novel VPS33A Variant with Comparison with Other Described Patients. Int. J. Mol. Sci. 2022, 23, 11424. [Google Scholar] [CrossRef]
- Cyske, Z.; Gaffke, L.; Pierzynowska, K.; Węgrzyn, G. Mucopolysaccharidosis-Plus Syndrome: Is This a Type of Mucopolysaccharidosis or a Separate Kind of Metabolic Disease? Int. J. Mol. Sci. 2024, 25, 9570. [Google Scholar] [CrossRef] [PubMed]
- Cyske, Z.; Rintz, E.; Narajczyk, M.; Świątek, N.; Gaffke, L.; Pierzynowska, K.; Węgrzyn, G. Cellular and molecular changes in mucopolysaccharidosis-plus syndrome caused by a homozygous c.599G > C (p.Arg200Pro) variant of the VPS33A gene. J. Appl. Genet. 2025. [Google Scholar] [CrossRef]
- Jurecka, A.; Krumina, Z.; Żuber, Z.; Różdżyńska-Świątkowska, A.; Kłoska, A.; Czartoryska, B.; Tylki-Szymańska, A. Mucopolysaccharidosis type II in females and response to enzyme replacement therapy. Am. J. Med. Genet. A 2012, 158A, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, M.; Arunkumar, N.; Kubaski, F.; Mason, R.W.; Tadao, O.; Tomatsu, S. Clinical presentation and diagnosis of mucopolysaccharidoses. Mol. Genet. Metab. 2018, 125, 4–17. [Google Scholar] [CrossRef]
- Rigoldi, M.; Verrecchia, E.; Manna, R.; Mascia, M.T. Clinical hints to diagnosis of attenuated forms of Mucopolysaccharidoses. Ital. J. Pediatr. 2018, 44 (Suppl. S2), 132. [Google Scholar] [CrossRef]
- Nagpal, R.; Goyal, R.B.; Priyadarshini, K.; Kashyap, S.; Sharma, M.; Sinha, R.; Sharma, N. Mucopolysaccharidosis: A broad review. Indian J. Ophthalmol. 2022, 70, 2249–2261. [Google Scholar] [CrossRef] [PubMed]
- Rintz, E.; Banacki, M.; Ziemian, M.; Kobus, B.; Wegrzyn, G. Causes of death in mucopolysaccharidoses. Mol. Genet. Metab. 2024, 142, 108507. [Google Scholar] [CrossRef] [PubMed]
- Parenti, G.; Andria, G.; Ballabio, A. Lysosomal storage diseases: From pathophysiology to therapy. Annu. Rev. Med. 2015, 66, 471–486. [Google Scholar] [CrossRef]
- Sodhi, H.; Panitch, A. Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules 2020, 11, 29. [Google Scholar] [CrossRef]
- Tessitore, A.; Pirozzi, M.; Auricchio, A. Abnormal autophagy, ubiquitination, inflammation and apoptosis are dependent upon lysosomal storage and are useful biomarkers of mucopolysaccharidosis VI. Pathogenetics 2009, 2, 4. [Google Scholar] [CrossRef]
- Brokowska, J.; Pierzynowska, K.; Gaffke, L.; Rintz, E.; Węgrzyn, G. Expression of genes involved in apoptosis is dysregulated in mucopolysaccharidoses as revealed by pilot transcriptomic analyses. Cell Biol. Int. 2021, 45, 549–557. [Google Scholar] [CrossRef]
- Gaffke, L.; Pierzynowska, K.; Cyske, Z.; Podlacha, M.; Węgrzyn, G. Contribution of vesicle trafficking dysregulation to the pathomechanism of mucopolysaccharidosis. Biochem. Biophys. Res. Commun. 2023, 665, 107–117. [Google Scholar] [CrossRef]
- Pierzynowska, K.; Gaffke, L.; Jankowska, E.; Rintz, E.; Witkowska, J.; Wieczerzak, E.; Podlacha, M.; Węgrzyn, G. Proteasome Composition and Activity Changes in Cultured Fibroblasts Derived from Mucopolysaccharidoses Patients and Their Modulation by Genistein. Front. Cell Dev. Biol. 2020, 8, 540726. [Google Scholar] [CrossRef] [PubMed]
- Pshezhetsky, A. Crosstalk between 2 organelles: Lysosomal storage of heparan sulfate causes mitochondrial defects and neuronal death in mucopolysaccharidosis III type C. Rare Dis. 2015, 3, e1049793. [Google Scholar] [CrossRef]
- Brokowska, J.; Gaffke, L.; Pierzynowska, K.; Cyske, Z.; Węgrzyn, G. Cell cycle disturbances in mucopolysaccharidoses: Transcriptomic and experimental studies on cellular models. Exp. Biol. Med. 2022, 247, 1639–1649. [Google Scholar] [CrossRef]
- Parente, M.K.; Rozen, R.; Seeholzer, S.H.; Wolfe, J.H. Integrated analysis of proteome and transcriptome changes in the mucopolysaccharidosis type VII mouse hippocampus. Mol. Genet. Metab. 2016, 118, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Pierzynowska, K.; Żabińska, M.; Gaffke, L.; Cyske, Z.; Węgrzyn, G. Changes in expression of signal transduction-related genes, and formation of aggregates of GPER1 and OXTR receptors in mucopolysaccharidosis cells. Eur. J. Cell Biol. 2022, 101, 151232. [Google Scholar] [CrossRef] [PubMed]
- Gaffke, L.; Pierzynowska, K.; Podlacha, M.; Hoinkis, D.; Rintz, E.; Brokowska, J.; Cyske, Z.; Wegrzyn, G. Underestimated Aspect of Mucopolysaccharidosis Pathogenesis: Global Changes in Cellular Processes Revealed by Transcriptomic Studies. Int. J. Mol. Sci. 2020, 21, 1204. [Google Scholar] [CrossRef]
- Cyske, Z.; Gaffke, L.; Pierzynowska, K.; Węgrzyn, G. Complex Changes in the Efficiency of the Expression of Many Genes in Monogenic Diseases, Mucopolysaccharidoses, May Arise from Significant Disturbances in the Levels of Factors Involved in the Gene Expression Regulation Processes. Genes 2022, 13, 593. [Google Scholar] [CrossRef]
- Pierzynowska, K.; Gaffke, L.; Żabińska, M.; Cyske, Z.; Rintz, E.; Wiśniewska, K.; Podlacha, M.; Węgrzyn, G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Int. J. Mol. Sci. 2023, 24, 3887. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kondo, H.; Maksimova, N.; Otomo, T.; Kato, H.; Imai, A.; Asano, Y.; Kobayashi, K.; Nojima, S.; Nakaya, A.; Hamada, Y.; et al. Mutation in VPS33A affects metabolism of glycosaminoglycans: A new type of mucopolysaccharidosis with severe systemic symptoms. Hum. Mol. Genet. 2017, 26, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Wartosch, L.; Günesdogan, U.; Graham, S.C.; Luzio, J.P. Recruitment of VPS33A to HOPS by VPS16 Is Required for Lysosome Fusion with Endosomes and Autophagosomes. Traffic 2015, 16, 727–742. [Google Scholar] [CrossRef] [PubMed]
- Sofronova, V.; Iwata, R.; Moriya, T.; Loskutova, K.; Gurinova, E.; Chernova, M.; Timofeeva, A.; Shvedova, A.; Vasilev, F.; Novgorodova, S.; et al. Hematopoietic Disorders, Renal Impairment and Growth in Mucopolysaccharidosis-Plus Syndrome. Int. J. Mol. Sci. 2022, 23, 5851. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, E.V.; Lev, D.; Michelson, M.; Yosovich, K.; Michaeli, H.G.; Bright, N.A.; Manna, P.T.; Dickson, V.K.; Tylee, K.L.; Church, H.J.; et al. Juvenile mucopolysaccharidosis plus disease caused by a missense mutation in VPS33A. Hum. Mutat. 2022, 43, 2265–2278. [Google Scholar] [CrossRef]
- Terawaki, S.; Vasilev, F.; Sofronova, V.; Tanaka, M.; Mori, Y.; Iwata, R.; Moriwaki, T.; Fujita, T.; Maksimova, N.; Otomo, T. Triclabendazole suppresses cellular glycosaminoglycan levels—A potential therapeutic agent for mucopolysaccharidoses and related diseases. iScience 2025, 28, 113118. [Google Scholar] [CrossRef]
- Hinek, A.; Wilson, S.E. Impaired elastogenesis in Hurler disease: Dermatan sulfate accumulation linked to deficiency in elastin-binding protein and elastic fiber assembly. Am. J. Pathol. 2000, 156, 925–938. [Google Scholar] [CrossRef]
- Simonaro, C.M.; D’Angelo, M.; He, X.; Eliyahu, E.; Shtraizent, N.; Haskins, M.E.; Schuchman, E.H. Mechanism of glycosaminoglycan-mediated bone and joint disease: Implications for the mucopolysaccharidoses and other connective tissue diseases. Am. J. Pathol. 2008, 172, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Hampe, C.S.; Yund, B.D.; Orchard, P.J.; Lund, T.C.; Wesley, J.; McIvor, R.S. Differences in MPS I and MPS II Disease Manifestations. Int. J. Mol. Sci. 2021, 22, 7888. [Google Scholar] [CrossRef]
- Viana, G.M.; Priestman, D.A.; Platt, F.M.; Khan, S.; Tomatsu, S.; Pshezhetsky, A.V. Brain Pathology in Mucopolysaccharidoses (MPS) Patients with Neurological Forms. J. Clin. Med. 2020, 9, 396. [Google Scholar] [CrossRef]
- Wiśniewska, K.; Rintz, E.; Żabińska, M.; Gaffke, L.; Podlacha, M.; Cyske, Z.; Węgrzyn, G.; Pierzynowska, K. Comprehensive evaluation of pathogenic protein accumulation in fibroblasts from all subtypes of Sanfilippo disease patients. Biochem. Biophys. Res. Commun. 2024, 733, 150718. [Google Scholar] [CrossRef]
- Melbouci, M.; Mason, R.W.; Suzuki, Y.; Fukao, T.; Orii, T.; Tomatsu, S. Growth impairment in mucopolysaccharidoses. Mol. Genet. Metab. 2018, 124, 1–10. [Google Scholar] [CrossRef]
- Rozdzynska, A.; Tylki-Szymanska, A.; Jurecka, A.; Cieslik, J. Growth pattern and growth prediction of body height in children with mucopolysaccharidosis type II. Acta Paediatr. 2011, 100, 456–460. [Google Scholar] [CrossRef]
- Różdżyńska-Świątkowska, A.; Zielińska, A.; Tylki-Szymańska, A. Comparison of growth dynamics in different types of MPS: An attempt to explain the causes. Orphanet J. Rare Dis. 2022, 17, 339. [Google Scholar] [CrossRef]
- Tylki-Szymańska, A.; De Meirleir, L.; Di Rocco, M.; Fathalla, W.M.; Guffon, N.; Lampe, C.; Lund, A.M.; Parini, R.; Wijburg, F.A.; Zeman, J.; et al. Easy-to-use algorithm would provide faster diagnoses for mucopolysaccharidosis type I and enable patients to receive earlier treatment. Acta Paediatr. 2018, 107, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Viskochil, D.; Muenzer, J.; Guffon, N.; Garin, C.; Munoz-Rojas, M.V.; Moy, K.A.; Hutchinson, D.T. Carpal tunnel syndrome in mucopolysaccharidosis I: A registry-based cohort study. Dev. Med. Child. Neurol. 2017, 59, 1269–1275. [Google Scholar] [CrossRef]
- Borgo, A.; Cossio, A.; Gallone, D.; Vittoria, F.; Carbone, M. Orthopaedic challenges for mucopolysaccharidoses. Ital. J. Pediatr. 2018, 44 (Suppl. S2), 123. [Google Scholar] [CrossRef]
- Giussani, C.; Guida, L.; Canonico, F.; Sganzerla, E.P. Cerebral and occipito-atlanto-axial involvement in mucopolysaccharidosis patients: Clinical, radiological, and neurosurgical features. Ital. J. Pediatr. 2018, 44 (Suppl. S2), 119. [Google Scholar] [CrossRef]
- Jurecka, A.; Opoka-Winiarska, V.; Jurkiewicz, E.; Marucha, J.; Tylki-Szymańska, A. Spinal cord compression in Maroteaux-Lamy syndrome: Case report and review of the literature with effects of enzyme replacement therapy. Pediatr. Neurosurg. 2012, 48, 191–198. [Google Scholar] [CrossRef]
- Żuber, Z.; Jurecka, A.; Jurkiewicz, E.; Kieć-Wilk, B.; Tylki-Szymańska, A. Cervical spine MRI findings in patients with Mucopolysaccharidosis type II. Pediatr. Neurosurg. 2015, 50, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, R.; Bonosi, L.; Porzio, M.; Paolini, F.; Brunasso, L.; Giovannini, A.E.; Silven, M.P.; Giammalva, G.R.; Umana, G.E.; Scalia, G.; et al. Burden of Surgical Treatment for the Management of Cervical Myelopathy in Mucopolysaccharidoses: A Systematic Review. Brain Sci. 2022, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Żuber, Z.; Jurecka, A.; Różdżyńska-Świątkowska, A.; Migas-Majoch, A.; Lembas, A.; Kieć-Wilk, B.; Tylki-Szymańska, A. Ultrasonographic Features of Hip Joints in Mucopolysaccharidoses Type I and II. PLoS ONE 2015, 10, e0123792. [Google Scholar] [CrossRef] [PubMed]
- Jezela-Stanek, A.; Różdżyńska-Świątkowska, A.; Kulpanovich, A.; Ciara, E.; Marucha, J.; Tylki-Szymańska, A. Novel data on growth phenotype and causative genotypes in 29 patients with Morquio (Morquio-Brailsford) syndrome from Central-Eastern Europe. J. Appl. Genet. 2019, 60, 163–174. [Google Scholar] [CrossRef]
- Wood, T.C.; Harvey, K.; Beck, M.; Burin, M.G.; Chien, Y.H.; Church, H.J.; D’Almeida, V.; van Diggelen, O.P.; Fietz, M.; Giugliani, R.; et al. Diagnosing mucopolysaccharidosis IVA. J. Inherit. Metab. Dis. 2013, 36, 293–307. [Google Scholar] [CrossRef]
- Mendelsohn, N.J.; Harmatz, P.; Bodamer, O.; Burton, B.K.; Giugliani, R.; Jones, S.A.; Lampe, C.; Malm, G.; Steiner, R.D.; Parini, R.; et al. Importance of surgical history in diagnosing mucopolysaccharidosis type II (Hunter syndrome): Data from the Hunter Outcome Survey. Genet. Med. 2010, 12, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Giugliani, R.; Barth, A.L.; Dumas, M.R.C.; da Silva Franco, J.F.; de Rosso Giuliani, L.; Grangeiro, C.H.P.; Horovitz, D.D.G.; Kim, C.A.; de Araújo Leão, E.K.E.; de Medeiros, P.F.V.; et al. Mucopolysaccharidosis VII in Brazil: Natural history and clinical findings. Orphanet J. Rare Dis. 2021, 16, 238. [Google Scholar] [CrossRef] [PubMed]
- Sestito, S.; Rinninella, G.; Rampazzo, A.; D’Avanzo, F.; Zampini, L.; Santoro, L.; Gabrielli, O.; Fiumara, A.; Barone, R.; Volpi, N.; et al. Cardiac involvement in MPS patients: Incidence and response to therapy in an Italian multicentre study. Orphanet J. Rare Dis. 2022, 17, 251. [Google Scholar] [CrossRef]
- Braunlin, E.A.; Harmatz, P.R.; Scarpa, M.; Furlanetto, B.; Kampmann, C.; Loehr, J.P.; Ponder, K.P.; Roberts, W.C.; Rosenfeld, H.M.; Giugliani, R. Cardiac disease in patients with mucopolysaccharidosis: Presentation, diagnosis and management. J. Inherit. Metab. Dis. 2011, 34, 1183–1197. [Google Scholar] [CrossRef] [PubMed]
- Brands, M.M.; Frohn-Mulder, I.M.; Hagemans, M.L.; Hop, W.C.; Oussoren, E.; Helbing, W.A.; van der Ploeg, A.T. Mucopolysaccharidosis: Cardiologic features and effects of enzyme-replacement therapy in 24 children with MPS I, II and VI. J. Inherit. Metab. Dis. 2013, 36, 227–234. [Google Scholar] [CrossRef]
- Vogler, C.; Levy, B.; Galvin, N.; Lessard, M.; Soper, B.; Barker, J. Early onset of lysosomal storage disease in a murine model of mucopolysaccharidosis type VII: Undegraded substrate accumulates in many tissues in the fetus and very young MPS VII mouse. Pediatr. Dev. Pathol. 2005, 8, 453–462. [Google Scholar] [CrossRef]
- Jurecka, A.; Golda, A.; Opoka-Winiarska, V.; Piotrowska, E.; Tylki-Szymańska, A. Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome) with a predominantly cardiac phenotype. Mol. Genet. Metab. 2011, 104, 695–699. [Google Scholar] [CrossRef]
- Golda, A.; Jurecka, A.; Tylki-Szymanska, A. Cardiovascular manifestations of mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome). Int. J. Cardiol. 2012, 158, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, P.M.; Gaini, R.; Vitale, S. ENT and mucopolysaccharidoses. Ital. J. Pediatr. 2018, 44 (Suppl. S2), 127. [Google Scholar] [CrossRef]
- Torres, D.A.; Barth, A.L.; Valente, M.P.M.; Mello, P.P.; Horovitz, D.D.G. Otolaryngologists and the Early Diagnosis of Mucopolysaccharidoses: A Cross-Sectional Study. Diagnostics 2019, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Arn, P.; Bruce, I.A.; Wraith, J.E.; Travers, H.; Fallet, S. Airway-related symptoms and surgeries in patients with mucopolysaccharidosis I. Ann. Otol. Rhinol. Laryngol. 2015, 124, 198–205. [Google Scholar] [CrossRef]
- Gönüldaş, B.; Yılmaz, T.; Sivri, H.S.; Güçer, K.Ş.; Kılınç, K.; Genç, G.A.; Kılıç, M.; Coşkun, T. Mucopolysaccharidosis: Otolaryngologic findings, obstructive sleep apnea and accumulation of glucosaminoglycans in lymphatic tissue of the upper airway. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 944–949. [Google Scholar] [CrossRef]
- Gökdoğan, Ç.; Altinyay, Ş.; Gökdoğan, O.; Tutar, H.; Gündüz, B.; Okur, İ.; Tümer, L.; Kemaloğlu, Y.K. Audiologic evaluations of children with mucopolysaccharidosis. Braz. J. Otorhinolaryngol. 2016, 82, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Kariya, S.; Schachern, P.A.; Nishizaki, K.; Paparella, M.M.; Cureoglu, S. Inner ear changes in mucopolysaccharidosis type I/Hurler syndrome. Otol. Neurotol. 2012, 33, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Murgasova, L.; Jurovcik, M.; Jesina, P.; Malinova, V.; Bloomfield, M.; Zeman, J.; Magner, M. Otorhinolaryngological manifestations in 61 patients with mucopolysaccharidosis. Int. J. Pediatr. Otorhinolaryngol. 2020, 135, 110137. [Google Scholar] [CrossRef]
- Pires de Mello, P.; Lopes Barth, A.; de Araujo Torres, D.; Pires de Mello Valente, M.; Dain Gandelman Horovitz, D. Laryngeal, Tracheal, and Bronchial Disease in the Mucopolysaccharidoses: Endoscopic Study. Diagnostics 2020, 10, 37. [Google Scholar] [CrossRef]
- Berger, K.I.; Fagondes, S.C.; Giugliani, R.; Hardy, K.A.; Lee, K.S.; McArdle, C.; Scarpa, M.; Tobin, M.J.; Ward, S.A.; Rapoport, D.M. Respiratory and sleep disorders in mucopolysaccharidosis. J. Inherit. Metab. Dis. 2013, 36, 201–210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, R.; Belani, K.G.; Braunlin, E.A.; Bruce, I.A.; Hack, H.; Harmatz, P.R.; Jones, S.; Rowe, R.; Solanki, G.A.; Valdemarsson, B. Anaesthesia and airway management in mucopolysaccharidosis. J. Inherit. Metab. Dis. 2013, 36, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, C.; Wiethoff, C.M.; Huth, R.G.; Staatz, G.; Mengel, E.; Beck, M.; Gehring, S.; Mewes, T.; Abu-Tair, T. Management of Life-Threatening Tracheal Stenosis and Tracheomalacia in Patients with Mucopolysaccharidoses. JIMD Rep. 2017, 33, 33–39. [Google Scholar]
- Shapiro, E.G.; Eisengart, J.B. The natural history of neurocognition in MPS disorders: A review. Mol. Genet. Metab. 2021, 133, 8–34. [Google Scholar] [CrossRef]
- Shapiro, E.G.; Escolar, M.L.; Delaney, K.A.; Mitchell, J.J. Assessments of neurocognitive and behavioral function in the mucopolysaccharidoses. Mol. Genet. Metab. 2017, 122S, 8–16. [Google Scholar] [CrossRef]
- Escolar, M.L.; Jones, S.A.; Shapiro, E.G.; Horovitz, D.D.G.; Lampe, C.; Amartino, H. Practical management of behavioral problems in mucopolysaccharidoses disorders. Mol. Genet. Metab. 2017, 122S, 35–40. [Google Scholar] [CrossRef]
- Nicolas-Jilwan, M.; AlSayed, M. Mucopolysaccharidoses: Overview of neuroimaging manifestations. Pediatr. Radiol. 2018, 48, 1503–1520. [Google Scholar] [CrossRef] [PubMed]
- Dalla Corte, A.; de Souza, C.F.M.; Anés, M.; Giugliani, R. Hydrocephalus and mucopolysaccharidoses: What do we know and what do we not know? Childs. Nerv. Syst. 2017, 33, 1073–1080. [Google Scholar] [CrossRef]
- Del Longo, A.; Piozzi, E.; Schweizer, F. Ocular features in mucopolysaccharidosis: Diagnosis and treatment. Ital. J. Pediatr. 2018, 44 (Suppl. S2), 125. [Google Scholar] [CrossRef]
- Tomatsu, S.; Pitz, S.; Hampel, U. Ophthalmological Findings in Mucopolysaccharidoses. J. Clin. Med. 2019, 8, 1467. [Google Scholar] [CrossRef]
- Ferrari, S.; Ponzin, D.; Ashworth, J.L.; Fahnehjelm, K.T.; Summers, C.G.; Harmatz, P.R.; Scarpa, M. Diagnosis and management of ophthalmological features in patients with mucopolysaccharidosis. Br. J. Ophthalmol. 2011, 95, 613–619. [Google Scholar] [CrossRef]
- Beck, M.; Arn, P.; Giugliani, R.; Muenzer, J.; Okuyama, T.; Taylor, J.; Fallet, S. The natural history of MPS I: Global perspectives from the MPS I Registry. Genet. Med. 2014, 16, 759–765. [Google Scholar] [CrossRef]
- Iyer, N.S.; Gimovsky, A.C.; Ferreira, C.R.; Critchlow, E.; Al-Kouatly, H.B. Lysosomal storage disorders as an etiology of nonimmune hydrops fetalis: A systematic review. Clin. Genet. 2021, 100, 493–503. [Google Scholar] [CrossRef]
- Montaño, A.M.; Lock-Hock, N.; Steiner, R.D.; Graham, B.H.; Szlago, M.; Greenstein, R.; Pineda, M.; Gonzalez-Meneses, A.; Çoker, M.; Bartholomew, D.; et al. Clinical course of sly syndrome (mucopolysaccharidosis type VII). J. Med. Genet. 2016, 53, 403–418. [Google Scholar] [CrossRef]
- Galimberti, C.; Madeo, A.; Di Rocco, M.; Fiumara, A. Mucopolysaccharidoses: Early diagnostic signs in infants and children. Ital. J. Pediatr. 2018, 44 (Suppl. S2), 133. [Google Scholar] [CrossRef]
- Lukacs, Z. Mucopolysaccharides. In Laboratory Guide to the Methods in Biochemical Genetics; Blau, N., Duran, M., Gibson, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Narajczyk, M.; Tylki-Szymańska, A.; Węgrzyn, G. Changes in hair morphology as a biomarker in gene expression-targeted isoflavone therapy for Sanfilippo disease. Gene 2012, 504, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.E.; Bean, L.J.H. Educational Materials—Genetic Testing: Current Approaches; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; GeneReviews®; National Library of Medicine: Bethesda, MD, USA, 2017. [Google Scholar]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Tomanin, R.; Karageorgos, L.; Zanetti, A.; Al-Sayed, M.; Bailey, M.; Miller, N.; Sakuraba, H.; Hopwood, J.J. Mucopolysaccharidosis type VI (MPS VI) and molecular analysis: Review and classification of published variants in the ARSB gene. Hum. Mutat. 2018, 39, 1788–1802. [Google Scholar] [CrossRef]
- Bertola, F.; Filocamo, M.; Casati, G.; Mort, M.; Rosano, C.; Tylki-Szymanska, A.; Tüysüz, B.; Gabrielli, O.; Grossi, S.; Scarpa, M.; et al. IDUA mutational profiling of a cohort of 102 European patients with mucopolysaccharidosis type I: Identification and characterization of 35 novel α-L-iduronidase (IDUA) alleles. Hum. Mutat. 2011, 32, E2189–E2210. [Google Scholar] [CrossRef] [PubMed]
- Poletto, E.; Pasqualim, G.; Giugliani, R.; Matte, U.; Baldo, G. Worldwide distribution of common IDUA pathogenic variants. Clin. Genet. 2018, 94, 95–102. [Google Scholar] [CrossRef]
- Clarke, L.A.; Giugliani, R.; Guffon, N.; Jones, S.A.; Keenan, H.A.; Munoz-Rojas, M.V.; Okuyama, T.; Viskochil, D.; Whitley, C.B.; Wijburg, F.A.; et al. Genotype-phenotype relationships in mucopolysaccharidosis type I (MPS I): Insights from the International MPS I Registry. Clin. Genet. 2019, 96, 281–289. [Google Scholar] [CrossRef]
- D’Avanzo, F.; Rigon, L.; Zanetti, A.; Tomanin, R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int. J. Mol. Sci. 2020, 21, 1258. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, A.; D’Avanzo, F.; Tomanin, R. Molecular basis of mucopolysaccharidosis type II (Hunter syndrome): First review and classification of published IDS gene variants. Hum. Genom. 2024, 18, 134. [Google Scholar] [CrossRef]
- Badenetti, L.; Manzoli, R.; Trevisan, M.; D’Avanzo, F.; Tomanin, R.; Moro, E. A novel CRISPR/Cas9-based iduronate-2-sulfatase (IDS) knockout human neuronal cell line reveals earliest pathological changes. Sci. Rep. 2023, 13, 10289. [Google Scholar] [CrossRef]
- Tanwar, H.; Kumar, D.T.; Doss, C.G.P.; Zayed, H. Bioinformatics classification of mutations in patients with Mucopolysaccharidosis IIIA. Metab. Brain Dis. 2019, 34, 1577–1594. [Google Scholar] [CrossRef]
- Meyer, A.; Kossow, K.; Gal, A.; Steglich, C.; Mühlhausen, C.; Ullrich, K.; Braulke, T.; Muschol, N. The mutation p.Ser298Pro in the sulphamidase gene (SGSH) is associated with a slowly progressive clinical phenotype in mucopolysaccharidosis type IIIA (Sanfilippo A syndrome). Hum. Mutat. 2008, 29, 770. [Google Scholar] [CrossRef]
- Wagner, V.F.; Northrup, H. Mucopolysaccharidosis Type III; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; GeneReviews® [Internet]. 1993–2025; University of Washington: Seattle, WA, USA, 2019. [Google Scholar] [PubMed]
- Muschol, N.; Storch, S.; Ballhausen, D.; Beesley, C.; Westermann, J.C.; Gal, A.; Ullrich, K.; Hopwood, J.J.; Winchester, B.; Braulke, T. Transport, enzymatic activity, and stability of mutant sulfamidase (SGSH) identified in patients with mucopolysaccharidosis type III A. Hum. Mutat. 2004, 23, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.; Aldámiz-Echevarría, L.; Llarena, M.; Couce, M.L. Sanfilippo syndrome: Overall review. Pediatr. Int. 2015, 57, 331–338. [Google Scholar] [CrossRef]
- Birrane, G.; Dassier, A.L.; Romashko, A.; Lundberg, D.; Holmes, K.; Cottle, T.; Norton, A.W.; Zhang, B.; Concino, M.F.; Meiyappan, M. Structural characterization of the α-N-acetylglucosaminidase, a key enzyme in the pathogenesis of Sanfilippo syndrome B. J. Struct. Biol. 2019, 205, 65–71. [Google Scholar] [CrossRef]
- Fedele, A.O.; Hopwood, J.J. Functional analysis of the HGSNAT gene in patients with mucopolysaccharidosis IIIC (Sanfilippo C Syndrome). Hum. Mutat. 2010, 31, E1574–E1586. [Google Scholar] [CrossRef] [PubMed]
- Feldhammer, M.; Durand, S.; Mrazova, L.; Boucher, R.-M.; Laframboise, R.; Steinfeld, R.; Wraith, J.E.; Michelakakis, H.; van Diggelen, O.P.; Hrebicek, M.; et al. Sanfilippo syndrome type C: Mutation spectrum in the heparan sulfate acetyl-CoA: Alpha-glucosaminide N-acetyltransferase (HGSNAT) gene. Hum. Mutat. 2009, 30, 918–925. [Google Scholar] [CrossRef]
- Canals, I.; Elalaoui, S.C.; Pineda, M.; Delgadillo, V.; Szlago, M.; Jaouad, I.C.; Sefiani, A.; Chabas, A.; Coll, M.J.; Grinberg, D.; et al. Molecular analysis of Sanfilippo syndrome type C in Spain: Seven novel HGSNAT mutations and characterization of the mutant alleles. Clin. Genet. 2011, 80, 367–374. [Google Scholar] [CrossRef]
- Regier, D.S.; Oetgen, M.; Tanpaiboon, P. Mucopolysaccharidosis Type IVA; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; GeneReviews® [Internet]. 1993–2025; University of Washington: Seattle, WA, USA, 2021. [Google Scholar] [PubMed]
- Peracha, H.; Sawamoto, K.; Averill, L.; Kecskemethy, H.; Theroux, M.; Thacker, M.; Nagao, K.; Pizarro, C.; Mackenzie, W.; Kobayashi, H.; et al. Molecular genetics and metabolism, special edition: Diagnosis, diagnosis and prognosis of mucopolysaccharidosis IVA. Mol. Genet. Metab. 2018, 125, 18–37. [Google Scholar] [CrossRef]
- Zanetti, A.; D’Avanzo, F.; Rigon, L.; Rampazzo, A.; Concolino, D.; Barone, R.; Volpi, N.; Santoro, L.; Lualdi, S.; Bertola, F.; et al. Molecular diagnosis of patients affected by mucopolysaccharidosis: A multicenter study. Eur. J. Pediatr. 2019, 178, 739–753. [Google Scholar] [CrossRef]
- Caciotti, A.; Tonin, R.; Mort, M.; Cooper, D.N.; Gasperini, S.; Rigoldi, M.; Parini, R.; Deodato, F.; Taurisano, R.; Sibilio, M.; et al. Mis-splicing of the GALNS gene resulting from deep intronic mutations as a cause of Morquio a disease. BMC Med. Genet. 2018, 19, 183. [Google Scholar] [CrossRef] [PubMed]
- Caciotti, A.; Garman, S.C.; Rivera-Colón, Y.; Procopio, E.; Catarzi, S.; Ferri, L.; Guido, C.; Martelli, P.; Parini, R.; Antuzzi, D.; et al. GM1 gangliosidosis and Morquio B disease: An update on genetic alterations and clinical findings. Biochim. Biophys. Acta. 2011, 1812, 782–790. [Google Scholar] [CrossRef]
- Karageorgos, L.; Brooks, D.A.; Pollard, A.; Melville, E.L.; Hein, L.K.; Clements, P.R.; Ketteridge, D.; Swiedler, S.J.; Beck, M.; Giugliani, R.; et al. Mutational analysis of 105 mucopolysaccharidosis type VI patients. Hum. Mutat. 2007, 28, 897–903. [Google Scholar] [CrossRef]
- da Costa, A.J.M.; de Souza, I.C.N.; Feio, R.H.; Viana, L.K.L.; Cisz, M.; Rafaelli, C.L.; Trapp, F.B.; Burin, M.G.; Michelin-Tirelli, K.; Brusius-Facchin, A.C.; et al. Analysis of genomic ancestry and characterization of a new variant in MPS type VII. Orphanet J. Rare Dis. 2025, 20, 198. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Wang, R. Mucopolysaccharidosis Type VII; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; GeneReviews® [Internet]. 1993–2025; University of Washington: Seattle, WA, USA, 2024. [Google Scholar]
- Verheyen, S.; Blatterer, J.; Speicher, M.R.; Bhavani, G.S.; Boons, G.J.; Ilse, M.B.; Andrae, D.; Sproß, J.; Vaz, F.M.; Kircher, S.G.; et al. Novel subtype of mucopolysaccharidosis caused by arylsulfatase K (ARSK) deficiency. J Med Genet. 2022, 59, 957–964. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Fahdi, I.; Singh, S.; Yadavalli, K.; Chatti, K.; Bhavani, G.S.; Girisha, K.M. ARSK-Related Mucopolysaccharidosis Type 10. Am. J. Med. Genet. A 2025, e64210. [Google Scholar] [CrossRef] [PubMed]
- Kubaski, F.; de Oliveira Poswar, F.; Michelin-Tirelli, K.; Matte, U.D.S.; Horovitz, D.D.; Barth, A.L.; Baldo, G.; Vairo, F.; Giugliani, R. Mucopolysaccharidosis Type I. Diagnostics 2020, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- Muenzer, J.; Wraith, J.E.; Clarke, L.A.; International Consensus Panel on Management and Treatment of Mucopolysaccharidosis I. Mucopolysaccharidosis I: Management and treatment guidelines. Pediatrics 2009, 123, 19–29. [Google Scholar] [CrossRef]
- Taylor, M.; Khan, S.; Stapleton, M.; Wang, J.; Chen, J.; Wynn, R.; Yabe, H.; Chinen, Y.; Boelens, J.J.; Mason, R.W.; et al. Hematopoietic Stem Cell Transplantation for Mucopolysaccharidoses: Past, Present, and Future. Biol. Blood Marrow Transplant. 2019, 25, e226–e246. [Google Scholar] [CrossRef] [PubMed]
- Parini, R.; Deodato, F. Intravenous Enzyme Replacement Therapy in Mucopolysaccharidoses: Clinical Effectiveness and Limitations. Int. J. Mol. Sci. 2020, 21, 2975. [Google Scholar] [CrossRef]
- Pardridge, W.M. Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Adv. Drug Deliv. Rev. 2022, 184, 114234. [Google Scholar] [CrossRef] [PubMed]
- Muenzer, J.; Burton, B.K.; Harmatz, P.; Gutiérrez-Solana, L.G.; Ruiz-Garcia, M.; Jones, S.A.; Guffon, N.; Inbar-Feigenberg, M.; Bratkovic, D.; Hale, M.; et al. Intrathecal idursulfase-IT in patients with neuronopathic mucopolysaccharidosis II: Results from a phase 2/3 randomized study. Mol. Genet. Metab. 2022, 137, 127–139. [Google Scholar] [CrossRef]
- Wijburg, F.A.; Heap, F.; Rust, S.; de Ruijter, J.; Tump, E.; Marchal, J.P.; Nestrasil, I.; Shapiro, E.; Jones, S.A.; Alexanderian, D. Long-term safety and clinical outcomes of intrathecal heparan-N-sulfatase in patients with Sanfilippo syndrome type A. Mol. Genet. Metab. 2021, 134, 317–322. [Google Scholar] [CrossRef]
- Grewal, S.S.; Wynn, R.; Abdenur, J.E.; Burton, B.K.; Gharib, M.; Haase, C.; Hayashi, R.J.; Shenoy, S.; Sillence, D.; Tiller, G.E.; et al. Safety and efficacy of enzyme replacement therapy in combination with hematopoietic stem cell transplantation in Hurler syndrome. Genet. Med. 2005, 7, 143–146. [Google Scholar] [CrossRef]
- Tolar, J.; Grewal, S.S.; Bjoraker, K.J.; Whitley, C.B.; Shapiro, E.G.; Charnas, L.; Orchard, P.J. Combination of enzyme replacement and hematopoietic stem cell transplantation as therapy for Hurler syndrome. Bone Marrow Transpl. 2008, 41, 531–535. [Google Scholar] [CrossRef]
- Santi, L.; De Ponti, G.; Dina, G.; Pievani, A.; Corsi, A.; Riminucci, M.; Khan, S.; Sawamoto, K.; Antolini, L.; Gregori, S.; et al. Neonatal combination therapy improves some of the clinical manifestations in the Mucopolysaccharidosis type I murine model. Mol. Genet. Metab. 2020, 130, 197–208. [Google Scholar] [CrossRef]
- Carbajal-Rodríguez, L.M.; Pérez-García, M.; Rodríguez-Herrera, R.; Rosales, H.S.; Olaya-Vargas, A. Long-term evolution of mucopolysaccharidosis type I in twins treated with enzyme replacement therapy plus hematopoietic stem cells transplantation. Heliyon 2021, 7, e07740. [Google Scholar] [CrossRef]
- Giugliani, R.; Herber, S.; Lapagesse, L.; de Pinto, C.; Baldo, G. Therapy for mucopolysaccharidosis VI: (Maroteaux-Lamy syndrome) present status and prospects. Pediatr. Endocrinol. Rev. 2014, 12 (Suppl. S1), 152–158. [Google Scholar]
- Piotrowska, E.; Jakóbkiewicz-Banecka, J.; Barańska, S.; Tylki-Szymańska, A.; Czartoryska, B.; Wegrzyn, A.; Wegrzyn, G. Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur. J. Hum. Genet. 2006, 14, 846–852. [Google Scholar] [CrossRef]
- Jakóbkiewicz-Banecka, J.; Piotrowska, E.; Narajczyk, M.; Barańska, S.; Wegrzyn, G. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. J. Biomed. Sci. 2009, 16, 26. [Google Scholar] [CrossRef]
- Arfi, A.; Richard, M.; Gandolphe, C.; Scherman, D. Storage correction in cells of patients suffering from mucopolysaccharidoses types IIIA and VII after treatment with genistein and other isoflavones. J. Inherit. Metab. Dis. 2010, 33, 61–67. [Google Scholar] [CrossRef]
- Malinowska, M.; Wilkinson, F.L.; Bennett, W.; Langford-Smith, K.J.; O’Leary, H.A.; Jakobkiewicz-Banecka, J.; Wynn, R.; Wraith, J.E.; Wegrzyn, G.; Bigger, B.W. Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Mol. Genet. Metab. 2009, 98, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Friso, A.; Tomanin, R.; Salvalaio, M.; Scarpa, M. Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II. Br. J. Pharmacol. 2010, 159, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, M.; Wilkinson, F.L.; Langford-Smith, K.J.; Langford-Smith, A.; Brown, J.R.; Crawford, B.E.; Vanier, M.T.; Grynkiewicz, G.; Wynn, R.F.; Wraith, J.E.; et al. Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS ONE 2010, 5, e14192. [Google Scholar] [CrossRef] [PubMed]
- de Ruijter, J.; Valstar, M.J.; Narajczyk, M.; Wegrzyn, G.; Kulik, W.; Ijlst, L.; Wagemans, T.; van der Wal, W.M.; Wijburg, F.A. Genistein in Sanfilippo disease: A randomized controlled crossover trial. Ann. Neurol. 2012, 71, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Rust, S.; Langford-Smith, K.; Weisberg, D.; Canal, M.; Breen, C.; Hepburn, M.; Tylee, K.; Vaz, F.M.; Vail, A.; et al. High dose genistein in Sanfilippo syndrome: A randomised controlled trial. J. Inherit. Metab. Dis. 2021, 44, 1248–1262. [Google Scholar] [CrossRef]
- Rossi, A.; Brunetti-Pierri, N. Gene therapies for mucopolysaccharidoses. J. Inherit. Metab. Dis. 2024, 47, 135–144. [Google Scholar] [CrossRef]
- Kobayashi, H. Gene therapy for lysosomal storage diseases. Brain Dev. 2025, 47, 104399. [Google Scholar] [CrossRef] [PubMed]
- Aronovich, E.L.; Hyland, K.A.; Hall, B.C.; Bell, J.B.; Olson, E.R.; Rusten, M.U.; Hunter, D.W.; Ellinwood, N.M.; McIvor, R.S.; Hackett, P.B. Prolonged Expression of Secreted Enzymes in Dogs After Liver-Directed Delivery of Sleeping Beauty Transposons: Implications for Non-Viral Gene Therapy of Systemic Disease. Hum. Gene. Ther. 2017, 28, 551–564. [Google Scholar] [CrossRef]
- Reyhani-Ardabili, M.; Ghafouri-Fard, S. CRISPR/Cas9 technology in the modeling of and treatment of mucopolysaccharidosis. Biochem. Biophys. Rep. 2024, 39, 101771. [Google Scholar] [CrossRef]
- Poletto, E.; Baldo, G.; Gomez-Ospina, N. Genome Editing for Mucopolysaccharidoses. Int. J. Mol. Sci. 2020, 21, 500. [Google Scholar] [CrossRef]
- Herreno-Pachón, A.M.; Leal, A.F.; Khan, S.; Alméciga-Díaz, C.J.; Tomatsu, S. CRISPR/nCas9-Edited CD34+ Cells Rescue Mucopolysaccharidosis IVA Fibroblasts Phenotype. Int. J. Mol. Sci. 2025, 26, 4334. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Dell’Aquila, F.; Rhiel, M.; Auricchio, S.; Chmielewski, K.O.; Andrieux, G.; Ferla, R.; Horrach, P.S.; Padmanabhan, A.; Di Cunto, R.; et al. Safe and effective liver-directed AAV-mediated homology-independent targeted integration in mouse models of inherited diseases. Cell Rep. Med. 2024, 5, 101619. [Google Scholar] [CrossRef]
Gene | HGNC ID | Cytogenetic Localization | Reference Sequence * | Disease | Accumulated GAG | MIM Number | MOI |
---|---|---|---|---|---|---|---|
IDUA | 5391 | 4p16.3 | NM_000203.5 | MPS IH (Hurler) | HS + DS | 60014 | AR |
MPS IS (Scheie) | 607015 | AR | |||||
MPS IH/S (Hurler–Scheie) | 607016 | AR | |||||
IDS | 5389 | Xq28 | NM_000202.8 | MPS II (Hunter syndrome) | HS + DS | 309900 | XLR |
SGSH | 10818 | 17q25.3 | NM_000199.5 | MPS IIIA (Sanfilippo A) | HS | 252900 | AR |
NAGLU | 7632 | 17q21.2 | NM_000263.4 | MPS IIIB (Sanfilippo B) | 252920 | AR | |
HGSNAT | 26527 | 8p11.21-p11.1 | NM_152419.3 | MPS IIIC (Sanfilippo C) | 252930 | AR | |
GNS | 4422 | 12q14.3 | NM_002076.4 | MPS IIID | 252940 | AR | |
ARSG | 610008 | 17q24.2 | NM_014960.3 | MPS IIIE—subtype found only in animal models | HS | 618144 (Usher disease type IV) | AR |
GALNS | 4122 | 16q24.3 | NM_000512.5 | MPS IVA | C6S + KS | 253000 | AR |
GLB1 | 4298 | 3p22.3 | NM_000404.4 | MPS IVB | KS | 253010 | AR |
ARSB | 714 | 5q14.1 | NM_000046.5 | MPS VI (Maroteaux–Lamy Syndrome) | DS + C4S | 253200 | AR |
GUSB | 4696 | 7q11.21 | NM_000181.4 | MPS VII (Sly Syndrome) | HS + DS + C4S + C6S | 253220 | AR |
HYAL1 | 5320 | 3p21.31 | NM_033159.4 | MPS IX (Natowicz Syndrome) | Hyaluronan | 601492 | AR |
ARSK | 25239 | 5q15 | NM_198150.3 | MPS X | DS 2-O-sulfo-glucuronate | 619698 | AR |
VPS33A | 18179 | 12q24.31 | NM_022916.4 | MPS-plus ** syndrome | DS ± HS ± KS or normal (profile is highly variable) | 617303 | AR |
Clinical Features | MPS Type | ||||||||
---|---|---|---|---|---|---|---|---|---|
MPS I | MPS II | MPS III | MPS IV | MPS VI | MPS VII | MPS IX | MPS X | MPS-PS | |
Coarse facial features | + | + | +/− | + | + | + | +/− | +/− | +/− |
Hypertrichosis | + | + | + | + | + | ||||
Hearing impairment | ++ | ++ | + | + | ++ | ++ | + | +/− | |
Macrocephaly | + | + | + | + | + | +/− | |||
Corneal clouding | ++ | +/− | + | ++ | + | +/− | |||
Short stature | + | + | ++ | ++ | + | +/− | + | +/− | |
Joint stiffness | ++ | ++ | +/− | ++ | ++ | +/− | +/− | ||
Thoracolumbar kyphosis | ++ | + | Lordosis | + | + | + | |||
Hip dysplasia | ++ | + | + | ++ | + | + | +/− | +/− | |
Carpal tunnel syndrome | ++ | ++ | +/− | ++ | + | ||||
Joint laxity | ++ | +/− | |||||||
Cardiac valve thickening | ++ | ++ | + | + | ++ | + | +/− | ||
Cognitive impairment | + | + | ++ | + | |||||
Hydrocephalus/ventriculomegaly | ++ | ++ | + | +/− | + | + | |||
Spinal stenosis | + | + | +/− | ++ | + | ||||
Recurrent respiratory tract infections | ++ | ++ | + | + | ++ | ++ | + | +/− | +/− |
Upper airway obstruction | ++ | ++ | +/− | + | ++ | ++ | +/− | ||
Lower airway obstruction | ++ | ++ | +/− | + | ++ | ++ | +/− | ||
Restrictive lung disease | ++ | + | +/− | ++ | + | + | |||
Liver enlargement | + | + | +/− | + | + | +/− | |||
Inguinal hernia | ++ | ++ | + | ++ | ++ | ||||
Fetal ascites | + | + | ++ | +/− |
Organ | Signs and Symptoms |
---|---|
Mouth | Thickened lips |
Gingival hypertrophy | |
Macroglossia | |
Tonsillar hypertrophy | |
Restriction of the mouth opening (decreased temporo-mandibular joint mobility) | |
Sore throat—swelling of the mucosa | |
Lots of mucus | |
Nose | Depressed nasal bridge, wide nasal alae |
Restricted nasal airflow | |
Tonsillar hypertrophy | |
Recurrent nose infections, chronic rhinosinusitis | |
Larynx | Stridor, laryngomalacia (deposits in epiglottis and decreased muscle tone) |
Deformities of the epiglottis and cricoid cartilages | |
Narrowing of the larynx | |
Outer and middle ear | Narrowing of the external auditory canals |
Chronic otitis externa | |
Middle ear effusion, chronic inflammation of the middle ear | |
Deformation of the ossicles, especially the stapes | |
Thickened mucosa in the middle ear | |
Inner ear | Degeneration of the organ of Corti |
Lack of neurons, GAGs in the spiral ganglion | |
Distended, congested vessels in the stria vascularis | |
Trachea | Tracheal distortion |
Tracheal narrowing | |
Tracheomalacia | |
Airway collapse | |
Complications of endotracheal intubation |
MPS Type | Gene | Variants | |
---|---|---|---|
Associated with Severe Phenotype | Associated with Attenuated/Mild Phenotype | ||
I | IDUA | c.208C>T (p.Gln70Ter) c.1205G>A (p.Trp402Ter) | c.1469T>C (p.Leu490Pro) c.266G>A (p.Arg89Gln) c.1598C>G (p.Pro533Arg) c.700C>T (p.Arg234Cys) c.613_617dupTGCTC (p.Glu207AlafsTer29) V |
II | IDS | c.1403G>A (p.Arg468Gln) c.1402C>T (p.Arg468Trp) c.998C>T (p.Ser333Leu) c.257C>T (p.(Pro86Leu) c.514C>T (p.(Arg172Ter) c.1122C>T (p.Glu375_Gly394del) V Recombination with IDS pseudogene (IDSP1) causing inversions/complex rearrangements | c.1327C>T (p.Arg443Ter) c.253G>A (p.(Ala85Thr)) c.262C>T (p.Arg88Cys) V c.263G>A (p.(Arg88His) V |
IIIA | SGSH | c.220C>T (p.Arg74Cys) c.1139A>G (p.Gln380Arg) c.197C>G (p.Ser66Trp) c.1080del (p.Val361fs) | c.892T>C (p.Ser298Pro) c.734G>A (p.Arg245His) V |
IIIB | NAGLU | c.1834A>G (p.Ser612Gly) c.889C>T (p.Arg297Ter) c.419A>G (p.Tyr140Cys) c.1562C>T (p.Pro521Leu) c.358G>T (p.Glu120Ter) | c.1843C>T (p.Arg615Cys) c.1694G>A (p.Arg565Gln) c.700C>T (p.Arg234Cys) |
IIIC | HGSNAT | LOF variants distributed across exons are usually severe | Some missense variants with partial activity reported in attenuated cases (no single dominant founder) |
IIID | GNS | Truncating and canonical splice variants usually pathogenic → severe disease | Several missense variants reported with milder course; overall fewer cases, so correlations are limited |
IVA | GALNS | c.1156C>T (p.Arg386Cys) c.29G>A (p.Trp10Ter) c.1520G>T (p.Cys507Phe) | c.178G>A (p.Asp60Asn) c.612C>G (p.Asn204Lys) c.776G>A (p.Arg259Gln) |
IVB | GLB1 | Variants that disrupt catalytic site or cause truncation → GM1/neurologic severe disease; some variants give MPS IVB skeletal-predominant phenotype (e.g., specific missense in KS-processing region); compound heterozygous states combining alleles with differing effects can produce blended phenotypes with both neurological and skeletal features | |
VI | ARSB | Large deletions, nonsense, frameshifts, and some missense abolishing enzymes → more rapidly progressive disease | Missense variants with residual ASB activity associated with attenuated/osteoarticular phenotypes |
VII | GUSB | Nonsense/truncating variants and some missense → severe (hydrops fetalis/perinatal fatal) | c.1244C>T, p.(Pro415Leu) c.1856C>T, p.(Ala619Val) |
IX | HYAL1 | Very rare—reported nonsense/deleterious variants in reported cases producing mild phenotype | Very rare—reported nonsense/deleterious variants in reported cases producing mild phenotype: p.Glu268Lys; c. 1361del37ins14, p |
X | ARSK | Ten cases published so far; mostly attenuated phenotypes | Ten cases published so far; mostly attenuated cases including homozygosity for p.ArgR84Cys, p.Leu187Ter, and p.Tyr417Ter |
MPS-plus | VPS33A | c.1492C>T, p.(Arg498Trp) | c.599G>C, p.(Arg200Pro) |
Therapy (Abbreviation) | Current Stage in MPS | General Principle(s) | Major Limitation(s) |
---|---|---|---|
Hematopoietic stem cell transplantation (HSCT) | Approved in some MPS types (I, II, IVA, VI, VII) | Functional enzyme produced by transplanted cells can cross-correct the enzyme deficit in MPS patient cells | Poor penetration to some organs and tissues (e.g., brain, heart, bone) |
Effective only when provided before the 2nd year of age | |||
Inefficient in some MPS types (e.g., III) | |||
Enzyme replacement therapy (ERT) | Approved in some MPS types (I, II, IVA, VII, VII) | Recombinant (active) enzyme, administered intravenously, can cross-correct the enzyme deficit in MPS patient cells | Poor penetration to some organs and tissues (e.g., brain, bone), causing inefficiency in improving symptoms related to the brain, bones, joints, and trachea |
Substrate reduction therapy (SRT) | Experimental/clinical trials | Slowing down synthesis of GAGs by using small molecule(s), thus restoring the balance between GAG synthesis and degradation rates | Limited clinical efficacy, despite decreasing GAG levels in urine, plasma, and cerebrospinal fluid |
Classical gene therapy (GT) | Experimental/clinical trials | Delivery of the functional gene into cells of MPS patients using viral or non-viral (e.g., plasmids, transposons) vectors | Inefficient delivery to all/most cells of patients |
Limited maintenance and expression of the delivered gene | |||
Genome editing (GE) | Experimental/first clinical studies | Introducing specific changes in the cells of MPS patients using modern molecular tools, like CRISPR/Cas9 or others | Limited efficiency of introducing genetic changes in all/most cells of patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipiński, P.; Różdżyńska-Świątkowska, A.; Wiśniewska, K.; Rusecka, J.; Ługowska, A.; Żuber, Z.; Jezela-Stanek, A.; Cyske, Z.; Gaffke, L.; Pierzynowska, K.; et al. Mucopolysaccharidoses—What Clinicians Need to Know: A Clinical, Biochemical, and Molecular Overview. Biomolecules 2025, 15, 1448. https://doi.org/10.3390/biom15101448
Lipiński P, Różdżyńska-Świątkowska A, Wiśniewska K, Rusecka J, Ługowska A, Żuber Z, Jezela-Stanek A, Cyske Z, Gaffke L, Pierzynowska K, et al. Mucopolysaccharidoses—What Clinicians Need to Know: A Clinical, Biochemical, and Molecular Overview. Biomolecules. 2025; 15(10):1448. https://doi.org/10.3390/biom15101448
Chicago/Turabian StyleLipiński, Patryk, Agnieszka Różdżyńska-Świątkowska, Karolina Wiśniewska, Joanna Rusecka, Agnieszka Ługowska, Zbigniew Żuber, Aleksandra Jezela-Stanek, Zuzanna Cyske, Lidia Gaffke, Karolina Pierzynowska, and et al. 2025. "Mucopolysaccharidoses—What Clinicians Need to Know: A Clinical, Biochemical, and Molecular Overview" Biomolecules 15, no. 10: 1448. https://doi.org/10.3390/biom15101448
APA StyleLipiński, P., Różdżyńska-Świątkowska, A., Wiśniewska, K., Rusecka, J., Ługowska, A., Żuber, Z., Jezela-Stanek, A., Cyske, Z., Gaffke, L., Pierzynowska, K., Węgrzyn, G., & Tylki-Szymańska, A. (2025). Mucopolysaccharidoses—What Clinicians Need to Know: A Clinical, Biochemical, and Molecular Overview. Biomolecules, 15(10), 1448. https://doi.org/10.3390/biom15101448