Targeting CRABP1 Signalosomes in Managing Neurodegeneration
Abstract
1. Introduction
2. Current Therapeutic Applications of Retinoids: An RAR/RXR-Centric Strategy
Generic Name | Indications | Mechanism of Action | References |
---|---|---|---|
Tretinoin (all-trans retinoic acid, atRA) | Topical Administration:
| Pan-RAR (α/β/γ isoforms) agonist | [10,11] |
Alitretinoin (9-cis-retinoic acid) | Topical Administration:
| Pan-RAR and RXR agonist (α/β/γ isoforms) | [26] |
Isotretinoin (13-cis-retinoic acid) | Oral Administration:
| Mechanism not fully understood; proposed to act via isomerization to atRA and 9-cis-RA | [27] |
Acitretin | Oral Administration:
| Mechanism not fully understood; proposed to activate RAR and RXR (α/β/γ isoforms) with higher affinity towards RARs | [28] |
Adapalene | Topical Administration:
| RARβ- and γ-selective agonist | [29] |
Tazarotene | Topical Administration:
| RARβ- and γ-selective agonist | [29] |
Bexarotene | Oral Administration:
| Pan RXR agonist (α/β/γ isoforms) | [30] |
Trifarotene | Topical Administration:
| RARγ-selective agonist | [31] |
Palovarotene | Oral Administration:
| RARγ-selective agonist | [32] |
Neurogenerative Disease | Candidate Retinoids | References |
---|---|---|
AD |
| [16,17,18,19,25] |
ALS |
| [20,25,33] |
HD |
| [21,22] |
PD |
| [22,23,24,25,34] |
3. CRABP1 Signalosomes: A Recently Established Principle of atRA Signaling in the Cytoplasm
3.1. CRAPB1-MAPK Signalosome in Neurogenesis and Neuronal Exosome Secretion
3.2. The CRABP1–CaMKII Signalosome in Maintaining NMJ Health and Dampening Excitotoxicity in MNs
3.3. The Putative CRABP1–eiF2α Signalosome in Modulating Neuronal Stress Responses
3.4. Other Potential CRABP1 Signalosomes in Neurodegeneration
4. Physiological Considerations: Regulation of CRABP1 Expression in Neurons
5. A New Class of Retinoids: CRABP1-Dependent Signal Modulators
5.1. First-Generation CRABP1-Signalosome-Targeting Synthetic Retinoids
5.2. A Structural Basis for Designing CRABP1-Signalosome Modulators
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACTR2 | actin-related protein 2 |
ACTR3 | actin-related protein 3 |
ACTR3B | actin-related protein 3B |
AD | Alzheimer’s disease |
AIF1L | allograft inflammatory factor-1-like |
ALS | amyotrophic lateral sclerosis |
APL | acute promyelocytic leukemia |
ARPC3 | actin-related protein 2/3 complex subunit 3 |
ARPC4 | actin-related protein 2/3 complex subunit 4 |
ARPC5L | actin-related protein 2/3 complex subunit-5-like |
CAPZA2 | capping actin protein of muscle Z-line subunit alpha 2 |
CFL2 | cofilin 2 |
CKO | CRABP1 knockout |
CNBP | CCHC-type zinc finger nucleic-acid-binding protein |
CNS | central nervous system |
CORO1A | coronin 1A |
CORO1B | coronin 1B |
CRABP1 | cellular retinoic-acid-binding protein 1 |
CTNNA1 | catenin alpha 1 |
CYP450 | cytochrome P450 |
DNA | deoxyribonucleic acid |
DRG1 | developmentally regulated GTP-binding protein 1 |
EIF2α | eukaryotic initiation factor 2 alphα |
EPB41L2 | erythrocyte membrane protein band 4.1-like-2 |
ERK1/2 | extracellular signal-regulated kinases 1 and 2 |
EZR | ezrin |
FDA | Food and Drug Administration |
GCN2 | general control nonderepressible 2 |
GLMN | glomulin |
GLRX3 | glutaredoxin 3 |
GO | gene ontology |
GSPT1 | G1 to S phase transition 1 |
GTP | guanosine-5’-triphosphate |
HD | Huntington’s disease |
HNRNPA0 | heterogeneous nuclear ribonucleoprotein A0 |
HRI | heme-regulated inhibitor |
IGF2BP1 | insulin-like growth factor 2 mRNA-binding protein 1 |
IGF2BP3 | insulin-like growth factor 2 mRNA-binding protein 3 |
IP-MS | immunoprecipitation-mass spectrometry |
ISR | integrated stress response |
LIMA1 | LIM domain and actin-binding 1 |
LTP | long-term potentiation |
MAPK | mitogen-activated protein kinase |
MEK1/2 | mitogen-activated protein kinase kinase 1 and 2 |
MN | motor neuron |
MSN | moesin |
NMJ | neuromuscular junction |
NSC | neural stem cell |
PABPC4 | poly(A)-binding protein cytoplasmic 4 |
PD | Parkinson’s disease |
PDCD4 | programmed cell death 4 |
PERK | protein kinase R (PKR)-like endoplasmic reticulum kinase |
PIN1 | peptidylprolyl cis/trans isomerase, NIMA-interacting 1 |
PLS1 | plastin 1 |
PPP1CB | protein phosphatase 1 catalytic subunit beta |
PP2A | protein phosphatase 2 |
PRKACA | protein kinase cAMP-activated catalytic subunit alpha |
atRA | all-trans retinoic acid |
RAB6B | RAB6B, member RAS oncogene family |
RACK1 | receptor for activated C kinase 1 |
RAF-1 | rapidly accelerated fibrosarcoma 1 |
RAS | rat sarcoma virus |
RAR | retinoic-acid receptor |
RDX | Radixin |
RIP140 | receptor-interacting protein 140 |
RNA | ribonucleic acid |
ROS | reactive oxygen species |
RPL | ribosomal protein large |
RPS | ribosomal protein S |
RXR | retinoid-X receptor |
SAR | Structure–activity relationship |
SEPTIN11 | septin 11 |
SFN | Stratifin |
SHTN1 | shootin 1 |
SMA | spinal muscular atrophy |
SNP | single-nucleotide polymorphism |
SNRPG | small nuclear ribonucleoprotein polypeptide G |
TMOD1 | tropomodulin 1 |
TWF1 | twinfilin actin-binding protein 1 |
TWF2 | twinfilin actin-binding protein 2 |
UPR | unfolded protein response |
WDR1 | WD Repeat Domain 1 |
WT | wild-type |
References
- Ochoa, W.F.; Torrecillas, A.; Fita, I.; Verdaguer, N.; Corbalán-García, S.; Gomez-Fernandez, J.C. Retinoic acid binds to the C2-domain of protein kinase C(alpha). Biochemistry 2003, 42, 8774–8779. [Google Scholar] [CrossRef]
- Nagpal, I.; Wei, L.N. All-trans retinoic acid as a versatile cytosolic signal modulator mediated by CRABP1. Int. J. Mol. Sci. 2019, 20, 3610. [Google Scholar] [CrossRef]
- Nhieu, J.; Lin, Y.L.; Wei, L.N. CRABP1 in Non-Canonical Activities of Retinoic Acid in Health and Diseases. Nutrients 2022, 14, 1528. [Google Scholar] [CrossRef] [PubMed]
- Najjar, F.; Nhieu, J.; Wei, C.-W.; Milbauer, L.; Burmeister, L.; Seelig, D.; Wei, L.-N. Deleting Cellular Retinoic-Acid-Binding Protein-1 (Crabp1) Gene Causes Adult-Onset Primary Hypothyroidism in Mice. Endocrines 2023, 4, 138–150. [Google Scholar] [CrossRef]
- Lin, Y.L.; Persaud, S.D.; Nhieu, J.; Wei, L.N. Cellular Retinoic Acid-Binding Protein 1 Modulates Stem Cell Proliferation to Affect Learning and Memory in Male Mice. Endocrinology 2017, 158, 3004–3014. [Google Scholar] [CrossRef]
- Lin, Y.-L.Y.-W.; Nhieu, J.; Liu, P.-Y.; Le, G.; Lee, D.J.; Wei, C.-W.; Lin, Y.-W.; Oh, S.-H.; Lowe, D.; Wei, L.-N. CRABP1-CaMKII-Agrn regulates the maintenance of neuromuscular junction in spinal motor neuron. Cell Death Differ. 2022, 29, 1744–1756. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-W.; Lerdall, T.; Najjar, F.; Wei, L.-N. Depleting Cellular Retinoic Acid Binding Protein 1 Impairs UPRmt. J. Cell. Signal. 2023, 4, 151–162. [Google Scholar] [CrossRef]
- Persaud, S.D.; Park, S.W.; Ishigami-Yuasa, M.; Koyano-Nakagawa, N.; Kagechika, H.; Wei, L.N. All trans-retinoic acid analogs promote cancer cell apoptosis through non-genomic Crabp1 mediating ERK1/2 phosphorylation. Sci. Rep. 2016, 6, 22396. [Google Scholar] [CrossRef]
- Nhieu, J.; Milbauer, L.; Lerdall, T.; Najjar, F.; Wei, C.W.; Ishida, R.; Ma, Y.; Kagechika, H.; Wei, L.-N. Targeting Cellular Retinoic Acid Binding Protein 1 with Retinoic Acid-like Compounds to Mitigate Motor Neuron Degeneration. Int. J. Mol. Sci. 2023, 24, 4980. [Google Scholar] [CrossRef]
- Gillis, J.C.; Goa, K.L. Tretinoin: A Review of its Pharmacodynamic and Pharmacokinetic Properties and Use in the Management of Acute Promyelocytic Leukaemia. Drugs 1995, 50, 897–923. [Google Scholar] [CrossRef]
- Baldwin, H.E.; Nighland, M.; Kendall, C.; Mays, D.A.; Grossman, R.; Newburger, J. 40 years of topical tretinoin use in review. J. Drugs Dermatol. 2013, 12, 638–642. [Google Scholar]
- Lammer, E.J.; Chen, D.T.; Hoar, R.M.; Agnish, N.D.; Benke, P.J.; Braun, J.T.; Curry, C.J.; Fernhoff, P.M.; Grix, A.W., Jr.; Lott, I.T.; et al. Retinoic acid embryopathy. N. Engl. J. Med. 1985, 313, 837–841. [Google Scholar] [CrossRef]
- Patatanian, E.; Thompson, D.F. Retinoic acid syndrome: A review. J. Clin. Pharm. Ther. 2008, 33, 331–338. [Google Scholar] [CrossRef]
- Zaenglein, A.L.; Levy, M.L.; Stefanko, N.S.; Benjamin, L.T.; Bruckner, A.L.; Choate, K.; Craiglow, B.G.; DiGiovanna, J.J.; Eichenfield, L.F.; Elias, P.; et al. Consensus recommendations for the use of retinoids in ichthyosis and other disorders of cornification in children and adolescents. Pediatr. Dermatol. 2021, 38, 164–180. [Google Scholar] [CrossRef]
- Williams, A.L.; Pace, N.D.; DeSesso, J.M. Teratogen update: Topical use and third-generation retinoids. Birth Defects Res. 2020, 112, 1105–1114. [Google Scholar] [CrossRef]
- Alsharief, M. How Do Retinoids Affect Alzheimer’s Disease and Can They Be Novel Drug Candidates? Cureus 2024, 16, e57548. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, D.; Sehgal, A.; Singla, R.K.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Bungau, S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front. Pharmacol. 2022, 13, 976799. [Google Scholar] [CrossRef]
- Beheshti, S. All-trans retinoic acid in Alzheimer’s disease. In Diagnosis and Management in Dementia: The Neuroscience of Dementia; Oxford University Press: Oxford, UK, 2020; Volume 1, pp. 559–572. [Google Scholar] [CrossRef]
- Das, B.; Dasgupta, S.; Ray, S. Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer’s disease. Neural Regen. Res. 2019, 14, 1880. [Google Scholar] [CrossRef]
- Riancho, J.; Berciano, M.T.; Ruiz-Soto, M.; Berciano, J.; Landreth, G.; Lafarga, M. Retinoids and motor neuron disease: Potential role in amyotrophic lateral sclerosis. J. Neurol. Sci. 2015, 360, 115. [Google Scholar] [CrossRef]
- Ciancia, M.; Rataj-Baniowska, M.; Zinter, N.; Baldassarro, V.A.; Fraulob, V.; Charles, A.L.; Alvarez, R.; Muramatsu, S.-I.; de Lera, A.R.; Geny, B.; et al. Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration. Prog. Neurobiol. 2022, 212, 102246. [Google Scholar] [CrossRef]
- Sharma, S.; Shen, T.; Chitranshi, N.; Gupta, V.; Basavarajappa, D.; Sarkar, S.; Mirzaei, M.; You, Y.; Krezel, W.; Graham, S.L.; et al. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol. Neurobiol. 2022, 59, 2027–2050. [Google Scholar] [CrossRef]
- Pareek, A.; Singhal, R.; Pareek, A.; Ghazi, T.; Kapoor, D.U.; Ratan, Y.; Singh, A.K.; Jain, V. Chuturgoon AA Retinoic acid in Parkinson’s disease: Molecular insights, therapeutic advances, and future prospects. Life Sci. 2024, 355, 123010. [Google Scholar] [CrossRef]
- Marie, A.; Darricau, M.; Touyarot, K.; Parr-Brownlie, L.C.; Bosch-Bouju, C. Role and Mechanism of Vitamin A Metabolism in the Pathophysiology of Parkinson’s Disease. J. Park. Dis. 2021, 11, 949–970. [Google Scholar] [CrossRef]
- Clark, J.N.; Whiting, A.; McCaffery, P. Retinoic acid receptor-targeted drugs in neurodegenerative disease. Expert. Opin. Drug Metab. Toxicol. 2020, 16, 1097–1108. [Google Scholar] [CrossRef]
- Cheng, C.; Michaels, J.; Scheinfeld, N. Alitretinoin: A comprehensive review. Expert. Opin. Investig. Drugs 2008, 17, 437–443. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Zouboulis, C.C. Isotretinoin: State of the art treatment for acne vulgaris. JDDG J. Ger. Soc. Dermatol. 2010, 8, S47–S59. [Google Scholar] [CrossRef]
- Zito, P.M.; Patel, P.; Mazzoni, T. Acitretin. Handbook of Systemic Drug Treatment in Dermatology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Tolaymat, L.; Dearborn, H.; Zito, P.M. Adapalene. Litt’s Drug Eruptions & Reactions Manual; CRC Press: Boca Raton, FL, USA, 2023; p. 20. [Google Scholar] [CrossRef]
- De, S.K. Targeted therapy. In Medicines for Cancer; Elsevier: Amsterdam, The Netherlands, 2023; pp. 205–411. [Google Scholar] [CrossRef]
- Aubert, J.; Piwnica, D.; Bertino, B.; Blanchet-Réthoré, S.; Carlavan, I.; Déret, S.; Dreno, B.; Gamboa, B.; Jomard, A.; Luzy, A.; et al. Nonclinical and human pharmacology of the potent and selective topical retinoic acid receptor-γ agonist trifarotene. Br. J. Dermatol. 2018, 179, 442–456. [Google Scholar] [CrossRef]
- Hoy, S.M. Palovarotene: First Approval. Drugs 2022, 82, 711–716. [Google Scholar] [CrossRef]
- Escudier, O.; Zhang, Y.; Whiting, A.; Chazot, P. Evaluation of a Synthetic Retinoid, Ellorarxine, in the NSC-34 Cell Model of Motor Neuron Disease. Int. J. Mol. Sci. 2024, 25, 9764. [Google Scholar] [CrossRef]
- Sanders, M.; Chandraratna, R.; Marek, K.; Jennings, D. A Phase 1 Clinical Study of the Retinoid X Receptor (RXR) Selective Agonist IRX4204 in Patients with Early Parkinson’s Disease (PD) (P2.342). Neurology 2016, 86, P2.342. [Google Scholar] [CrossRef]
- Napoli, J.L. Functions of intracellular retinoid binding-proteins. Subcell Biochem. 2016, 81, 21–76. [Google Scholar] [CrossRef]
- Napoli, J.L. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol. Ther. 2017, 173, 19–33. [Google Scholar] [CrossRef]
- Nhieu, J.; Wei, C.W.; Ludwig, M.; Drake, J.M.; Wei, L.N. CRABP1-complexes in exosome secretion. Cell Commun. Signal. 2024, 22, 381. [Google Scholar] [CrossRef] [PubMed]
- De Gioia, R.; Biella, F.; Citterio, G.; Rizzo, F.; Abati, E.; Nizzardo, M.; Bresolin, N.; Comi, G.P.; Corti, S. Neural Stem Cell Transplantation for Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 3103. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Du, X.; Li, X.; Liu, S.; Xu, Y. The Emerging Role of Neural Cell-Derived Exosomes in Intercellular Communication in Health and Neurodegenerative Diseases. Front. Neurosci. 2021, 15, 738442. [Google Scholar] [CrossRef]
- Ashpole, N.M.; Hudmon, A. Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Mol. Cell. Neurosci. 2011, 46, 720–730. [Google Scholar] [CrossRef]
- Szydlowska, K.; Tymianski, M. Calcium, ischemia and excitotoxicity. Cell Calcium 2010, 47, 122–129. [Google Scholar] [CrossRef]
- Arundine, M.; Tymianski, M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003, 34, 325–337. [Google Scholar] [CrossRef]
- Van Den Bosch, L.; Van Damme, P.; Bogaert, E.; Robberecht, W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim. Biophys. Acta Mol. Basis Dis. 2006, 1762, 1068–1082. [Google Scholar] [CrossRef]
- Fan, M.; Raymond, L. N-Methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog. Neurobiol. 2007, 81, 272–293. [Google Scholar] [CrossRef] [PubMed]
- Blizzard, C.A.; Southam, K.A.; Dawkins, E.; Lewis, K.E.; King, A.E.; Clark, J.A.; Dickson, T.C. Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis—Vulnerability of lower motor neurons to proximal excitotoxicity. Dis. Model. Mech. 2015, 8, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Giese, K.P.; Fedorov, N.B.; Filipkowski, R.K.; Silva, A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 1998, 279, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Mango, D.; Saidi, A.; Cisale, G.Y.; Feligioni, M.; Corbo, M.; Nisticò, R. Targeting synaptic plasticity in experimental models of Alzheimer’s disease. Front. Pharmacol. 2019, 10, 471167. [Google Scholar] [CrossRef]
- Nalbantoglu, J.; Tirado-Santiago, G.; Lahsaïni, A.; Poirier, J.; Goncalves, O.; Verge, G.; Momoli, F.; Welner, S.A.; Massicotte, G.; Julien, J.-P.; et al. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 1997, 387, 500–505. [Google Scholar] [CrossRef]
- Costa-Mattioli, M.; Walter, P. The integrated stress response: From mechanism to disease. Science 2020, 368, eaat5314. [Google Scholar] [CrossRef]
- Lindholm, D.; Wootz, H.; Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 2006, 13, 385–392. [Google Scholar] [CrossRef]
- Doyle, K.M.; Kennedy, D.; Gorman, A.M.; Gupta, S.; Healy, S.J.M.; Samali, A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med. 2011, 15, 2025–2039. [Google Scholar] [CrossRef]
- Gandhi, S.; Abramov, A.Y. Mechanism of Oxidative Stress in Neurodegeneration. Oxid. Med. Cell. Longev. 2012, 2012, 428010. [Google Scholar] [CrossRef]
- Mallucci, G.R.; Klenerman, D.; Rubinsztein, D.C. Developing Therapies for Neurodegenerative Disorders: Insights from Protein Aggregation and Cellular Stress Responses. Annu. Rev. Cell Dev. Biol. 2020, 36, 165–189. [Google Scholar] [CrossRef]
- Chang, R.C.C.; Wong, A.K.Y.; Ng, H.-K.; Hugon, J. Phosphorylation of eukaryotic initiation factor-2a (eIF2a) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 2002, 13, 2429–2432. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M.; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of neurodegenerative diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef]
- Bernstein, B.W.; Maloney, M.T.; Bamburg, J.R. Actin and Diseases of the Nervous System; Springer: Berlin/Heidelberg, Germany, 2011; pp. 201–234. [Google Scholar] [CrossRef]
- Eira, J.; Silva, C.S.; Sousa, M.M.; Liz, M.A. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog. Neurobiol. 2016, 141, 61–82. [Google Scholar] [CrossRef]
- Hensel, N.; Claus, P. The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist 2018, 24, 54–72. [Google Scholar] [CrossRef]
- Muñoz-Lasso, D.C.; Romá-Mateo, C.; Pallardó, F.V.; Gonzalez-Cabo, P. Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020, 9, 358. [Google Scholar] [CrossRef]
- Oliveira da Silva, M.I.; Liz, M.A. Linking Alpha-Synuclein to the Actin Cytoskeleton: Consequences to Neuronal Function. Front. Cell Dev. Biol. 2020, 8, 787. [Google Scholar] [CrossRef]
- Wurz, A.I.; Schulz, A.M.; O’Bryant, C.T.; Sharp, J.F.; Hughes, R.M. Cytoskeletal dysregulation and neurodegenerative disease: Formation, monitoring, and inhibition of cofilin-actin rods. Front. Cell. Neurosci. 2022, 16, 982074. [Google Scholar] [CrossRef]
- Cookson, M.R. RNA-binding proteins implicated in Neurodegenerative diseases. Wiley Interdiscip. Rev. RNA 2016, 8, e1397. [Google Scholar] [CrossRef] [PubMed]
- Conlon, E.G.; Manley, J.L. RNA-binding proteins in neurodegeneration: Mechanisms in aggregate. Genes. Dev. 2017, 31, 1509. [Google Scholar] [CrossRef] [PubMed]
- Maziuk, B.; Ballance, H.I.; Wolozin, B. Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front. Mol. Neurosci. 2017, 10, 257281. [Google Scholar] [CrossRef] [PubMed]
- Nussbacher, J.K.; Tabet, R.; Yeo, G.W.; Lagier-Tourenne, C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019, 102, 294–320. [Google Scholar] [CrossRef]
- Popper, B.; Scheidt, T.; Schieweck, R. RNA-binding protein dysfunction in neurodegeneration. Essays Biochem. 2021, 65, 975–986. [Google Scholar] [CrossRef]
- Rummens, J.; Da Cruz, S. RNA-binding proteins in ALS and FTD: From pathogenic mechanisms to therapeutic insights. Mol. Neurodegener. 2025, 20, 64. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.L.; Tan, J.M.M. Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochem. 2007, 8, S13. [Google Scholar] [CrossRef]
- Oddo, S. The ubiquitin-proteasome system in Alzheimer’s disease. J. Cell Mol. Med. 2008, 12, 363. [Google Scholar] [CrossRef]
- Mitra, S.; Finkbeiner, S. The Ubiquitin-Proteasome Pathway in Huntington’s Disease. Sci. World J. 2008, 8, 421. [Google Scholar] [CrossRef]
- Ortega, Z.; Lucas, J.J. Ubiquitin-proteasome system involvement in huntington’s disease. Front. Mol. Neurosci. 2014, 7, 99006. [Google Scholar] [CrossRef]
- Bedford, L.; Hay, D.; Paine, S.; Rezvani, N.; Mee, M.; Lowe, J.; Mayer, R.J. Is malfunction of the ubiquitin proteasome system the primary cause of α-synucleinopathies and other chronic human neurodegenerative disease? Biochim. Biophys. Acta Mol. Basis Dis. 2008, 1782, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Le Guerroué, F.; Youle, R.J. Ubiquitin signaling in neurodegenerative diseases: An autophagy and proteasome perspective. Cell Death Differ. 2020, 28, 439. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.F.; Gan, Z.Y.; Komander, D.; Dewson, G. Ubiquitin signalling in neurodegeneration: Mechanisms and therapeutic opportunities. Cell Death Differ. 2021, 28, 570. [Google Scholar] [CrossRef]
- Bowles, K.R.; Jones, L. Kinase Signalling in Huntington’s Disease. J. Huntingt. Dis. 2014, 3, 89–123. [Google Scholar] [CrossRef]
- Dzamko, N.; Zhou, J.; Huang, Y.; Halliday, G.M. Parkinson’s disease-implicated kinases in the brain; insights into disease pathogenesis. Front. Mol. Neurosci. 2014, 7, 57. [Google Scholar] [CrossRef]
- Mehdi, S.J.; Rosas-Hernandez, H.; Cuevas, E.; Lantz, S.M.; Barger, S.W.; Sarkar, S.; Paule, M.G.; Ali, S.F.; Imam, S.Z. Protein Kinases and Parkinson’s Disease. Int. J. Mol. Sci. 2016, 17, 1585. [Google Scholar] [CrossRef] [PubMed]
- Benn, C.L.; Dawson, L.A. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front. Aging Neurosci. 2020, 12, 564475. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Vandoorne, T.; Steyaert, J.; Staats, K.A.; Van Den Bosch, L. The multifaceted role of kinases in amyotrophic lateral sclerosis: Genetic, pathological and therapeutic implications. Brain 2020, 143, 1651. [Google Scholar] [CrossRef]
- Naim, A.; Farooqui, A.M.; Badruddeen Khan, M.I.; Akhtar, J.; Ahmad, A.; Islam, A. The Role of Kinases in Neurodegenerative Diseases: From Pathogenesis to Treatment. Eur. J. Neurosci. 2025, 61, e70156. [Google Scholar] [CrossRef] [PubMed]
- DeGeer, J.; Lamarche-Vane, N. Rho GTPases in neurodegeneration diseases. Exp. Cell Res. 2013, 319, 2384–2394. [Google Scholar] [CrossRef]
- Droppelmann, C.A.; Campos-Melo, D.; Volkening, K.; Strong, M.J.; Volkening, K.; Strong, M.J. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases. Front. Cell. Neurosci. 2014, 8, 282. [Google Scholar] [CrossRef]
- Stankiewicz, T.R.; Linseman, D.A. Rho family GTPases: Key players in neuronal development, neuronal survival, and neurodegeneration. Front. Cell. Neurosci. 2014, 8, 314. [Google Scholar] [CrossRef]
- Aguilar, B.J.; Zhu, Y.; Lu, Q. Rho GTPases as therapeutic targets in Alzheimer’s disease. Alzheimers Res. Ther. 2017, 9, 97. [Google Scholar] [CrossRef]
- Kiral, F.R.; Kohrs, F.E.; Jin, E.J.; Hiesinger, P.R. Rab GTPases and Membrane Trafficking in Neurodegeneration. Curr. Biol. 2018, 28, R471–R486. [Google Scholar] [CrossRef]
- Sastre, A.A.; Montoro, M.L.; Gálvez-Martín, P.; Lacerda, H.M.; Lucia, A.; Llavero, F.; Zugaza, J.L. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 6312. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, T.Y.; Yancey, J.; Luo, H.; Zhang, Y.W. Role of Rab GTPases in Alzheimer’s Disease. ACS Chem. Neurosci. 2019, 10, 828–838. [Google Scholar] [CrossRef]
- Bonet-Ponce, L.; Cookson, M.R. The role of Rab GTPases in the pathobiology of Parkinson’ disease. Curr. Opin. Cell Biol. 2019, 59, 73. [Google Scholar] [CrossRef]
- Shi, M.M.; Shi, C.H.; Xu, Y.M. Rab GTPases: The key players in the molecular pathway of Parkinson’s disease. Front. Cell. Neurosci. 2017, 11, 251256. [Google Scholar] [CrossRef]
- Wei, L.N. Chromatin remodeling and epigenetic regulation of the CrabpI gene in adipocyte differentiation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012, 1821, 206–212. [Google Scholar] [CrossRef]
- Wei, L.N. Cellular retinoic acid binding proteins: Genomic and non-genomic functions and their regulation. Subcell. Biochem. 2016, 81, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Lin, Y.W.; Nhieu, J.; Zhang, X.; Wei, L.N. Sonic hedgehog-gli1 signaling and cellular retinoic acid binding protein 1 gene regulation in motor neuron differentiation and diseases. Int. J. Mol. Sci. 2020, 21, 4125. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, F.; Niwa, J.I.; Ishigaki, S.; Katsuno, M.; Waza, M.; Yamamoto, M.; Doyu, M.; Sobue, G. Gene expression profiling toward understanding of ALS pathogenesis. Ann. N. Y. Acad. Sci. 2006, 1086, 1–10. [Google Scholar] [CrossRef]
- De Decker, M.; Zelina, P.; Moens, T.G.; Beckers, J.; Contardo, M.; Dittlau, K.S.; Van Schoor, E.; Ronisz, A.; Eggermont, K.; Moisse, M.; et al. C21ORF2 mutations point towards primary cilia dysfunction in amyotrophic lateral sclerosis. Brain 2025, 148, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, F.; Nizzardo, M.; Vashisht, S.; Molteni, E.; Melzi, V.; Taiana, M.; Salani, S.; Santonicola, P.; Di Schiavi, E.; Bucchia, M.; et al. Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and motif analysis of human motor neurons. Brain 2019, 142, 276–294. [Google Scholar] [CrossRef]
- Kleywegt, G.J.; Bergfors, T.; Senn, H.; Motte PLe Gsell, B.; Shud, K.; Jones, T. Crystal structures of cellular retinoic acid binding proteins I and II in complex with all-trans-retinoic acid and a synthetic retinoid. Structure 1994, 2, 1241–1258. [Google Scholar] [CrossRef]
- Thompson, J.R.; Bratt, J.M.; Banaszak, L.J. Crystal Structure of Cellular Retinoic Acid Binding Protein I Shows Increased Access to the Binding Cavity due to Formation of an Intermolecular Β-Sheet. J. Mol. Biol. 1995, 252, 433–446. [Google Scholar] [CrossRef]
- Tomlinson, C.W.E.; Cornish, K.A.S.; Whiting, A.; Pohl, E. Structure-functional relationship of cellular retinoic acid-binding proteins i and II interacting with natural and synthetic ligands. Acta Crystallogr. D Struct. Biol. 2021, 77, 164–175. [Google Scholar] [CrossRef]
- Persaud, S.D.; Lin, Y.-W.; Wu, C.-Y.; Kagechika, H.; Wei, L.-N. Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell. Signal 2013, 25, 19–25. [Google Scholar] [CrossRef]
- Nhieu, J.; Miller, M.C.; Lerdall, T.A.; Mayo, K.H.; Wei, L.N. Molecular basis for cellular retinoic acid-binding protein 1 in modulating CaMKII activation. Front. Mol. Biosci. 2023, 10, 1268843. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Lefkowitz, R.J.; Rajagopal, S. Biased signalling: From simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 2018, 17, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; O’Malley, B.W. Coregulator Function: A Key to Understanding Tissue Specificity of Selective Receptor Modulators. Endocr. Rev. 2004, 25, 45–71. [Google Scholar] [CrossRef] [PubMed]
GO Term | *Associated IP-MS Proteins | Implications in Neurodegeneration | Relevant Diseases | References |
---|---|---|---|---|
Actin filament binding (GO:0051015) | ACTR2, ACTR3, ACTR3B, AIF1L, ARPC3, ARPC4, ARPC5L, CAPZA2, CFL2, CORO1A, CORO1B, CTNNA1, EPB41L2, EZR, LIMA1, MSN, PLS1, RDX, SHTN1, TWF1, TWF2, WDR1, TMOD1 | Dysregulation of actin dynamics or mutations in actin-binding proteins is associated with the following:
| AD, ALS, HD, PD | [56,57,58,59,60,61] |
RNA binding (GO:0003723) | RPL30, RPL10, RPL31, RPL11, RPS27L, GSPT1, IGF2BP1, RACK1, RPL13, IGF2BP3, RPS11, HNRNPA0, CNBP, PABPC4, RPL22, RPS28, RPS29, SNRPG, PDCD4, RPS20, RPS21 | Mutated, aggregated, or mis-localization of RNA-binding proteins is associated with the following:
| AD, ALS, HD, PD, SMA | [62,63,64,65,66,67] |
Ubiquitin-protein transferase regulator activity (GO:0055106) | RPL11, GLMN, PIN1, RPS20 | Aberrant ubiquitin transferase expression, activity, or mutations have been associated with the following:
| AD, ALS, HD, PD | [68,69,70,71,72,73,74] |
Protein kinase binding (GO:0019901) | PPP1CB, GLRX3, TWF2, RACK1, PIN1, MSN, SFN, EZR, PRKACA, HNRNPA0 | Aberrant kinase expression, activity, or mutations have been associated with the following:
| AD, ALS, HD, PD | [75,76,77,78,79,80] |
GTPase Activity (GO:0003924) | DRG1, RAB6B, GSPT1, SEPTIN11 | Aberrant GTPase expression, activity, or mutations have been associated with the following:
| AD, ALS, HD, PD | [81,82,83,84,85,86,87,88,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhieu, J.; Wei, L.-N. Targeting CRABP1 Signalosomes in Managing Neurodegeneration. Biomolecules 2025, 15, 1428. https://doi.org/10.3390/biom15101428
Nhieu J, Wei L-N. Targeting CRABP1 Signalosomes in Managing Neurodegeneration. Biomolecules. 2025; 15(10):1428. https://doi.org/10.3390/biom15101428
Chicago/Turabian StyleNhieu, Jennifer, and Li-Na Wei. 2025. "Targeting CRABP1 Signalosomes in Managing Neurodegeneration" Biomolecules 15, no. 10: 1428. https://doi.org/10.3390/biom15101428
APA StyleNhieu, J., & Wei, L.-N. (2025). Targeting CRABP1 Signalosomes in Managing Neurodegeneration. Biomolecules, 15(10), 1428. https://doi.org/10.3390/biom15101428