Calcium Signaling and Cardiac Adaptation to Stress: Focus on Pregnancy and Diabetes
Abstract
1. Introduction
2. Cardiac Adaptation to Pregnancy
3. Cardiac Remodeling in Diabetes
4. Myocyte Ca2+ Cycling in Pregnancy and Diabetes
5. Role of Ca2+ Signaling in Cardiac Hypertrophy Associated with Pregnancy and Diabetes
6. Role of Ca2+ Signaling in the Metabolic Adaptation of the Heart to Pregnancy and Diabetes
7. Ca2+ Signaling and Electrical Remodeling of the Heart in Pregnancy and Diabetes
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APD | Action potential duration |
ATP | Adenosine triphosphate |
CaMKII | Calcium/calmodulin-dependent protein kinase II |
DAD | Delayed after depolarization |
EMRE | essential mitochondrial response element |
ETC | Electron transport chain |
FADH2 | Flavin adenine dinucleotide |
GLUT | Glucose transporter |
HDAC | Histone deacetylase |
ICD | Intercalated disk |
LTCC | L-type Ca2+ channels |
MCU | Mitochondrial calcium uniporter |
MCUB | Mitochondrial calcium uniporter dominant negative subunit-β |
MEF2 | Myocyte enhancer factor 2 |
MPTP | Mitochondrial permeability transition pore |
MICU1/2 | Regulatory subunits mitochondrial calcium uptake 1 and 2 |
NADH | Nicotinamide adenine dinucleotide (NAD) + Hydrogen (H) |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NCLX | Na+/Li+/Ca2+ exchanger, mitochondrial Na+/Ca2+ exchanger |
NCX | Sarcolemmal Na+/Ca2+ exchanger |
NFAT | Nuclear factor of activated T cells |
NO | Nitric oxide |
PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
PKA | Protein kinase A |
QTc | Corrected QT interval |
ROS | Reactive oxygen species |
RyR | Ryanodine receptors |
SERCA | Sarco/endoplasmic reticulum calcium ATPase |
SGLT2 | Sodium–glucose cotransporter 2 |
SR | Sarcoplasmic reticulum |
ZSF-1 | Zucker fatty and spontaneously hypertensive rat |
References
- Eisner, D.A.; Caldwell, J.L.; Kistamas, K.; Trafford, A.W. Calcium and Excitation-Contraction Coupling in the Heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [CrossRef]
- Bers, D.M.; Despa, S. Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J. Pharmacol. Sci. 2006, 100, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, B.J.; Molkentin, J.D. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem. Biophys. Res. Commun. 2004, 322, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Chaklader, M.; Rothermel, B.A. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021, 87, 110134. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.E.; Brown, J.H.; Bers, D.M. CaMKII in myocardial hypertrophy and heart failure. J. Mol. Cell Cardiol. 2011, 51, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Bers, D.M. Ca2+-calmodulin-dependent protein kinase II regulation of cardiac excitation-transcription coupling. Heart Rhythm. 2011, 8, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- McCauley, M.D.; Wehrens, X.H. Ryanodine receptor phosphorylation, calcium/calmodulin-dependent protein kinase II, and life-threatening ventricular arrhythmias. Trends Cardiovasc. Med. 2011, 21, 48–51. [Google Scholar] [CrossRef]
- Hund, T.J.; Mohler, P.J. Role of CaMKII in cardiac arrhythmias. Trends Cardiovasc. Med. 2015, 25, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Takla, M.; Huang, C.L.; Jeevaratnam, K. The cardiac CaMKII-Na(v)1.5 relationship: From physiology to pathology. J. Mol. Cell Cardiol. 2020, 139, 190–200. [Google Scholar] [CrossRef]
- Hegyi, B.; Bers, D.M.; Bossuyt, J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J. Mol. Cell Cardiol. 2019, 127, 246–259. [Google Scholar] [CrossRef]
- Mattiazzi, A.; Jaquenod De Giusti, C.; Valverde, C.A. CaMKII at the crossroads: Calcium dysregulation, and post-translational modifications driving cell death. J. Physiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; O’Rourke, B. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. J. Bioenerg. Biomembr. 2009, 41, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Bertero, E.; Maack, C. Calcium Signaling and Reactive Oxygen Species in Mitochondria. Circ. Res. 2018, 122, 1460–1478. [Google Scholar] [CrossRef]
- Popoiu, T.A.; Maack, C.; Bertero, E. Mitochondrial calcium signaling and redox homeostasis in cardiac health and disease. Front. Mol. Med. 2023, 3, 1235188. [Google Scholar] [CrossRef] [PubMed]
- Balderas, E.; Lee, S.H.J.; Rai, N.K.; Mollinedo, D.M.; Duron, H.E.; Chaudhuri, D. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Physiology 2024, 39, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Sanghavi, M.; Rutherford, J.D. Cardiovascular physiology of pregnancy. Circulation 2014, 130, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Cameron, N.A.; Lindley, K.J. Pregnancy as an Early Cardiovascular Moment: Peripartum Cardiovascular Health. Circ. Res. 2023, 132, 1584–1606. [Google Scholar] [CrossRef]
- Chung, E.; Leinwand, L.A. Pregnancy as a cardiac stress model. Cardiovasc. Res. 2014, 101, 561–570. [Google Scholar] [CrossRef]
- Savu, O.; Jurcut, R.; Giusca, S.; van Mieghem, T.; Gussi, I.; Popescu, B.A.; Ginghina, C.; Rademakers, F.; Deprest, J.; Voigt, J.U. Morphological and functional adaptation of the maternal heart during pregnancy. Circ. Cardiovasc. Imaging 2012, 5, 289–297. [Google Scholar] [CrossRef]
- Eghbali, M.; Deva, R.; Alioua, A.; Minosyan, T.Y.; Ruan, H.; Wang, Y.; Toro, L.; Stefani, E. Molecular and functional signature of heart hypertrophy during pregnancy. Circ. Res. 2005, 96, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Umar, S.; Nadadur, R.; Iorga, A.; Amjedi, M.; Matori, H.; Eghbali, M. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J. Appl. Physiol. 2012, 113, 1253–1259. [Google Scholar] [CrossRef]
- Hall, M.E.; George, E.M.; Granger, J.P. The heart during pregnancy. Rev. Esp. Cardiol. 2011, 64, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Lechmanova, M.; Kittnar, O.; Mlcek, M.; Slavicek, J.; Dohnalova, A.; Havranek, S.; Kolarik, J.; Parizek, A. QT dispersion and T-loop morphology in late pregnancy and after delivery. Physiol. Res. 2002, 51, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Tanindi, A.; Akgun, N.; Pabuccu, E.G.; Gursoy, A.Y.; Yuce, E.; Tore, H.F.; Duvan, C.I. Electrocardiographic P-Wave Duration, QT Interval, T Peak to End Interval and Tp-e/QT Ratio in Pregnancy with Respect to Trimesters. Ann. Noninvasive Electrocardiol. 2016, 21, 169–174. [Google Scholar] [CrossRef]
- Bett, G.C. Hormones and sex differences: Changes in cardiac electrophysiology with pregnancy. Clin. Sci. 2016, 130, 747–759. [Google Scholar] [CrossRef]
- Tamirisa, K.P.; Elkayam, U.; Briller, J.E.; Mason, P.K.; Pillarisetti, J.; Merchant, F.M.; Patel, H.; Lakkireddy, D.R.; Russo, A.M.; Volgman, A.S.; et al. Arrhythmias in Pregnancy. JACC Clin. Electrophysiol. 2022, 8, 120–135. [Google Scholar] [CrossRef]
- Vaidya, V.R.; Arora, S.; Patel, N.; Badheka, A.O.; Patel, N.; Agnihotri, K.; Billimoria, Z.; Turakhia, M.P.; Friedman, P.A.; Madhavan, M.; et al. Burden of Arrhythmia in Pregnancy. Circulation 2017, 135, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Yeung, F.; Leinwand, L.A. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation. J. Appl. Physiol. 2012, 112, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Fulghum, K.L.; Smith, J.B.; Chariker, J.; Garrett, L.F.; Brittian, K.R.; Lorkiewicz, P.K.; McNally, L.A.; Uchida, S.; Jones, S.P.; Hill, B.G.; et al. Metabolic signatures of pregnancy-induced cardiac growth. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H146–H164. [Google Scholar] [CrossRef] [PubMed]
- Schannwell, C.M.; Zimmermann, T.; Schneppenheim, M.; Plehn, G.; Marx, R.; Strauer, B.E. Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology 2002, 97, 73–78. [Google Scholar] [CrossRef]
- Appiah, D.; Schreiner, P.J.; Gunderson, E.P.; Konety, S.H.; Jacobs, D.R., Jr.; Nwabuo, C.C.; Ebong, I.A.; Whitham, H.K.; Goff, D.C., Jr.; Lima, J.A.; et al. Association of Gestational Diabetes Mellitus With Left Ventricular Structure and Function: The CARDIA Study. Diabetes Care 2016, 39, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Soohoo, M.; Sorensen, H.T.; Li, J.; Arah, O.A. Gestational Diabetes Mellitus and the Risks of Overall and Type-Specific Cardiovascular Diseases: A Population- and Sibling-Matched Cohort Study. Diabetes Care 2022, 45, 151–159. [Google Scholar] [CrossRef]
- Lee, S.M.; Shivakumar, M.; Park, J.W.; Jung, Y.M.; Choe, E.K.; Kwak, S.H.; Oh, S.; Park, J.S.; Jun, J.K.; Kim, D.; et al. Long-term cardiovascular outcomes of gestational diabetes mellitus: A prospective UK Biobank study. Cardiovasc. Diabetol. 2022, 21, 221. [Google Scholar] [CrossRef]
- Verma, N.; Srodulski, S.; Velmurugan, S.; Hoskins, A.; Pandey, V.K.; Despa, F.; Despa, S. Gestational diabetes triggers postpartum cardiac hypertrophy via activation of calcineurin/NFAT signaling. Sci. Rep. 2021, 11, 20926. [Google Scholar] [CrossRef]
- Velmurugan, S.; Pandey, V.K.; Verma, N.; Kotiya, D.; Despa, F.; Despa, S. Cardiac remodelling, recognition memory deficits and accelerated ageing in a rat model of gestational diabetes. Diabetologia 2025, 68, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005, 85, 1093–1129. [Google Scholar] [CrossRef]
- Liu, L.X.; Arany, Z. Maternal cardiac metabolism in pregnancy. Cardiovasc. Res. 2014, 101, 545–553. [Google Scholar] [CrossRef]
- Schulman-Geltzer, E.B.; Fulghum, K.L.; Singhal, R.A.; Hill, B.G.; Collins, H.E. Cardiac mitochondrial metabolism during pregnancy and the postpartum period. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H1324–H1335. [Google Scholar] [CrossRef]
- Rimbaud, S.; Sanchez, H.; Garnier, A.; Fortin, D.; Bigard, X.; Veksler, V.; Ventura-Clapier, R. Stimulus specific changes of energy metabolism in hypertrophied heart. J. Mol. Cell Cardiol. 2009, 46, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Rodriguez, J.A.; Virgen-Ortiz, A.; Ruiz, E.A.; Ortiz, R.M.; Sonanez-Organis, J.G. Perilipin Isoforms and PGC-1alpha Are Regulated Differentially in Rat Heart during Pregnancy-Induced Physiological Cardiac Hypertrophy. Medicina 2022, 58, 1433. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.C.; Machikas, A.M.; Korzick, D.H. Age-dependent reductions in mitochondrial respiration are exacerbated by calcium in the female rat heart. Gend. Med. 2012, 9, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, R.H.; Abel, E.D. Basic Mechanisms of Diabetic Heart Disease. Circ. Res. 2020, 126, 1501–1525. [Google Scholar] [CrossRef]
- Ho, K.L.; Karwi, Q.G.; Connolly, D.; Pherwani, S.; Ketema, E.B.; Ussher, J.R.; Lopaschuk, G.D. Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia 2022, 65, 411–423. [Google Scholar] [CrossRef]
- MacDonald, M.R.; Petrie, M.C.; Varyani, F.; Ostergren, J.; Michelson, E.L.; Young, J.B.; Solomon, S.D.; Granger, C.B.; Swedberg, K.; Yusuf, S.; et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: An analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur. Heart J. 2008, 29, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Roman, M.J.; Paranicas, M.; O’Grady, M.J.; Lee, E.T.; Welty, T.K.; Fabsitz, R.R.; Robbins, D.; Rhoades, E.R.; Howard, B.V. Impact of diabetes on cardiac structure and function: The strong heart study. Circulation 2000, 101, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Zabalgoitia, M.; Ismaeil, M.F.; Anderson, L.; Maklady, F.A. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am. J. Cardiol. 2001, 87, 320–323. [Google Scholar] [CrossRef]
- Liu, J.E.; Palmieri, V.; Roman, M.J.; Bella, J.N.; Fabsitz, R.; Howard, B.V.; Welty, T.K.; Lee, E.T.; Devereux, R.B. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: The Strong Heart Study. J. Am. Coll. Cardiol. 2001, 37, 1943–1949. [Google Scholar] [CrossRef]
- Chaudhary, A.K.; Aneja, G.K.; Shukla, S.; Razi, S.M. Study on Diastolic Dysfunction in Newly Diagnosed Type 2 Diabetes Mellitus and its Correlation with Glycosylated Haemoglobin (HbA1C). J. Clin. Diagn. Res. 2015, 9, OC20. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A.; Morris, A.D.; Struthers, A.D. The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia 2005, 48, 1971–1979. [Google Scholar] [CrossRef] [PubMed]
- Paiman, E.H.M.; van Eyk, H.J.; Bizino, M.B.; Dekkers, I.A.; de Heer, P.; Smit, J.W.A.; Jazet, I.M.; Lamb, H.J. Phenotyping diabetic cardiomyopathy in Europeans and South Asians. Cardiovasc. Diabetol. 2019, 18, 133. [Google Scholar] [CrossRef] [PubMed]
- De Marco, M.; de Simone, G.; Roman, M.J.; Chinali, M.; Lee, E.T.; Calhoun, D.; Howard, B.V.; Devereux, R.B. Cardiac geometry and function in diabetic or prediabetic adolescents and young adults: The Strong Heart Study. Diabetes Care 2011, 34, 2300–2305. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, V.H.; Billaudelle, A.M.; Schulz, A.; Keller, K.; Hahad, O.; Trobs, S.O.; Koeck, T.; Michal, M.; Schuster, A.K.; Toenges, G.; et al. Disturbed Glucose Metabolism and Left Ventricular Geometry in the General Population. J. Clin. Med. 2021, 10, 3851. [Google Scholar] [CrossRef] [PubMed]
- Succurro, E.; Miceli, S.; Fiorentino, T.V.; Sciacqua, A.; Perticone, M.; Andreozzi, F.; Sesti, G. Sex-specific differences in left ventricular mass and myocardial energetic efficiency in non-diabetic, pre-diabetic and newly diagnosed type 2 diabetic subjects. Cardiovasc. Diabetol. 2021, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C.T.; Bertini, M.; Ewe, S.H.; van der Velde, E.T.; Leung, D.Y.; Delgado, V.; Bax, J.J. Defining Subclinical Myocardial Dysfunction and Implications for Patients With Diabetes Mellitus and Preserved Ejection Fraction. Am. J. Cardiol. 2019, 124, 892–898. [Google Scholar] [CrossRef]
- Ingelsson, E.; Sundstrom, J.; Arnlov, J.; Zethelius, B.; Lind, L. Insulin resistance and risk of congestive heart failure. JAMA 2005, 294, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Rooney, M.R.; Wallace, A.S.; Echouffo Tcheugui, J.B.; Fang, M.; Hu, J.; Lutsey, P.L.; Grams, M.E.; Coresh, J.; Selvin, E. Prediabetes is associated with elevated risk of clinical outcomes even without progression to diabetes. Diabetologia 2025, 68, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Boudina, S.; Abel, E.D. Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord. 2010, 11, 31–39. [Google Scholar] [CrossRef]
- Kwong, R.Y.; Sattar, H.; Wu, H.; Vorobiof, G.; Gandla, V.; Steel, K.; Siu, S.; Brown, K.A. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 2008, 118, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Van Linthout, S.; Seeland, U.; Riad, A.; Eckhardt, O.; Hohl, M.; Dhayat, N.; Richter, U.; Fischer, J.W.; Bohm, M.; Pauschinger, M.; et al. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic. Res. Cardiol. 2008, 103, 319–327. [Google Scholar] [CrossRef]
- Huynh, K.; Kiriazis, H.; Du, X.J.; Love, J.E.; Jandeleit-Dahm, K.A.; Forbes, J.M.; McMullen, J.R.; Ritchie, R.H. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 2012, 55, 1544–1553. [Google Scholar] [CrossRef]
- Wong, T.C.; Piehler, K.M.; Kang, I.A.; Kadakkal, A.; Kellman, P.; Schwartzman, D.S.; Mulukutla, S.R.; Simon, M.A.; Shroff, S.G.; Kuller, L.H.; et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur. Heart J. 2014, 35, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhu, L.; Wu, W.; Jiang, M.; Zhang, H.; Zhou, D.; Xu, J.; Wang, Y.; Zhang, Q.; Sirajuddin, A.; et al. Myocardial Abnormalities Across the AHA/ACC Stages of Heart Failure in Patients With Diabetes. JACC Asia 2024, 4, 940–952. [Google Scholar] [CrossRef]
- Feng, B.; Chen, S.; Chiu, J.; George, B.; Chakrabarti, S. Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E1119–E1126. [Google Scholar] [CrossRef]
- Taegtmeyer, H.; McNulty, P.; Young, M.E. Adaptation and maladaptation of the heart in diabetes: Part I: General concepts. Circulation 2002, 105, 1727–1733. [Google Scholar] [CrossRef]
- Panwar, A.; Malik, S.O.; Adib, M.; Lopaschuk, G.D. Cardiac energy metabolism in diabetes: Emerging therapeutic targets and clinical implications. Am. J. Physiol. Heart Circ. Physiol. 2025, 328, H1089–H1112. [Google Scholar] [CrossRef]
- Anderson, E.J.; Kypson, A.P.; Rodriguez, E.; Anderson, C.A.; Lehr, E.J.; Neufer, P.D. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J. Am. Coll. Cardiol. 2009, 54, 1891–1898. [Google Scholar] [CrossRef]
- Guzik, T.J.; Mussa, S.; Gastaldi, D.; Sadowski, J.; Ratnatunga, C.; Pillai, R.; Channon, K.M. Mechanisms of increased vascular superoxide production in human diabetes mellitus: Role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002, 105, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Despa, S.; Sharma, S.; Harris, T.R.; Dong, H.; Li, N.; Chiamvimonvat, N.; Taegtmeyer, H.; Margulies, K.B.; Hammock, B.D.; Despa, F. Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model. J. Am. Heart Assoc. 2014, 3, e001015. [Google Scholar] [CrossRef]
- Velmurugan, S.; Liu, T.; Chen, K.C.; Despa, F.; O’Rourke, B.; Despa, S. Distinct Effects of Mitochondrial Na+/Ca2+ Exchanger Inhibition and Ca2+ Uniporter Activation on Ca2+ Sparks and Arrhythmogenesis in Diabetic Rats. J. Am. Heart Assoc. 2023, 12, e029997. [Google Scholar] [CrossRef] [PubMed]
- Huynh, K.; Bernardo, B.C.; McMullen, J.R.; Ritchie, R.H. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 2014, 142, 375–415. [Google Scholar] [CrossRef] [PubMed]
- Veglio, M.; Borra, M.; Stevens, L.K.; Fuller, J.H.; Perin, P.C. The relation between QTc interval prolongation and diabetic complications. The EURODIAB IDDM Complication Study Group. Diabetologia 1999, 42, 68–75. [Google Scholar] [CrossRef]
- Veglio, M.; Bruno, G.; Borra, M.; Macchia, G.; Bargero, G.; D’Errico, N.; Pagano, G.F.; Cavallo-Perin, P. Prevalence of increased QT interval duration and dispersion in type 2 diabetic patients and its relationship with coronary heart disease: A population-based cohort. J. Intern. Med. 2002, 251, 317–324. [Google Scholar] [CrossRef]
- Whitsel, E.A.; Boyko, E.J.; Rautaharju, P.M.; Raghunathan, T.E.; Lin, D.; Pearce, R.M.; Weinmann, S.A.; Siscovick, D.S. Electrocardiographic QT interval prolongation and risk of primary cardiac arrest in diabetic patients. Diabetes Care 2005, 28, 2045–2047. [Google Scholar] [CrossRef] [PubMed]
- Fagher, K.; Londahl, M. The impact of metabolic control and QTc prolongation on all-cause mortality in patients with type 2 diabetes and foot ulcers. Diabetologia 2013, 56, 1140–1147. [Google Scholar] [CrossRef]
- Okin, P.M.; Devereux, R.B.; Lee, E.T.; Galloway, J.M.; Howard, B.V. Electrocardiographic repolarization complexity and abnormality predict all-cause and cardiovascular mortality in diabetes: The strong heart study. Diabetes 2004, 53, 434–440. [Google Scholar] [CrossRef]
- Giunti, S.; Gruden, G.; Fornengo, P.; Barutta, F.; Amione, C.; Ghezzo, G.; Cavallo-Perin, P.; Bruno, G. Increased QT interval dispersion predicts 15-year cardiovascular mortality in type 2 diabetic subjects: The population-based Casale Monferrato Study. Diabetes Care 2012, 35, 581–583. [Google Scholar] [CrossRef]
- Rana, B.S.; Lim, P.O.; Naas, A.A.; Ogston, S.A.; Newton, R.W.; Jung, R.T.; Morris, A.D.; Struthers, A.D. QT interval abnormalities are often present at diagnosis in diabetes and are better predictors of cardiac death than ankle brachial pressure index and autonomic function tests. Heart 2005, 91, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Movahed, M.R.; Hashemzadeh, M.; Jamal, M. Increased prevalence of ventricular fibrillation in patients with type 2 diabetes mellitus. Heart Vessel. 2007, 22, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Chen-Scarabelli, C.; Scarabelli, T.M. Suboptimal glycemic control, independently of QT interval duration, is associated with increased risk of ventricular arrhythmias in a high-risk population. Pacing Clin. Electrophysiol. 2006, 29, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Siscovick, D.S.; Sotoodehnia, N.; Rea, T.D.; Raghunathan, T.E.; Jouven, X.; Lemaitre, R.N. Type 2 diabetes mellitus and the risk of sudden cardiac arrest in the community. Rev. Endocr. Metab. Disord. 2010, 11, 53–59. [Google Scholar] [CrossRef]
- Eranti, A.; Kerola, T.; Aro, A.L.; Tikkanen, J.T.; Rissanen, H.A.; Anttonen, O.; Junttila, M.J.; Knekt, P.; Huikuri, H.V. Diabetes, glucose tolerance, and the risk of sudden cardiac death. BMC Cardiovasc. Disord. 2016, 16, 51. [Google Scholar] [CrossRef]
- Hess, P.L.; Al-Khalidi, H.R.; Friedman, D.J.; Mulder, H.; Kucharska-Newton, A.; Rosamond, W.R.; Lopes, R.D.; Gersh, B.J.; Mark, D.B.; Curtis, L.H.; et al. The Metabolic Syndrome and Risk of Sudden Cardiac Death: The Atherosclerosis Risk in Communities Study. J. Am. Heart Assoc. 2017, 6, e006103. [Google Scholar] [CrossRef]
- Lynge, T.H.; Svane, J.; Pedersen-Bjergaard, U.; Gislason, G.; Torp-Pedersen, C.; Banner, J.; Risgaard, B.; Winkel, B.G.; Tfelt-Hansen, J. Sudden cardiac death among persons with diabetes aged 1–49 years: A 10-year nationwide study of 14 294 deaths in Denmark. Eur. Heart J. 2020, 41, 2699–2706. [Google Scholar] [CrossRef] [PubMed]
- Long, V.; Motok, B.; Leblanc, E.; Tannous, G.; Pyle, W.G.; Fiset, C. Arrhythmogenic atrial remodeling during pregnancy in mice. Heart Rhythm. 2025, 22, e215–e225. [Google Scholar] [CrossRef] [PubMed]
- Feridooni, H.A.; MacDonald, J.K.; Ghimire, A.; Pyle, W.G.; Howlett, S.E. Acute exposure to progesterone attenuates cardiac contraction by modifying myofilament calcium sensitivity in the female mouse heart. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H46–H59. [Google Scholar] [CrossRef]
- Jiang, C.; Poole-Wilson, P.A.; Sarrel, P.M.; Mochizuki, S.; Collins, P.; MacLeod, K.T. Effect of 17 beta-oestradiol on contraction, Ca2+ current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes. Br. J. Pharmacol. 1992, 106, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Poppas, A.; Shroff, S.G.; Korcarz, C.E.; Hibbard, J.U.; Berger, D.S.; Lindheimer, M.D.; Lang, R.M. Serial assessment of the cardiovascular system in normal pregnancy. Role of arterial compliance and pulsatile arterial load. Circulation 1997, 95, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Ducas, R.A.; Elliott, J.E.; Melnyk, S.F.; Premecz, S.; daSilva, M.; Cleverley, K.; Wtorek, P.; Mackenzie, G.S.; Helewa, M.E.; Jassal, D.S. Cardiovascular magnetic resonance in pregnancy: Insights from the cardiac hemodynamic imaging and remodeling in pregnancy (CHIRP) study. J. Cardiovasc. Magn. Reson. 2014, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Dattani, A.; Singh, A.; McCann, G.P.; Gulsin, G.S. Myocardial Calcium Handling in Type 2 Diabetes: A Novel Therapeutic Target. J. Cardiovasc. Dev. Dis. 2023, 11, 12. [Google Scholar] [CrossRef]
- Jaquenod De Giusti, C.; Palomeque, J.; Mattiazzi, A. Ca2+ mishandling and mitochondrial dysfunction: A converging road to prediabetic and diabetic cardiomyopathy. Pflug. Arch. 2022, 474, 33–61. [Google Scholar] [CrossRef]
- Fauconnier, J.; Lanner, J.T.; Zhang, S.J.; Tavi, P.; Bruton, J.D.; Katz, A.; Westerblad, H. Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca2+ transients and reveal mitochondrial Ca2+ handling defects in cardiomyocytes of ob/ob mice. Diabetes 2005, 54, 2375–2381. [Google Scholar] [CrossRef]
- Belke, D.D.; Swanson, E.A.; Dillmann, W.H. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 2004, 53, 3201–3208. [Google Scholar] [CrossRef]
- Pereira, L.; Matthes, J.; Schuster, I.; Valdivia, H.H.; Herzig, S.; Richard, S.; Gomez, A.M. Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 2006, 55, 608–615. [Google Scholar] [CrossRef]
- Lacombe, V.A.; Viatchenko-Karpinski, S.; Terentyev, D.; Sridhar, A.; Emani, S.; Bonagura, J.D.; Feldman, D.S.; Gyorke, S.; Carnes, C.A. Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1787–R1797. [Google Scholar] [CrossRef]
- Stolen, T.O.; Hoydal, M.A.; Kemi, O.J.; Catalucci, D.; Ceci, M.; Aasum, E.; Larsen, T.; Rolim, N.; Condorelli, G.; Smith, G.L.; et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ. Res. 2009, 105, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Guglielmino, K.; Jackson, K.; Harris, T.R.; Vu, V.; Dong, H.; Dutrow, G.; Evans, J.E.; Graham, J.; Cummings, B.P.; Havel, P.J.; et al. Pharmacological inhibition of soluble epoxide hydrolase provides cardioprotection in hyperglycemic rats. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H853–H862. [Google Scholar] [CrossRef] [PubMed]
- Kranstuber, A.L.; Del Rio, C.; Biesiadecki, B.J.; Hamlin, R.L.; Ottobre, J.; Gyorke, S.; Lacombe, V.A. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front. Physiol. 2012, 3, 292. [Google Scholar] [CrossRef] [PubMed]
- Kadosaka, T.; Watanabe, M.; Natsui, H.; Koizumi, T.; Nakao, M.; Koya, T.; Hagiwara, H.; Kamada, R.; Temma, T.; Karube, F.; et al. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca2+ handling in ventricular cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2023, 324, H341–H354. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yuan, J.; Shen, H.; Zhu, Q.; Chen, B.; Wang, J.; Zhu, W.; Yorek, M.A.; Hall, D.D.; Wang, Z.; et al. Calpain inhibition protects against atrial fibrillation by mitigating diabetes-associated atrial fibrosis and calcium handling dysfunction in type 2 diabetes mice. Heart Rhythm. 2024, 21, 1143–1151. [Google Scholar] [CrossRef]
- Despa, S.; Margulies, K.B.; Chen, L.; Knowlton, A.A.; Havel, P.J.; Taegtmeyer, H.; Bers, D.M.; Despa, F. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: A study in humans and rats. Circ. Res. 2012, 110, 598–608. [Google Scholar] [CrossRef]
- Popescu, I.; Yin, G.; Velmurugan, S.; Erickson, J.R.; Despa, F.; Despa, S. Lower sarcoplasmic reticulum Ca2+ threshold for triggering afterdepolarizations in diabetic rat hearts. Heart Rhythm. 2019, 16, 765–772. [Google Scholar] [CrossRef]
- Bode, D.; Rolim, N.P.L.; Guthof, T.; Hegemann, N.; Wakula, P.; Primessnig, U.; Berre, A.M.O.; Adams, V.; Wisloff, U.; Pieske, B.M.; et al. Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction. ESC Heart Fail. 2021, 8, 1806–1818. [Google Scholar] [CrossRef]
- Lee, T.I.; Chen, Y.C.; Lin, Y.K.; Chung, C.C.; Lu, Y.Y.; Kao, Y.H.; Chen, Y.J. Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. Int. J. Mol. Sci. 2019, 20, 1680. [Google Scholar] [CrossRef]
- Shao, C.H.; Wehrens, X.H.; Wyatt, T.A.; Parbhu, S.; Rozanski, G.J.; Patel, K.P.; Bidasee, K.R. Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. J. Appl. Physiol. 2009, 106, 1280–1292. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, Y.; Xie, A.; Kim, T.Y.; Terentyeva, R.; Liu, M.; Shi, G.; Feng, F.; Choi, B.R.; Terentyev, D.; et al. Interleukin-1beta, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk. JACC Basic. Transl. Sci. 2021, 6, 42–52. [Google Scholar] [CrossRef]
- Sommese, L.; Valverde, C.A.; Blanco, P.; Castro, M.C.; Rueda, O.V.; Kaetzel, M.; Dedman, J.; Anderson, M.E.; Mattiazzi, A.; Palomeque, J. Ryanodine receptor phosphorylation by CaMKII promotes spontaneous Ca2+ release events in a rodent model of early stage diabetes: The arrhythmogenic substrate. Int. J. Cardiol. 2016, 202, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.M.; Zhong, Y.; Hoit, B.D.; Grupp, I.L.; Hahn, H.; Dilly, K.W.; Guatimosim, S.; Lederer, W.J.; Matlib, M.A. Defective intracellular Ca2+ signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1398–H1408. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Ch, Y.S.; Lee, H.R.; Park, S.Y.; Kim, Y.H. Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Life Sci. 2001, 70, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Ahmed, S.; Grupp, I.L.; Matlib, M.A. Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H1137–H1147. [Google Scholar] [CrossRef]
- Vasanji, Z.; Dhalla, N.S.; Netticadan, T. Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart. Mol. Cell Biochem. 2004, 261, 245–249. [Google Scholar] [CrossRef]
- Shi, F.H.; Cheng, Y.S.; Dai, D.Z.; Peng, H.J.; Cong, X.D.; Dai, Y. Depressed calcium-handling proteins due to endoplasmic reticulum stress and apoptosis in the diabetic heart are attenuated by argirein. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 521–531. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Dai, D.Z.; Dai, Y.; Zhu, D.D.; Liu, B.C. Exogenous hydrogen sulphide ameliorates diabetic cardiomyopathy in rats by reversing disordered calcium-handling system in sarcoplasmic reticulum. J. Pharm. Pharmacol. 2016, 68, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Jiang, Y.P.; Xu, X.H.; Ballou, L.M.; Cohen, I.S.; Lin, R.Z. Decreased L-type Ca2+ current in cardiac myocytes of type 1 diabetic Akita mice due to reduced phosphatidylinositol 3-kinase signaling. Diabetes 2007, 56, 2780–2789. [Google Scholar] [CrossRef] [PubMed]
- Sultan, A.; Adeghate, E.; Emerald, B.S.; Qureshi, M.A.; Minhas, S.T.; Howarth, F.C. Effects of Obesity and Diabesity on Ventricular Muscle Structure and Function in the Zucker Rat. Life 2022, 12, 1221. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Noda, N. Cytosolic Ca2+ concentration decreases in diabetic rat myocytes. Cardiovasc. Res. 1997, 34, 99–103. [Google Scholar] [CrossRef]
- Noda, N.; Hayashi, H.; Miyata, H.; Suzuki, S.; Kobayashi, A.; Yamazaki, N. Cytosolic Ca2+ concentration and pH of diabetic rat myocytes during metabolic inhibition. J. Mol. Cell Cardiol. 1992, 24, 435–446. [Google Scholar] [CrossRef]
- Howarth, F.C.; Qureshi, A.; Shahin, A.; Lukic, M.L. Effects of single high-dose and multiple low-dose streptozotocin on contraction and intracellular Ca2+ in ventricular myocytes from diabetes resistant and susceptible rats. Mol. Cell Biochem. 2005, 269, 103–108. [Google Scholar] [CrossRef]
- Howarth, F.C.; Qureshi, M.A.; Hassan, Z.; Isaev, D.; Parekh, K.; John, A.; Oz, M.; Raza, H.; Adeghate, E.; Adrian, T.E. Contractility of ventricular myocytes is well preserved despite altered mechanisms of Ca2+ transport and a changing pattern of mRNA in aged type 2 Zucker diabetic fatty rat heart. Mol. Cell Biochem. 2012, 361, 267–280. [Google Scholar] [CrossRef]
- Smail, M.; Al Kury, L.; Qureshi, M.A.; Shmygol, A.; Oz, M.; Singh, J.; Howarth, F.C. Cell shortening and calcium dynamics in epicardial and endocardial myocytes from the left ventricle of Goto-Kakizaki type 2 diabetic rats. Exp. Physiol. 2018, 103, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.H.; Rozanski, G.J.; Patel, K.P.; Bidasee, K.R. Dyssynchronous (non-uniform) Ca2+ release in myocytes from streptozotocin-induced diabetic rats. J. Mol. Cell Cardiol. 2007, 42, 234–246. [Google Scholar] [CrossRef]
- Chung, E.; Yeung, F.; Leinwand, L.A. Calcineurin activity is required for cardiac remodelling in pregnancy. Cardiovasc. Res. 2013, 100, 402–410. [Google Scholar] [CrossRef]
- Eid, R.A.; Alkhateeb, M.A.; Eleawa, S.M.; Zaki, M.S.A.; El-Kott, A.F.; El-Sayed, F.; Otifi, H.; Alqahtani, S.; Asiri, Z.A.; Aldera, H. Fas/FasL-mediated cell death in rat’s diabetic hearts involves activation of calcineurin/NFAT4 and is potentiated by a high-fat diet rich in corn oil. J. Nutr. Biochem. 2019, 68, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, H.H.; Yang, F.; Zhang, Z.Y.; Wu, Y.; Li, F.; Dang, S.P.; Zhang, Z.Y.; Qian, L.L.; Wang, R.X. Calcineurin/NFATc3 pathway mediates myocardial fibrosis in diabetes by impairing enhancer of zeste homolog 2 of cardiac fibroblasts. BMC Cardiovasc. Disord. 2023, 23, 474. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.J.; Wallace, R.S.; Nicholson, O.M.; Wilson, G.A.; McDonald, F.J.; Jones, P.P.; Baldi, J.C.; Lamberts, R.R.; Erickson, J.R. Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovasc. Diabetol. 2018, 17, 89. [Google Scholar] [CrossRef] [PubMed]
- Erickson, J.R.; Pereira, L.; Wang, L.; Han, G.; Ferguson, A.; Dao, K.; Copeland, R.J.; Despa, F.; Hart, G.W.; Ripplinger, C.M.; et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 2013, 502, 372–376. [Google Scholar] [CrossRef]
- Diaz-Juarez, J.; Suarez, J.; Cividini, F.; Scott, B.T.; Diemer, T.; Dai, A.; Dillmann, W.H. Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. Am. J. Physiol. Cell Physiol. 2016, 311, C1005–C1013. [Google Scholar] [CrossRef]
- Suarez, J.; Cividini, F.; Scott, B.T.; Lehmann, K.; Diaz-Juarez, J.; Diemer, T.; Dai, A.; Suarez, J.A.; Jain, M.; Dillmann, W.H. Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. J. Biol. Chem. 2018, 293, 8182–8195. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Liu, F.; Jing, Z.; Huang, Q.; Zhao, Y.; Cao, H.; Li, J.; Yin, C.; Xing, J.; Li, F. MICU1 Alleviates Diabetic Cardiomyopathy Through Mitochondrial Ca2+-Dependent Antioxidant Response. Diabetes 2017, 66, 1586–1600. [Google Scholar] [CrossRef]
- Tanaka, Y.; Konno, N.; Kako, K.J. Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc. Res. 1992, 26, 409–414. [Google Scholar] [CrossRef]
- Flarsheim, C.E.; Grupp, I.L.; Matlib, M.A. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am. J. Physiol. 1996, 271, H192–H202. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Umar, S.; Iorga, A.; Youn, J.Y.; Wang, Y.; Regitz-Zagrosek, V.; Cai, H.; Eghbali, M. Cardiac vulnerability to ischemia/reperfusion injury drastically increases in late pregnancy. Basic. Res. Cardiol. 2012, 107, 271. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.J.; Seica, R.; Coxito, P.M.; Rolo, A.P.; Palmeira, C.M.; Santos, M.S.; Moreno, A.J. Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett. 2003, 554, 511–514. [Google Scholar] [CrossRef]
- Hill, J.A.; Olson, E.N. Cardiac plasticity. N. Engl. J. Med. 2008, 358, 1370–1380. [Google Scholar] [CrossRef]
- Bers, D.M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 2008, 70, 23–49. [Google Scholar] [CrossRef]
- Nilsson, J.; Nilsson, L.M.; Chen, Y.W.; Molkentin, J.D.; Erlinge, D.; Gomez, M.F. High glucose activates nuclear factor of activated T cells in native vascular smooth muscle. Arter. Thromb. Vasc. Biol. 2006, 26, 794–800. [Google Scholar] [CrossRef]
- Marthandam Asokan, S.; Yang, J.Y.; Lin, W.T. Anti-hypertrophic and anti-apoptotic effects of short peptides of potato protein hydrolysate against hyperglycemic condition in cardiomyoblast cells. Biomed. Pharmacother. 2018, 107, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Federico, M.; Portiansky, E.L.; Sommese, L.; Alvarado, F.J.; Blanco, P.G.; Zanuzzi, C.N.; Dedman, J.; Kaetzel, M.; Wehrens, X.H.T.; Mattiazzi, A.; et al. Calcium-calmodulin-dependent protein kinase mediates the intracellular signalling pathways of cardiac apoptosis in mice with impaired glucose tolerance. J. Physiol. 2017, 595, 4089–4108. [Google Scholar] [CrossRef] [PubMed]
- Federico, M.; Zavala, M.; Vico, T.; Lopez, S.; Portiansky, E.; Alvarez, S.; Abrille, M.C.V.; Palomeque, J. CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum-mitochondria signaling. Sci. Rep. 2021, 11, 20025. [Google Scholar] [CrossRef] [PubMed]
- Erickson, J.R. Mechanisms of CaMKII Activation in the Heart. Front. Pharmacol. 2014, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Qiu, H. The Physiological and Pathological Roles of Mitochondrial Calcium Uptake in Heart. Int. J. Mol. Sci. 2020, 21, 7689. [Google Scholar] [CrossRef] [PubMed]
- Garbincius, J.F.; Elrod, J.W. Mitochondrial calcium exchange in physiology and disease. Physiol. Rev. 2022, 102, 893–992. [Google Scholar] [CrossRef] [PubMed]
- Elzwiei, F.; Bassien-Capsa, V.; St-Louis, J.; Chorvatova, A. Regulation of the sodium pump during cardiomyocyte adaptation to pregnancy. Exp. Physiol. 2013, 98, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.; Srodulski, S.; Peng, X.; Margulies, K.B.; Despa, F.; Despa, S. Intracellular Na+ Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+-Glucose Cotransport. J. Am. Heart Assoc. 2015, 4, e002183. [Google Scholar] [CrossRef]
- Despa, S. Myocyte [Na+]i Dysregulation in Heart Failure and Diabetic Cardiomyopathy. Front. Physiol. 2018, 9, 1303. [Google Scholar] [CrossRef]
- Croteau, D.; Baka, T.; Young, S.; He, H.; Chambers, J.M.; Qin, F.; Panagia, M.; Pimentel, D.R.; Balschi, J.A.; Colucci, W.S.; et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. Biomed. Pharmacother. 2023, 160, 114310. [Google Scholar] [CrossRef]
- Joseph, L.C.; Reyes, M.V.; Homan, E.A.; Gowen, B.; Avula, U.M.R.; Goulbourne, C.N.; Wan, E.Y.; Elrod, J.W.; Morrow, J.P. The mitochondrial calcium uniporter promotes arrhythmias caused by high-fat diet. Sci. Rep. 2021, 11, 17808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Chang, Y.C.; Lai, P.H.; Yeh, H.I.; Tsai, C.W.; Huang, Y.L.; Liu, T.Y.; Lee, I.C.; Foulon, N.; Xu, Y.; et al. TMEM65 functions as the mitochondrial Na+/Ca2+ exchanger. Nat. Cell Biol. 2025, 27, 1301–1310. [Google Scholar] [CrossRef]
- Garbincius, J.F.; Salik, O.; Cohen, H.M.; Choya-Foces, C.; Mangold, A.S.; Makhoul, A.D.; Schmidt, A.E.; Khalil, D.Y.; Doolittle, J.J.; Wilkinson, A.S.; et al. TMEM65 regulates and is required for NCLX-dependent mitochondrial calcium efflux. Nat. Metab. 2025, 7, 714–729. [Google Scholar] [CrossRef]
- Teng, A.C.T.; Gu, L.; Di Paola, M.; Lakin, R.; Williams, Z.J.; Au, A.; Chen, W.; Callaghan, N.I.; Zadeh, F.H.; Zhou, Y.Q.; et al. Tmem65 is critical for the structure and function of the intercalated discs in mouse hearts. Nat. Commun. 2022, 13, 6166. [Google Scholar] [CrossRef] [PubMed]
- Bers, D.M.; Despa, S. Na+ transport in cardiac myocytes; Implications for excitation-contraction coupling. IUBMB Life 2009, 61, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Mustroph, J.; Maier, L.S.; Wagner, S. CaMKII regulation of cardiac K channels. Front. Pharmacol. 2014, 5, 20. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Dobrev, D.; Wehrens, X.H.T. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017, 120, 1969–1993. [Google Scholar] [CrossRef] [PubMed]
- Kistamas, K.; Veress, R.; Horvath, B.; Banyasz, T.; Nanasi, P.P.; Eisner, D.A. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front. Pharmacol. 2020, 11, 72. [Google Scholar] [CrossRef]
- Ullah, A.; Hoang-Trong, M.T.; Lederer, W.J.; Winslow, R.L.; Jafri, M.S. Critical Requirements for the Initiation of a Cardiac Arrhythmia in Rat Ventricle: How Many Myocytes? Cells 2022, 11, 1878. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, A.N.; Shlapakova, I.; Szabolcs, M.J.; Danilo, P., Jr.; Lorell, B.H.; Potapova, I.A.; Lu, Z.; Rosen, A.B.; Mathias, R.T.; Brink, P.R.; et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 2007, 116, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Sato, D.; Garfinkel, A.; Qu, Z.; Weiss, J.N. So little source, so much sink: Requirements for afterdepolarizations to propagate in tissue. Biophys. J. 2010, 99, 1408–1415. [Google Scholar] [CrossRef]
- Lu, Z.; Jiang, Y.P.; Wu, C.Y.; Ballou, L.M.; Liu, S.; Carpenter, E.S.; Rosen, M.R.; Cohen, I.S.; Lin, R.Z. Increased persistent sodium current due to decreased PI3K signaling contributes to QT prolongation in the diabetic heart. Diabetes 2013, 62, 4257–4265. [Google Scholar] [CrossRef] [PubMed]
- Mira Hernandez, J.; Shen, E.Y.; Ko, C.Y.; Hourani, Z.; Spencer, E.R.; Smoliarchuk, D.; Bossuyt, J.; Granzier, H.; Bers, D.M.; Hegyi, B. Differential sex-dependent susceptibility to diastolic dysfunction and arrhythmia in cardiomyocytes from obese diabetic heart failure with preserved ejection fraction model. Cardiovasc. Res. 2025, 121, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.I.; Trang, N.N.; Lee, T.W.; Higa, S.; Kao, Y.H.; Chen, Y.C.; Chen, Y.J. Ketogenic Diet Regulates Cardiac Remodeling and Calcium Homeostasis in Diabetic Rat Cardiomyopathy. Int. J. Mol. Sci. 2023, 24, 16142. [Google Scholar] [CrossRef]
- Bohne, L.J.; Jansen, H.J.; Daniel, I.; Dorey, T.W.; Moghtadaei, M.; Belke, D.D.; Ezeani, M.; Rose, R.A. Electrical and structural remodeling contribute to atrial fibrillation in type 2 diabetic db/db mice. Heart Rhythm. 2021, 18, 118–129. [Google Scholar] [CrossRef]
- Laurita, K.R.; Khan, S.; McMahon, T.; Dennis, A.T.; Li, V.; Gaivin, R.; Sapa, H.; Fu, J.D.; Schelling, J.R. Ventricular arrhythmias in mouse models of diabetic kidney disease. Sci. Rep. 2021, 11, 20570. [Google Scholar] [CrossRef]
- Li, F.; Qian, L.L.; Wu, L.D.; Zhang, Z.Y.; Zhang, L.; Liu, H.H.; Zhao, N.; Zhang, J.; Chen, J.Y.; Yang, F.; et al. Glucose fluctuations aggravated the late sodium current induced ventricular arrhythmias via the activation of ROS/CaMKII pathway. Eur. J. Pharmacol. 2023, 961, 176167. [Google Scholar] [CrossRef] [PubMed]
- Philippaert, K.; Kalyaanamoorthy, S.; Fatehi, M.; Long, W.; Soni, S.; Byrne, N.J.; Barr, A.; Singh, J.; Wong, J.; Palechuk, T.; et al. Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation 2021, 143, 2188–2204. [Google Scholar] [CrossRef] [PubMed]
- Nordin, C.; Gilat, E.; Aronson, R.S. Delayed afterdepolarizations and triggered activity in ventricular muscle from rats with streptozotocin-induced diabetes. Circ. Res. 1985, 57, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, B.; Ko, C.Y.; Bossuyt, J.; Bers, D.M. Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycaemia: Reduced repolarization reserve, neurohormonal stimulation, and heart failure exacerbate susceptibility. Cardiovasc. Res. 2021, 117, 2781–2793. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, B.; Mira Hernandez, J.; Ko, C.Y.; Hong, J.; Shen, E.Y.; Spencer, E.R.; Smoliarchuk, D.; Navedo, M.F.; Bers, D.M.; Bossuyt, J. Diabetes and Excess Aldosterone Promote Heart Failure With Preserved Ejection Fraction. J. Am. Heart Assoc. 2022, 11, e027164. [Google Scholar] [CrossRef]
- Chan, Y.H.; Chang, G.J.; Lai, Y.J.; Chen, W.J.; Chang, S.H.; Hung, L.M.; Kuo, C.T.; Yeh, Y.H. Atrial fibrillation and its arrhythmogenesis associated with insulin resistance. Cardiovasc. Diabetol. 2019, 18, 125. [Google Scholar] [CrossRef] [PubMed]
Pathway/Mechanism | Key Components | Adaptive Regulation/Dysregulation During | |
---|---|---|---|
Pregnancy | Diabetes | ||
Excitation–Contraction Coupling | SERCA | ↔ mRNA [20,28,84] | ↓ protein and activity [94,95,107,108,109,110,111,112] |
Phospholamban | ↓ or ↔ mRNA [28,84] | ↑ protein [107], ↔ protein [94,95] ↓ protein [110] | |
LTCC | ↔ mRNA in atria [84] | ↓ ICaL [93,113] | |
NCX | ↔ mRNA in atria [84] | ↑ INCX [93], ↔ protein [92] ↓ protein [107] | |
RyR2 | ↑ mRNA atria [84] | ↑ leak [69,93,95,98,99,101,103,104,105] ↑ protein [95], ↔ protein [92] ↓ protein and activity [93] | |
[Ca2+]i at rest | Not known | ↑ [100,114], ↓ [92,115,116] | |
[Ca2+]i at peak | Not known | ↓ [92,93,107], ↔ [117,118] | |
Amplitude of Ca2+ transient | Not known | ↓ [68,93,107], ↔ [117,118,119] | |
Rise rate of Ca2+ transient | Not known | ↓ [107,119,120], ↓ or ↔ [117] | |
Decay rate of Ca2+ transient | Not known | ↑ [119], ↓ [92,107], ↔ [117,118] | |
Ca2+-dependent hypertrophy signaling | Calcineurin | ↑ in early pregnancy ↓ in late pregnancy [39,121] | ↑ activity [122,123] |
NFAT | ↑ nuclear import [100,122] | ||
CaMKII | ↑ activity [34] | ↑ protein [95] ↑ activity [10,101,124,125] | |
HDAC | ↑ nuclear export [100] | ||
Mitochondrial Ca2+ handling | MCU | Not known | ↓ expression and activity [69,126,127,128,129,130] |
NCLX | Not known | ↑ expression and activity [69] | |
MPTP | ↑ sensitivity in late pregnancy [131] | ↑ sensitivity [132] | |
[Ca2+]m | Not known | ↓ level [69,126,127,128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velmurugan, S.; Despa, S. Calcium Signaling and Cardiac Adaptation to Stress: Focus on Pregnancy and Diabetes. Biomolecules 2025, 15, 1421. https://doi.org/10.3390/biom15101421
Velmurugan S, Despa S. Calcium Signaling and Cardiac Adaptation to Stress: Focus on Pregnancy and Diabetes. Biomolecules. 2025; 15(10):1421. https://doi.org/10.3390/biom15101421
Chicago/Turabian StyleVelmurugan, Sathya, and Sanda Despa. 2025. "Calcium Signaling and Cardiac Adaptation to Stress: Focus on Pregnancy and Diabetes" Biomolecules 15, no. 10: 1421. https://doi.org/10.3390/biom15101421
APA StyleVelmurugan, S., & Despa, S. (2025). Calcium Signaling and Cardiac Adaptation to Stress: Focus on Pregnancy and Diabetes. Biomolecules, 15(10), 1421. https://doi.org/10.3390/biom15101421