Physical Activity Guidelines for Astronauts: An Immunological Perspective
Abstract
1. Introduction
2. Immune Dysregulation in Spaceflight
2.1. Viral Reactivation Under Microgravity
2.2. Mechanistic Insights into Microgravity-Induced Immune Dysregulation
2.3. Effects on Antigen-Presenting Cells (Dendritic Cells)
2.4. Neutrophils and Innate Immunity
2.5. Natural Killer Cells and Tumor Surveillance
2.6. B Cells and Humoral Immunity
2.7. T Cells and Adaptive Immunity
2.8. Metabolic and Structural Changes in Immune Cells
2.9. Space Radiation and Cancer Risk
2.10. Terrestrial Analogs for Microgravity Simulation
2.11. Countermeasures (Exercise) in Spaceflight
2.12. Psychosocial Stressors, Isolation, and Circadian Disruption in Spaceflight Immunity
2.13. Advanced Resistive Exercise Device (ARED)
2.14. Treadmills and Cycle Ergometers
2.15. Exercise & Immune Function: Evidence from Earth
2.16. Acute Exercise: Transient Mobilization and Stress-Related Immunity
2.17. Chronic Exercise: Adaptation, Resilience, and Immune Homeostasis
2.18. Exerkines as Immune Mediators
- Myokines: The Muscle–Immune Interface
- 2.
- Adipokines: Exercise and Immunometabolism
- 3.
- Cardiokines and Hepatokines
2.19. Proposed Framework for Immune-Focused Guidelines
2.20. Influence of Individual Factors on Immune Responses to Spaceflight and Countermeasures
2.21. Future Directions and Research Gaps
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARED | Advanced Resistive Exercise Device |
BBB | Blood–Brain Barrier |
BDNF | Brain-Derived Neurotrophic Factor |
CMV | Cytomegalovirus |
CRP | C-Reactive Protein |
DC | Dendritic Cell |
EBV | Epstein–Barr Virus |
FGF21 | Fibroblast Growth Factor 21 |
HPA axis | Hypothalamic–Pituitary–Adrenal axis |
HIIT | High-Intensity Interval Training |
IL | Interleukin |
ISS | International Space Station |
MAPK | Mitogen-Activated Protein Kinase |
mTOR | Mechanistic Target of Rapamycin |
NASA | National Aeronautics and Space Administration |
NK cell | Natural Killer cell |
NLR | Neutrophil-to-Lymphocyte Ratio |
PI3K–AKT | Phosphoinositide 3-Kinase–Protein Kinase B Pathway |
PPARα | Peroxisome Proliferator-Activated Receptor Alpha |
ROS | Reactive Oxygen Species |
RTE | Reentry |
SASP | Senescence-Associated Secretory Phenotype |
SLDs | Subject Load Devices |
STAT | Signal Transducer and Activator of Transcription |
TCR | T-Cell Receptor |
TLR4 | Toll-Like Receptor 4 |
TNF-α | Tumor Necrosis Factor Alpha |
URTI | Upper Respiratory Tract Infection |
VZV | Varicella–Zoster Virus |
VO2max | Maximal Oxygen Uptake |
References
- Crucian, B.E.; Choukèr, A.; Simpson, R.J.; Mehta, S.; Marshall, G.; Smith, S.M.; Zwart, S.R.; Heer, M.; Ponomarev, S.; Whitmire, A. Immune system dysregulation during spaceflight: Potential countermeasures for deep space exploration missions. Front. Immunol. 2018, 9, 1437. [Google Scholar] [CrossRef]
- Crucian, B.E.; Stowe, R.P.; Mehta, S.K.; Yetman, D.L.; Leal, M.J.; Quiriarte, H.D.; Pierson, D.L.; Sams, C.F. Immune status, latent viral reactivation, and stress during long-duration head-down bed rest. Aviat. Space Environ. Med. 2009, 80, A37–A44. [Google Scholar] [CrossRef]
- Crucian, B.E.; Zwart, S.R.; Mehta, S.; Uchakin, P.; Quiriarte, H.D.; Pierson, D.; Sams, C.F.; Smith, S.M. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J. Interferon Cytokine Res. 2014, 34, 778–786. [Google Scholar] [CrossRef]
- Simpson, R.J.; Campbell, J.P.; Gleeson, M.; Krüger, K.; Nieman, D.C.; Pyne, D.B.; Turner, J.E.; Walsh, N.P. Can exercise affect immune function to increase susceptibility to infection? Exerc. Immunol. Rev. 2020, 26, 8–22. [Google Scholar]
- Moreno-Villanueva, M.; Jimenez-Chavez, L.E.; Krieger, S.; Ding, L.-H.; Zhang, Y.; Babiak-Vazquez, A.; Berres, M.; Splinter, S.; Pauken, K.E.; Schaefer, B.C. Transcriptomics analysis reveals potential mechanisms underlying mitochondrial dysfunction and T cell exhaustion in astronauts’ blood cells in space. Front. Immunol. 2025, 15, 1512578. [Google Scholar] [CrossRef]
- Jasemi, S.; Simula, E.R.; Lin, Y.; Satta, R.R.; Rubino, C.; Cossu, A.; Fais, M.; Noli, M.; Sechi, L.A. Immune System–Tumor Crosstalk Under Microgravity: Mechanistic Insights, Challenges, and Translational Perspectives. Cancers 2025, 17, 2737. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Du, H.; Overbey, E.; Kim, J.; Makhijani, P.; Martin, N.; Lerner, C.A.; Nguyen, K.; Baechle, J.; Valentino, T.R.; et al. Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight. Nat. Commun. 2024, 15, 4795. [Google Scholar] [CrossRef]
- Stowe, R.P.; Sams, C.F.; Pierson, D.L. Effects of mission duration on neuroimmune responses in astronauts. Aviat. Space Environ. Med. 2003, 74, 1281–1284. [Google Scholar] [PubMed]
- Mehta, S.K.; Laudenslager, M.L.; Stowe, R.P.; Crucian, B.E.; Feiveson, A.H.; Sams, C.F.; Pierson, D.L. Latent virus reactivation in astronauts on the international space station. NPJ Microgravity 2017, 3, 11. [Google Scholar] [CrossRef]
- Goodwin, T.J.; Christofidou-Solomidou, M. Oxidative stress and space biology: An organ-based approach. Int. J. Mol. Sci. 2018, 19, 959. [Google Scholar] [CrossRef] [PubMed]
- Klos, B.; Kaul, A.; Straube, E.; Steinhauser, V.; Gödel, C.; Schäfer, F.; Lambert, C.; Enck, P.; Mack, I. Effects of isolated, confined and extreme environments on parameters of the immune system-a systematic review. Front. Immunol. 2025, 16, 1532103. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, M.; Reinsch, S.S.; Barcenilla, B.B.; Ziyaei, K.; Barker, R.J. Space-driven ROS in cells: A hidden danger to astronaut health and food safety. NPJ Microgravity 2025, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Rami, M.; Ahmadi Hekmatikar, A.; Rahdar, S.; Marashi, S.S.; Daud, D.M.A. Highlighting the effects of high-intensity interval training on the changes associated with hypertrophy, apoptosis, and histological proteins of the heart of old rats with type 2 diabetes. Sci. Rep. 2024, 14, 7133. [Google Scholar] [CrossRef]
- Braith, R.W.; Beck, D.T. Resistance exercise: Training adaptations and developing a safe exercise prescription. Heart Fail. Rev. 2008, 13, 69–79. [Google Scholar] [CrossRef]
- Adams, G.R.; Caiozzo, V.J.; Baldwin, K.M. Skeletal muscle unweighting: Spaceflight and ground-based models. J. Appl. Physiol. 2003, 95, 2185–2201. [Google Scholar] [CrossRef]
- Trappe, S.; Costill, D.; Gallagher, P.; Creer, A.; Peters, J.R.; Evans, H.; Riley, D.A.; Fitts, R.H. Exercise in space: Human skeletal muscle after 6 months aboard the International Space Station. J. Appl. Physiol. 2009, 106, 1159–1168. [Google Scholar] [CrossRef]
- Fitts, R.H.; Riley, D.R.; Widrick, J.J. Functional and structural adaptations of skeletal muscle to microgravity. J. Exp. Biol. 2001, 204, 3201–3208. [Google Scholar] [CrossRef]
- Ploutz-Snyder, L.L.; Downs, M.; Ryder, J.; Hackney, K.; Scott, J.; Buxton, R.; Goetchius, E.; Crowell, B. Integrated resistance and aerobic exercise protects fitness during bed rest. Med. Sci. Sports Exerc. 2014, 46, 358–368. [Google Scholar] [CrossRef]
- Yoon, M.-S. mTOR as a key regulator in maintaining skeletal muscle mass. Front. Physiol. 2017, 8, 788. [Google Scholar] [CrossRef] [PubMed]
- Sonnenfeld, G. The immune system in space, including Earth-based benefits of space-based research. Curr. Pharm. Biotechnol. 2005, 6, 343–349. [Google Scholar] [CrossRef]
- Gregg, R.K. Implications of microgravity-induced cell signaling alterations upon cancer cell growth, invasiveness, metastatic potential, and control by host immunity. Int. Rev. Cell Mol. Biol. 2021, 361, 107–164. [Google Scholar] [CrossRef] [PubMed]
- Crucian, B.E.; Stowe, R.P.; Pierson, D.L.; Sams, C.F. Immune system dysregulation following short- vs long-duration spaceflight. Aviat. Space Environ. Med. 2008, 79, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Guéguinou, N.; Bojados, M.; Jamon, M.; Derradji, H.; Baatout, S.; Tschirhart, E.; Frippiat, J.-P.; Legrand-Frossi, C. Stress response and humoral immune system alterations related to chronic hypergravity in mice. Psychoneuroendocrinology 2012, 37, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Calvani, R.; Coelho-Junior, H.J.; Landi, F.; Bernabei, R.; Marzetti, E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants 2020, 9, 647. [Google Scholar] [CrossRef]
- Calcagno, G.; Jeandel, J.; Frippiat, J.-P.; Kaminski, S. Simulated microgravity disrupts nuclear factor κb signaling and impairs murine dendritic cell phenotype and function. Int. J. Mol. Sci. 2023, 24, 1720. [Google Scholar] [CrossRef]
- Hughes-Fulford, M. Altered cell function in microgravity. Exp. Gerontol. 1991, 26, 247–256. [Google Scholar] [CrossRef]
- Grimm, D.; Grosse, J.; Wehland, M.; Mann, V.; Reseland, J.E.; Sundaresan, A.; Corydon, T.J. The impact of microgravity on bone in humans. Bone 2016, 87, 44–56. [Google Scholar] [CrossRef]
- Kaur, I.; Simons, E.R.; Castro, V.A.; Ott, C.M.; Pierson, D.L. Changes in neutrophil functions in astronauts. Brain Behav. Immun. 2004, 18, 443–450. [Google Scholar] [CrossRef]
- Stowe, R.P.; Sams, C.F.; Pierson, D.L. Adrenocortical and immune responses following short-and long-duration spaceflight. Aviat. Space Environ. Med. 2011, 82, 627–634. [Google Scholar] [CrossRef]
- Wang, C.; Li, N.; Zhang, C.; Sun, S.; Gao, Y.; Long, M. Effects of simulated microgravity on functions of neutrophil-like HL-60 cells. Microgravity Sci. Technol. 2015, 27, 515–527. [Google Scholar] [CrossRef]
- Thirsk, R.; Kuipers, A.; Mukai, C.; Williams, D. The space-flight environment: The International Space Station and beyond. CMAJ 2009, 180, 1216–1220. [Google Scholar] [CrossRef]
- Taylor, G.R.; Neale, L.S.; Dardano, J.R. Immunological analyses of US Space Shuttle crewmembers. Aviat. Space Environ. Med. 1986, 57, 213–217. [Google Scholar]
- Mylabathula, P.L.; Li, L.; Bigley, A.B.; Markofski, M.M.; Crucian, B.E.; Mehta, S.K.; Pierson, D.L.; Laughlin, M.S.; Rezvani, K.; Simpson, R.J. Simulated microgravity disarms human NK-cells and inhibits anti-tumor cytotoxicity in vitro. Acta Astronaut. 2020, 174, 32–40. [Google Scholar] [CrossRef]
- Helmink, B.A.; Reddy, S.M.; Gao, J.; Zhang, S.; Basar, R.; Thakur, R.; Yizhak, K.; Sade-Feldman, M.; Blando, J.; Han, G. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 2020, 577, 549–555. [Google Scholar] [CrossRef]
- Tascher, G.; Gerbaix, M.; Maes, P.; Chazarin, B.; Ghislin, S.; Antropova, E.; Vassilieva, G.; Ouzren-Zarhloul, N.; Gauquelin-Koch, G.; Vico, L. Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth. FASEB J. 2019, 33, 3772–3783. [Google Scholar] [CrossRef] [PubMed]
- Gridley, D.S.; Nelson, G.A.; Peters, L.L.; Kostenuik, P.J.; Bateman, T.A.; Morony, S.; Stodieck, L.S.; Lacey, D.L.; Simske, S.J.; Pecaut, M.J. Selected Contribution: Effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J. Appl. Physiol. 2003, 94, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, G.; Agha, N.; Kunz, H.; Simpson, R.J.; Crucian, B.; Mehta, S.; Laughlin, M.; Campbell, J. B cell homeostasis is maintained during long-duration spaceflight. J. Appl. Physiol. 2019, 126, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Risso, A.; Tell, G.; Vascotto, C.; Costessi, A.; Arena, S.; Scaloni, A.; Cosulich, M.E. Activation of human T lymphocytes under conditions similar to those that occur during exposure to microgravity: A proteomics study. Proteomics 2005, 5, 1827–1837. [Google Scholar] [CrossRef]
- Crucian, B.; Stowe, R.; Mehta, S.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J. Clin. Immunol. 2013, 33, 456–465. [Google Scholar] [CrossRef]
- Spatz, J.; Fulford, M.H.; Tsai, A.; Gaudilliere, D.; Hedou, J.; Ganio, E.; Angst, M.; Aghaeepour, N.; Gaudilliere, B. Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry. Sci. Rep. 2021, 11, 11872. [Google Scholar] [CrossRef]
- Gridley, D.S.; Slater, J.M.; Luo-Owen, X.; Rizvi, A.; Chapes, S.K.; Stodieck, L.S.; Ferguson, V.L.; Pecaut, M.J. Spaceflight effects on T lymphocyte distribution, function and gene expression. J. Appl. Physiol. 2009, 106, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Mei, Q.; Huyan, T.; Xie, L.; Che, S.; Yang, H.; Zhang, M.; Huang, Q. Effects of simulated microgravity on primary human NK cells. Astrobiology 2013, 13, 703–714. [Google Scholar] [CrossRef]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef]
- Gordon, S.; Plüddemann, A. Tissue macrophages: Heterogeneity and functions. BMC Biol. 2017, 15, 53. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Tian, H.; Wang, P.; Li, L.; Zhang, Z.; Zhang, J.; Zhao, Y. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cell. Mol. Immunol. 2021, 18, 1489–1502. [Google Scholar] [CrossRef]
- Tauber, S.; Lauber, B.A.; Paulsen, K.; Layer, L.E.; Lehmann, M.; Hauschild, S.; Shepherd, N.R.; Polzer, J.; Segerer, J.; Thiel, C.S. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS ONE 2017, 12, e0175599. [Google Scholar] [CrossRef]
- Mráček, T.; Drahota, Z.; Houštěk, J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. Acta (BBA) Bioenerg. 2013, 1827, 401–410. [Google Scholar] [CrossRef]
- Tierney, B.T.; Kim, J.; Overbey, E.G.; Ryon, K.A.; Foox, J.; Sierra, M.A.; Bhattacharya, C.; Damle, N.; Najjar, D.; Park, J. Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nat. Microbiol. 2024, 9, 1661–1675. [Google Scholar] [CrossRef] [PubMed]
- Ziegler-Heitbrock, L. Monocyte subsets in man and other species. Cell Immunol. 2014, 289, 135–139. [Google Scholar] [CrossRef]
- Auffray, C.; Fogg, D.; Garfa, M.; Elain, G.; Join-Lambert, O.; Kayal, S.; Sarnacki, S.; Cumano, A.; Lauvau, G.; Geissmann, F. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317, 666–670. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Kim, M.-H.Y.; Chappell, L.J.; Huff, J.L. How safe is safe enough? Radiation risk for a human mission to Mars. PLoS ONE 2013, 8, e74988. [Google Scholar] [CrossRef]
- Cucinotta, F.A. Space radiation risks for astronauts on multiple International Space Station missions. PLoS ONE 2014, 9, e96099. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhou, G.; Hu, W. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 2022, 32, 100828. [Google Scholar] [CrossRef]
- Schmitt, D.; Schwarzenberg, M.; Tkaczuk, J.; Hebrard, S.; Brandenberger, G.; Mauco, G.; Cogoli-Greuter, M.; Abbal, M. Head-down tilt bed rest and immune responses. Pflügers Arch. 2000, 441, R79–R84. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, K.Y.; Puniya, B.L.; La Fleur, A.; Shah, A.R.; Barberis, M.; Helikar, T. A multi-approach and multi-scale platform to model CD4+ T cells responding to infections. PLoS Comput. Biol. 2021, 17, e1009209. [Google Scholar] [CrossRef]
- Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.; de Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.; Lebert, M. Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology 2013, 13, 1–17. [Google Scholar] [CrossRef]
- Winkler, L.H. Human physiological limitations to long-term spaceflight and living in space. Aerosp. Med. Human. Perform. 2023, 94, 444–456. [Google Scholar] [CrossRef]
- Comfort, P.; McMahon, J.J.; Jones, P.A.; Cuthbert, M.; Kendall, K.; Lake, J.P.; Haff, G.G. Effects of spaceflight on musculoskeletal health: A systematic review and meta-analysis, considerations for interplanetary travel. Sports Med. 2021, 51, 2097–2114. [Google Scholar] [CrossRef]
- Varanoske, A.; Prejean, B.; Strock, N.; Conly, D.; Peters, B.; Morant, E.; Sibonga, J.; Smith, S.; Zwart, S.; Spector, E. Effects of Replacing Treadmill Running with Alternative Exercise Countermeasures During Long-Duration Spaceflight. In Proceedings of the NASA Human Research Program-Investigators Workshop (HRP-IWS), Galveston, TX, USA, 13–16 February 2024. [Google Scholar]
- Mangieri, M. Advanced Resistive Exercise Device (ARED) Flight Instrumentation Software (FSW): A Unique Approach to Exercise in Long Duration Habitats. In Proceedings of the Space 2005, Reston, VA, USA, 30 August–1 September 2005; p. 6628. [Google Scholar]
- Zong, H.; Fei, Y.; Liu, N. Circadian Disruption and Sleep Disorders in Astronauts: A Review of Multi-Disciplinary Interventions for Long-Duration Space Missions. Int. J. Mol. Sci. 2025, 26, 5179. [Google Scholar] [CrossRef] [PubMed]
- Loehr, J.A.; Lee, S.M.; English, K.L.; Sibonga, J.; Smith, S.M.; Spiering, B.A.; Hagan, R.D. Musculoskeletal adaptations to training with the advanced resistive exercise device. Med. Sci. Sports Exerc. 2011, 43, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Berg, H.E.; Tesch, P.A. Force and power characteristics of a resistive exercise device for use in space. Acta Astronaut. 1998, 42, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Schoenfeld, B.J.; Mikulic, P. Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: A review. J. Sport Health Sci. 2021, 10, 530–536. [Google Scholar] [CrossRef]
- Haddad, F.; Adams, G.R. Inhibition of MAP/ERK kinase prevents IGF-I-induced hypertrophy in rat muscles. J. Appl. Physiol. 2004, 96, 203–210. [Google Scholar] [CrossRef]
- Stitt, T.N.; Drujan, D.; Clarke, B.A.; Panaro, F.; Timofeyva, Y.; Kline, W.O.; Gonzalez, M.; Yancopoulos, G.D.; Glass, D.J. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 2004, 14, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, D.R. Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol. Metab. 2009, 20, 349–356. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Q.; Liu, X.; Lu, L.; Li, Z. Impact of Alpha-Ketoglutarate on Skeletal Muscle Health and Exercise Performance: A Narrative Review. Nutrients 2024, 16, 3968. [Google Scholar] [CrossRef]
- Zeng, F.; Zhao, H.; Liao, J. Androgen interacts with exercise through the mTOR pathway to induce skeletal muscle hypertrophy. Biol. Sport 2017, 34, 313–321. [Google Scholar] [CrossRef]
- Ploutz-Snyder, L.L.; Tesch, P.A.; Hather, B.M.; Dudley, G.A. Vulnerability to dysfunction and muscle injury after unloading. Arch. Phys. Med. Rehabil. 1996, 77, 773–777. [Google Scholar] [CrossRef]
- Adams, G.R.; Hather, B.M.; Dudley, G.A. Effect of short-term unweighting on human skeletal muscle strength and size. Aviat. Space Environ. Med. 1994, 65, 1116–1121. [Google Scholar]
- Thornton, W.; Bonato, F. Countermeasures to loss of muscle and bone during spaceflight. In The Human Body and Weightlessness: Operational Effects, Problems and Countermeasures; Springer: Berlin/Heidelberg, Germany, 2017; pp. 177–221. [Google Scholar]
- Lee, J.; Lee, R.; Stone, A.J. Combined aerobic and resistance training for peak oxygen uptake, muscle strength, and hypertrophy after coronary artery disease: A systematic review and meta-analysis. J. Cardiovasc. Transl. Res. 2020, 13, 601–611. [Google Scholar] [CrossRef]
- Sasaki, J.E.; Santos, M.G.d. The role of aerobic exercise on endothelial function and on cardiovascular risk factors. Arq. Bras. De Cardiol. 2006, 87, e226–e231. [Google Scholar] [CrossRef]
- Golbidi, S.; Laher, I. Exercise and the cardiovascular system. Cardiol. Res. Pract. 2012, 2012, 210852. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-K.; Chi, L.; Etnier, J.L.; Wang, C.-C.; Chu, C.-H.; Zhou, C. Effect of acute aerobic exercise on cognitive performance: Role of cardiovascular fitness. Psychol. Sport Exerc. 2014, 15, 464–470. [Google Scholar] [CrossRef]
- Kouhnavard, M.; Nasli Esfahani, E.; Montazeri, M.; Hashemian, S.J.; Mehrazma, M.; Larijani, B.; Nezami Asl, A.; Khoshvaghti, A.; Falsafi, A.; Lalehfar, K.; et al. Effects of Vitamin D and Calcium Supplementation on Micro-architectural and Densitometric Changes of Rat Femur in a Microgravity Simulator Model. Iran. Red. Crescent Med. J. 2014, 16, e18026. [Google Scholar] [CrossRef] [PubMed]
- Bharindwal, S.; Goswami, N.; Jha, P.; Pandey, S.; Jobby, R. Prospective Use of Probiotics to Maintain Astronaut Health during Spaceflight. Life 2023, 13, 727. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Zhang, J. Oxidative Stress on the Ground and in the Microgravity Environment: Pathophysiological Effects and Treatment. Antioxidants 2025, 14, 231. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar]
- Nurmasitoh, T. Physical activities, exercises, and their effects to the immune system. JKKI J. Kedokt. Dan Kesehat. Indones. 2015, 7, 52–58. [Google Scholar] [CrossRef]
- Cho, E.; Stampley, J.; Wall, R.; Matthews, R.; Zunica, E.; Brown, J.C.; Johannsen, N.M.; Irving, B.A.; Spielmann, G. Acute Exercise Increases NK Cell Mitochondrial Respiration and Cytotoxicity against Triple-Negative Breast Cancer Cells under Hypoxic Conditions. Med. Sci. Sports Exerc. 2023, 55, 2132–2142. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014, 58, 193–210. [Google Scholar] [CrossRef]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef]
- Simpson, R.J.; Boßlau, T.K.; Weyh, C.; Niemiro, G.M.; Batatinha, H.; Smith, K.A.; Krüger, K. Exercise and adrenergic regulation of immunity. Brain Behav. Immun. 2021, 97, 303–318. [Google Scholar] [CrossRef]
- Yano, H.; Uchida, M.; Nakai, R.; Ishida, K.; Kato, Y.; Kawanishi, N.; Shiva, D. Exhaustive exercise reduces TNF-α and IFN-α production in response to R-848 via toll-like receptor 7 in mice. Eur. J. Appl. Physiol. 2010, 110, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, C.; Proschinger, S.; Schenk, A.; Bloch, W.; Lampit, A.; Javelle, F.; Zimmer, P. The effect of acute physical exercise on NK-cell cytolytic activity: A systematic review and meta-analysis. Sports Med. 2021, 51, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C.; Lane, A.R. Exercise and the Regulation of Endocrine Hormones. Prog. Mol. Biol. Transl. Sci. 2015, 135, 293–311. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef]
- Hoffmann, C.; Weigert, C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb. Perspect. Med. 2017, 7, a029793. [Google Scholar] [CrossRef]
- Ahmadi Hekmatikar, A.; Nelson, A.; Petersen, A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: Novel insights and a critical review. BMC Cancer 2023, 23, 889. [Google Scholar] [CrossRef]
- Rosa Neto, J.C.; Lira, F.S.; Festuccia, W.T. Immunometabolism: Molecular mechanisms, diseases, and therapies. Mediat. Inflamm. 2014, 2014, 585708. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Meng, Y.; Li, S.; Donelan, W.; Zhao, Y.; Qi, L.; Zhang, M.; Wang, X.; Cui, T.; et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 2014, 63, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Procaccini, C.; La Rocca, C.; Carbone, F.; De Rosa, V.; Galgani, M.; Matarese, G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. Dev. Comp. Immunol. 2017, 66, 120–129. [Google Scholar] [CrossRef]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, physiological functions, role in diseases, and effects of nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Volpe, M.; Rubattu, S.; Burnett, J., Jr. Natriuretic peptides in cardiovascular diseases: Current use and perspectives. Eur. Heart J. 2014, 35, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Racil, G.; Ahmadi Hekmatikar, A.H.; Behnam Moghadam, M.; Karami, P.; Henselmans, M. Improved physical performance of elite soccer players based on GPS results after 4 days of carbohydrate loading followed by 3 days of low carbohydrate diet. J. Int. Soc. Sports Nutr. 2023, 20, 2258837. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, S.M.; Hekmatikar, A.A.; Ghanbari-Niaki, A.; Fathi, R. Ghrelin behavior in exercise and training. J. Med. Sci. 2020, 27, 85–111. [Google Scholar]
- Domouzoglou, E.M.; Maratos-Flier, E. Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am. J. Clin. Nutr. 2011, 93, 901s–905s. [Google Scholar] [CrossRef]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef]
- Strewe, C.; Moser, D.; Buchheim, J.-I.; Gunga, H.-C.; Stahn, A.; Crucian, B.; Fiedel, B.; Bauer, H.; Gössmann-Lang, P.; Thieme, D. Sex differences in stress and immune responses during confinement in Antarctica. Biol. Sex Differ. 2019, 10, 20. [Google Scholar] [CrossRef]
- Guo, Y.; Waisberg, E.; Ong, J.; Kumar, R.; Lee, A.G. A future of personalized medicine for astronauts: Considering genetic variability and biologic sex-based differences in space medicine. Acta Astronaut. 2025, 228, 527–531. [Google Scholar] [CrossRef]
- Kim, J.; Tierney, B.T.; Overbey, E.G.; Dantas, E.; Fuentealba, M.; Park, J.; Narayanan, S.A.; Wu, F.; Najjar, D.; Chin, C.R. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight. Nat. Commun. 2024, 15, 4954. [Google Scholar] [CrossRef]
- Buchheim, J.-I.; Matzel, S.; Rykova, M.; Vassilieva, G.; Ponomarev, S.; Nichiporuk, I.; Hörl, M.; Moser, D.; Biere, K.; Feuerecker, M. Stress related shift toward inflammaging in cosmonauts after long-duration space flight. Front. Physiol. 2019, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Rooney, B.V.; Crucian, B.E.; Pierson, D.L.; Laudenslager, M.L.; Mehta, S.K. Herpes virus reactivation in astronauts during spaceflight and its application on earth. Front. Microbiol. 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Nardi, L.; Davis, N.M.; Sansolini, S.; Baratto de Albuquerque, T.; Laarraj, M.; Caputo, D.; de Cesare, G.; Shariati Pour, S.R.; Zangheri, M.; Calabria, D. APHRODITE: A compact lab-on-chip biosensor for the real-time analysis of salivary biomarkers in space missions. Biosensors 2024, 14, 72. [Google Scholar] [CrossRef]
- Cinti, S.; Singh, S.; Covone, G.; Tonietti, L.; Ricciardelli, A.; Cordone, A.; Iacono, R.; Mazzoli, A.; Moracci, M.; Rotundi, A. Reviewing the state of biosensors and lab-on-a-chip technologies: Opportunities for extreme environments and space exploration. Front. Microbiol. 2023, 14, 1215529. [Google Scholar] [CrossRef]
- Brooks, G.A. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018, 27, 757–785. [Google Scholar] [CrossRef] [PubMed]
Immune Component | Effects of Microgravity | Clinical/Functional Outcomes | Potential Exercise Link |
---|---|---|---|
Viral Reactivation [1,20,21] | Suppression of cellular immunity; ↑ cortisol, epinephrine, norepinephrine | Reactivation of EBV, CMV, VZV; higher prevalence in long missions | Moderate exercise may improve stress hormone regulation & viral surveillance |
Dendritic Cells (DCs) [25,26,27] | Impaired maturation; ↓ IL-2 secretion | Weakened T-cell activation; ↑ autoimmunity risk | Exercise enhances DC–T cell interaction terrestrially |
Neutrophils [22,28,29,30,31] | ↑ circulating counts; impaired phagocytosis & oxidative burst | Reduced host defense; ↑ NLR (marker for cancer/inflammation) | Aerobic/resistance training shown to normalize NLR |
NK Cells [9,32,33] | ↓ survival & cytotoxic activity; ↑ apoptosis | Impaired tumor & viral surveillance | Moderate aerobic exercise enhances NK activity on Earth |
B Cells [34,35,36,37] | ↓ abundance (animal models); ↑ apoptosis (oxidative stress) | Reduced antibody production; impaired humoral immunity | Exercise enhances antibody response to vaccination |
T Cells [3,36,39,41,42]. | ↓ proliferation & activation (CD25, CD69, IL-2, IFN-γ); altered JAK–STAT, NF-κB | Suppressed adaptive immunity; ↑ Treg activity | Exercise boosts T-cell function & cytokine balance |
Metabolism/Structure [5,43,44,45,46,47,48,49] | Altered lipid/nucleotide metabolism; impaired cytoskeleton (F-actin, microtubules) | ↓ motility, phagocytosis, antigen presentation | Exercise regulates metabolism & ROS handling |
Radiation Exposure [52,53,54]. | DNA damage from HZE particles; ↑ carcinogenesis risk | Elevated lifetime cancer risk, esp. for long-duration missions | Exercise may mitigate oxidative stress & DNA repair efficiency |
Device/Protocol | Primary Purpose | Physiological Outcomes | Evidence Strength | Identified Gaps |
---|---|---|---|---|
ARED (Advanced Resistive Exercise Device) [14,19,63,66,67,68,69,70,71] | Replicates resistance training with concentric & eccentric loads | ↑ Muscle mass, ↑ Strength, Prevents bone loss (via PI3K–AKT–mTOR signaling) | Strong (flight & ground analogs, 16-week studies) | No immune endpoints measured; unclear effect on inflammation/cytokines |
Treadmill (with Subject Load Devices) [72,73] | Simulated gravity via tethered running/walking | Maintains cardiovascular function, reduces musculoskeletal deconditioning | Moderate to strong (decades of implementation) | Studies focus on VO2max & muscle; little on immune modulation |
Cycle Ergometer [75] | Aerobic conditioning with partial resistive load | Improves cardiovascular fitness, supports muscle endurance | Moderate (supported by ISS studies) | No systematic investigation of immune cell function or cytokine responses |
Combined Aerobic + Resistance Training [76,77,78] | Integrates multiple modalities | Enhances hypertrophy & cardiorespiratory performance | Growing (meta-analyses support Earth-based benefits) | No studies in astronauts assessing combined effects on immunity |
Feature | Acute Exercise | Chronic Exercise |
---|---|---|
Leukocytes | Rapid mobilization of NK, CD8+ T, neutrophils via β2-adrenergic signaling [82,85,86,87,88] | Long-term enhancement of NK cytotoxicity and T-cell homeostasis [89] |
Cytokines | ↑ IL-6, TNF-α, IL-1β (transient); IL-10 counter-regulation [82] | ↓ Baseline TNF-α, IL-6, CRP; ↑ IL-10 [88] |
Signaling Pathways | NF-κB, MAPK, STAT3 transiently activated [82] | Downregulation of NF-κB, sustained AMPK–mTOR balance [88] |
ROS/Redox | Acute ↑ ROS → transient oxidative stress [87]. | ↑ Antioxidant enzymes (SOD, GPx) [89] |
Hormones | Acute ↑ cortisol, catecholamines [82] | HPA axis adaptation → reduced basal cortisol [90] |
Immunosenescence | No effect (short-term) [88]. | Delayed immunosenescence, preserved TCR diversity [89] |
Exerkine | Source | Signaling Pathways | Immune Effects |
---|---|---|---|
IL-6 [82,93] | Muscle | NF-κB, p38 MAPK, JAK–STAT3 | ↑ IL-10, IL-1ra; ↓ TNF-α; NK trafficking |
IL-7 [82,93,96] | Muscle | JAK–STAT5 | Thymopoiesis, naïve T-cell survival |
IL-15 [90] | Muscle | JAK–STAT3/5 | NK proliferation, CD8+ T-cell memory |
Irisin [95,97] | Muscle (FNDC5 cleavage) | AMPK–PGC1α, NF-κB inhibition | ↓ Macrophage TNF-α; ↑ Tregs |
Myostatin [95,97] | Muscle | TGF-β–SMAD2/3 | Fibrosis, immune suppression (↓ with exercise) |
Leptin [95,98] | Adipose | JAK2–STAT3, PI3K–AKT | ↑ Th1 cytokines, pro-inflammatory |
Adiponectin [99] | Adipose | AMPK–PPARα | ↓ NF-κB, ↑ anti-inflammatory |
FGF21 [105] | Liver | AMPK, PPARα | ↓ IL-1β/TNF-α; ↑ Tregs |
BNP/ANP [105] | Heart | cGMP–PKG | ↓ NF-κB, ↓ TNF-α |
BDNF [95,98] | Brain | TrkB–MAPK, PI3K | ↑ NK activity, anti-inflammatory macrophages |
Parameter | Recommendation | Immune Rationale |
---|---|---|
Type of Exercise [4,38,66,76,88,90,91] | Combined aerobic (treadmill/cycle), resistance (ARED), HIIT and Resistance training | Synergistic effects on cardiovascular, musculoskeletal, and immune systems (IL-15, NK activation) |
Intensity [4,38,66,76,88,90,91] | Moderate-to-vigorous (60–80% VO2max; 65–85% 1RM) | Optimizes immune protection while avoiding ROS overload and post-exercise lymphopenia |
Frequency/Duration [4,38,66,76,88,90,91] | Daily sessions, 30–60 min, 5–6 days/week | Maintains immune surveillance, reduces viral reactivation, prevents immune decline |
Personalization [4,38,66,76,88,90,91] | Immune monitoring (cytokines: IL-6, IL-10, TNF-α; NK/T-cell counts) | Enables adjustment of exercise load according to immune status and resilience |
Lifestyle Integration [4,38,66,76,88,90,91] | Nutrition (antioxidants, omega-3s, protein), sleep optimization, stress control | Supports HPA axis recovery, reduces chronic inflammation, enhances immune regulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi Hekmatikar, A.; Suzuki, K. Physical Activity Guidelines for Astronauts: An Immunological Perspective. Biomolecules 2025, 15, 1390. https://doi.org/10.3390/biom15101390
Ahmadi Hekmatikar A, Suzuki K. Physical Activity Guidelines for Astronauts: An Immunological Perspective. Biomolecules. 2025; 15(10):1390. https://doi.org/10.3390/biom15101390
Chicago/Turabian StyleAhmadi Hekmatikar, Amirhossein, and Katsuhiko Suzuki. 2025. "Physical Activity Guidelines for Astronauts: An Immunological Perspective" Biomolecules 15, no. 10: 1390. https://doi.org/10.3390/biom15101390
APA StyleAhmadi Hekmatikar, A., & Suzuki, K. (2025). Physical Activity Guidelines for Astronauts: An Immunological Perspective. Biomolecules, 15(10), 1390. https://doi.org/10.3390/biom15101390