Brain Monoamine Deficits in the CD Mouse Model of Williams–Beuren Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Selection of Brain Regions
2.3. Neurochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Quantitative Profile of Monoaminergic Systems Between WT and CD Mice in Different Brain Regions
3.1.1. Dopaminergic System
3.1.2. Noradrenergic System
3.1.3. Serotonergic System
3.2. Correlative Profile of Monoaminergic Systems Between the Different Brain Regions for WT and CD Mice
3.3. Correlative Profile of Monoaminergic Systems Interaction Between the Different Brain Regions for WT and CD Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-HIAA | 5-hydroxyindoleacetic acid |
5-HT | 5-hydroxytryptamine |
5-HTP | 5-hydroxytryptophan |
A | Amygdala |
AuC | Auditory cortex |
CD | Complete deletion |
CNS | Central nervous system |
DA | Dopamine |
dH | Dorsal hippocampus |
DOPAC | 3,4-Dihydroxyphenylacetic acid |
HPLC | High pressure liquid chromatography |
HVA | Homovanillic acid |
Hy | Hypothalamus |
L-DOPA | L-3,4-dihydroxyphenylalanine |
NA | Noradrenaline |
NAc | Nucleus accumbens |
OF | Orbitofrontal Cortex |
PL | Prelimbic Cortex |
STR | Striatum |
T | Thalamus |
vH | Ventral hippocampus |
VMA | Vanillylmandelic acid |
WBS | Williams–Beuren Syndrome |
WT | Wild type |
References
- Martens, M.A.; Wilson, S.J.; Reutens, D.C. Research Review: Williams syndrome: A critical review of the cognitive, behavioral, and neuroanatomical phenotype. J. Child. Psychol. Psychiatry 2008, 49, 576–608. [Google Scholar] [CrossRef]
- Pober, B.R. Williams-Beuren syndrome. N. Engl. J. Med. 2010, 362, 239–252. [Google Scholar] [CrossRef]
- Gagliardi, C.; Martelli, S.; Burt, M.D.; Borgatti, R. Evolution of Neurologic Features in Williams Syndrome. Pediatr. Neurol. 2007, 36, 301–306. [Google Scholar] [CrossRef]
- Schubert, C. The genomic basis of the Williams-Beuren syndrome. Cell Mol. Life Sci. 2009, 66, 1178–1197. [Google Scholar] [CrossRef]
- Merla, G.; Brunetti-Pierri, N.; Micale, L.; Fusco, C. Copy number variants at Williams-Beuren syndrome 7q11.23 region. Hum. Genet. 2010, 128, 3–26. [Google Scholar] [CrossRef]
- Fan, C.C.; Brown, T.T.; Bartsch, H.; Kuperman, J.M.; Hagler, D.J.; Schork, A.; Searcy, Y.; Bellugi, U.; Halgren, E.; Dale, A.M. Williams syndrome-specific neuroanatomical profile and its associations with behavioral features. Neuroimage Clin. 2017, 15, 343–347. [Google Scholar] [CrossRef]
- Segura-Puimedon, M.; Sahún, I.; Velot, E.; Dubus, P.; Borralleras, C.; Rodrigues, A.J.; Valero, M.C.; Valverde, O.; Sousa, N.; Herault, Y.; et al. Heterozygous deletion of the Williams–Beuren syndrome critical interval in mice recapitulates most features of the human disorder. Human. Mol. Genet. 2014, 23, 6481–6494. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, N.; Ortiz-Romero, P.; Rodriguez-Rovira, I.; Pérez-Jurado, L.A.; Egea, G.; Campuzano, V. The Combined Treatment of Curcumin with Verapamil Ameliorates the Cardiovascular Pathology in a Williams-Beuren Syndrome Mouse Model. Int. J. Mol. Sci. 2023, 24, 3261. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Altayó, F.; Ortiz-Romero, P.; Puertas-Umbert, L.; Dantas, A.P.; Pérez, B.; Vila, E.; D’Ocon, P.; Campuzano, V. Stenosis coexists with compromised α1-adrenergic contractions in the ascending aorta of a mouse model of Williams-Beuren syndrome. Sci. Rep. 2020, 10, 889. [Google Scholar] [CrossRef] [PubMed]
- Giannoccaro, S.; Ferraguto, C.; Petroni, V.; Marcelly, C.; Nogues, X.; Campuzano, V.; Pietropaolo, S. Early Neurobehavioral Characterization of the CD Mouse Model of Williams-Beuren Syndrome. Cells 2023, 12, 391. [Google Scholar] [CrossRef]
- Nygaard, K.R.; Swift, R.G.; Glick, R.M.; Wagner, R.E.; Maloney, S.E.; Gould, G.G.; Dougherty, J.D. Oxytocin receptor activation does not mediate associative fear deficits in a Williams Syndrome model. Genes. Brain Behav. 2021, 21, e12750. [Google Scholar] [CrossRef]
- Borralleras, C.; Mato, S.; Amédée, T.; Matute, C.; Mulle, C.; Pérez-Jurado, L.A.; Campuzano, V. Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. Mol. Brain 2016, 9, 76. [Google Scholar] [CrossRef]
- Borralleras, C.; Sahun, I.; Pérez-Jurado, L.A.; Campuzano, V. Intracisternal Gtf2i Gene Therapy Ameliorates Deficits in Cognition and Synaptic Plasticity of a Mouse Model of Williams-Beuren Syndrome. Mol. Ther. 2015, 23, 1691–1699. [Google Scholar] [CrossRef]
- Piquemal, M.; Abdulkarim-Abdalla, N.; Ortiz-Romero, P.; Lemaire-Mayo, V.; Crusio, W.E.; Louette, E.; Campuzano, V.; Pietropaolo, S. Chlorzoxazone, A BKCa Channel Agonist, Rescues The Pathological Phenotypes Of Williams-Beuren Syndrome In A Preclinical Model. bioRxiv 2020. [Google Scholar] [CrossRef]
- Navarro-Romero, A.; Galera-López, L.; Ortiz-Romero, P.; Llorente-Ovejero, A.; de Los Reyes-Ramírez, L.; Bengoetxea de Tena, I.; Garcia-Elias, A.; Mas-Stachurska, A.; Reixachs-Solé, M.; Pastor, A.; et al. Cannabinoid signaling modulation through JZL184 restores key phenotypes of a mouse model for Williams-Beuren syndrome. Elife 2022, 11, e72560. [Google Scholar] [CrossRef]
- Porter, M.A.; Dodd, H.; Cairns, D. Psychopathological and behavior impairments in Williams-Beuren syndrome: The influence of gender, chronological age, and cognition. Child Neuropsychol. 2009, 15, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Bacqué-Cazenave, J.; Bharatiya, R.; Barrière, G.; Delbecque, J.-P.; Bouguiyoud, N.; Di Giovanni, G.; Cattaert, D.; De Deurwaerdère, P. Serotonin in Animal Cognition and Behavior. Int. J. Mol. Sci. 2020, 21, 1649. [Google Scholar] [CrossRef]
- De Deurwaerdère, P.; Di Giovanni, G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog. Neurobiol. 2017, 151, 175–236. [Google Scholar] [CrossRef] [PubMed]
- Aston-Jones, G.; Bloom, F.E. Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1981, 1, 887–900. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Rajkowski, J.; Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry 1999, 46, 1309–1320. [Google Scholar] [CrossRef] [PubMed]
- Le Moal, M.; Simon, H. Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiol. Rev. 1991, 71, 155–234. [Google Scholar] [CrossRef]
- Young, E.J.; Lipina, T.; Tam, E.; Mandel, A.; Clapcote, S.J.; Bechard, A.R.; Chambers, J.; Mount, H.T.J.; Fletcher, P.J.; Roder, J.C.; et al. Reduced fear and aggression and altered serotonin metabolism in Gtf2ird1-targeted mice. Genes Brain Behav. 2008, 7, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.J.; Aman, C.; Rivalan, M.; Fitoussi, A.; Parrot, S.; Dellu-Hagedorn, F.; De Deurwaerdère, P. Neurochemical Assessment of Tissue Levels of Neurotransmitters for Approximating Neurotransmitter System Connectivity. ACS Chem. Neurosci. 2025, 16, 1243–1246. [Google Scholar] [CrossRef]
- Fitoussi, A.; Dellu-Hagedorn, F.; De Deurwaerdère, P. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition. Neuroscience 2013, 255, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Marty, V.; Butler, J.J.; Coutens, B.; Chargui, O.; Chagraoui, A.; Guiard, B.P.; De Deurwaerdère, P.; Cavaillé, J. Deleting Snord115 genes in mice remodels monoaminergic systems activity in the brain toward cortico-subcortical imbalances. Hum. Mol. Genet. 2023, 32, 244–261. [Google Scholar] [CrossRef]
- Puginier, E.; Bharatiya, R.; Chagraoui, A.; Manem, J.; Cho, Y.H.; Garret, M.; De Deurwaerdère, P. Early neurochemical modifications of monoaminergic systems in the R6/1 mouse model of Huntington’s disease. Neurochem. Int. 2019, 128, 186–195. [Google Scholar] [CrossRef]
- Butler, J.J.; Virgili, M.; Di Giovanni, G.; Chagraoui, A.; Beyeler, A.; De Deurwaerdère, P. 5-HT2A receptors shape whole-brain monoaminergic coherence in male mice. Prog. Neuro-psychopharmacol. Biol. Psychiatry 2025, 141, 111437. [Google Scholar] [CrossRef]
- Hornung, J.-P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 2003, 26, 331–343. [Google Scholar] [CrossRef]
- Ren, J.; Friedmann, D.; Xiong, J.; Liu, C.D.; Ferguson, B.R.; Weerakkody, T.; DeLoach, K.E.; Ran, C.; Pun, A.; Sun, Y.; et al. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell 2018, 175, 472–487.e20. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Isakova, A.; Friedmann, D.; Zeng, J.; Grutzner, S.M.; Pun, A.; Zhao, G.Q.; Kolluru, S.S.; Wang, R.; Lin, R.; et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. Elife 2019, 8, e49424. [Google Scholar] [CrossRef]
- Antonell, A.; Del Campo, M.; Magano, L.F.; Kaufmann, L.; de la Iglesia, J.M.; Gallastegui, F.; Flores, R.; Schweigmann, U.; Fauth, C.; Kotzot, D.; et al. Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams-Beuren syndrome neurocognitive profile. J. Med. Genet. 2010, 47, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Dellu-Hagedorn, F.; Fitoussi, A.; De Deurwaerdère, P. Correlative analysis of dopaminergic and serotonergic metabolism across the brain to study monoaminergic function and interaction. J. Neurosci. Methods 2017, 280, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Gros, A.; Lavenu, L.; Morel, J.L.; De Deurwaerdère, P. Simulated Microgravity Subtlety Changes Monoamine Function across the Rat Brain. Int. J. Mol. Sci. 2021, 22, 11759. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Kopin, I.J.; Goldstein, D.S. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacol. Rev. 2004, 56, 331–349. [Google Scholar] [CrossRef]
- Hervé, D.; Tassin, J.P.; Barthelemy, C.; Blanc, G.; Lavielle, S.; Glowinski, J. Difference in the reactivity of the mesocortical dopaminergic neurons to stress in the BALB/C and C57 BL/6 mice. Life Sci. 1979, 25, 1659–1664. [Google Scholar] [CrossRef]
- Tassin, J.P.; Herve, D.; Blanc, G.; Glowinski, J. Differential effects of a two-minute open-field session on dopamine utilization in the frontal cortices of BALB/C and C57 BL/6 mice. Neurosci. Lett. 1980, 17, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Siegel, A.; Roeling, T.A.; Gregg, T.R.; Kruk, M.R. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci. Biobehav. Rev. 1999, 23, 359–389. [Google Scholar] [CrossRef]
- Vazquez-Borsetti, P.; Celada, P.; Cortes, R.; Artigas, F. Simultaneous projections from prefrontal cortex to dopaminergic and serotonergic nuclei. Int. J. Neuropsychopharmacol. 2011, 14, 289–302. [Google Scholar] [CrossRef]
- Silva, B.A.; Mattucci, C.; Krzywkowski, P.; Murana, E.; Illarionova, A.; Grinevich, V.; Canteras, N.S.; Ragozzino, D.; Gross, C.T. Independent hypothalamic circuits for social and predator fear. Nat. Neurosci. 2013, 16, 1731–1733. [Google Scholar] [CrossRef]
- Krzywkowski, P.; Penna, B.; Gross, C.T. Dynamic encoding of social threat and spatial context in the hypothalamus. Elife 2020, 9, e57148. [Google Scholar] [CrossRef]
- Kästner, N.; Richter, S.H.; Urbanik, S.; Kunert, J.; Waider, J.; Lesch, K.-P.; Kaiser, S.; Sachser, N. Brain serotonin deficiency affects female aggression. Sci. Rep. 2019, 9, 1366. [Google Scholar] [CrossRef] [PubMed]
- Gruss, M.; Braun, K. Alterations of amino acids and monoamine metabolism in male Fmr1 knockout mice: A putative animal model of the human fragile X mental retardation syndrome. Neural Plast. 2001, 8, 285–298. [Google Scholar] [CrossRef]
- Gruss, M.; Braun, K. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice. Neurochem. Int. 2004, 45, 81–88. [Google Scholar] [CrossRef]
- Tager-Flusberg, H.; Skwerer, D.P.; Joseph, R.M. Model syndromes for investigating social cognitive and affective neuroscience: A comparison of autism and Williams syndrome. Soc. Cogn. Affect. Neurosci. 2006, 1, 175–182. [Google Scholar] [CrossRef]
- Borland, J.M. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front. Neuroendocrinol. 2025, 77, 101175. [Google Scholar] [CrossRef] [PubMed]
- Davenport, C.M.; Teubner, B.J.W.; Han, S.B.; Patton, M.H.; Eom, T.-Y.; Garic, D.; Lansdell, B.J.; Shirinifard, A.; Chang, T.-C.; Klein, J.; et al. Innate frequency-discrimination hyperacuity in Williams-Beuren syndrome mice. Cell 2022, 185, 3877–3895.e21. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.S.; Robison, M.K.; Brewer, G.A. The role of the LC-NE system in attention: From cells, to systems, to sensory-motor control. Neurosci. Biobehav. Rev. 2025, 175, 106233. [Google Scholar] [CrossRef]
- Foote, S.L.; Aston-Jones, G.; Bloom, F.E. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci. USA 1980, 77, 3033–3037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aman, C.; Gréa, H.; Rousseau, A.; Allain, A.-E.; Pietropaolo, S.; De Deurwaerdère, P.; Lemaire, V. Brain Monoamine Deficits in the CD Mouse Model of Williams–Beuren Syndrome. Biomolecules 2025, 15, 1382. https://doi.org/10.3390/biom15101382
Aman C, Gréa H, Rousseau A, Allain A-E, Pietropaolo S, De Deurwaerdère P, Lemaire V. Brain Monoamine Deficits in the CD Mouse Model of Williams–Beuren Syndrome. Biomolecules. 2025; 15(10):1382. https://doi.org/10.3390/biom15101382
Chicago/Turabian StyleAman, Chloé, Hélène Gréa, Alicia Rousseau, Anne-Emilie Allain, Susanna Pietropaolo, Philippe De Deurwaerdère, and Valérie Lemaire. 2025. "Brain Monoamine Deficits in the CD Mouse Model of Williams–Beuren Syndrome" Biomolecules 15, no. 10: 1382. https://doi.org/10.3390/biom15101382
APA StyleAman, C., Gréa, H., Rousseau, A., Allain, A.-E., Pietropaolo, S., De Deurwaerdère, P., & Lemaire, V. (2025). Brain Monoamine Deficits in the CD Mouse Model of Williams–Beuren Syndrome. Biomolecules, 15(10), 1382. https://doi.org/10.3390/biom15101382