Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with Escherichia coli
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, and Reagents
2.2. Construction of Cloning Vector
2.3. Protein Expression and Purification
2.4. Western Blotting
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
3. Results
3.1. Expression and Purification of the Recombinant Proteins
3.2. Binding Capacity to S1 of the Recombinant Nanobodies
3.3. Multi-Epitope Nanobody with Enhanced Affinity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.-Y.; Singh, M.; Yinda, C.K.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022, 612, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 2021, 19, 685–700. [Google Scholar] [CrossRef]
- Dai, L.; Gao, L.; Tao, L.; Hadinegoro, S.R.; Erkin, M.; Ying, Z.; He, P.; Girsang, R.T.; Vergara, H.; Akram, J.; et al. Efficacy and Safety of the RBD-Dimer–Based Covid-19 Vaccine ZF2001 in Adults. N. Engl. J. Med. 2022, 386, 2097–2111. [Google Scholar] [CrossRef]
- Xu, K.; Gao, P.; Liu, S.; Lu, S.; Lei, W.; Zheng, T.; Liu, X.; Xie, Y.; Zhao, Z.; Guo, S.; et al. Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Cell 2022, 185, 2265–2278.e2214. [Google Scholar] [CrossRef]
- Huang, K.-Y.A.; Chen, X.; Mohapatra, A.; Nguyen, H.T.V.; Schimanski, L.; Tan, T.K.; Rijal, P.; Vester, S.K.; Hills, R.A.; Howarth, M.; et al. Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2. Nat. Commun. 2023, 14, 311. [Google Scholar] [CrossRef]
- Shi, R.; Shan, C.; Duan, X.; Chen, Z.; Liu, P.; Song, J.; Song, T.; Bi, X.; Han, C.; Wu, L.; et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 2020, 584, 120–124. [Google Scholar] [CrossRef]
- Cox, M.; Peacock, T.P.; Harvey, W.T.; Hughes, J.; Wright, D.W.; Willett, B.J.; Thomson, E.; Gupta, R.K.; Peacock, S.J.; Robertson, D.L.; et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat. Rev. Microbiol. 2022, 21, 112–124. [Google Scholar] [CrossRef]
- Xu, J.; Xu, K.; Jung, S.; Conte, A.; Lieberman, J.; Muecksch, F.; Lorenzi, J.C.C.; Park, S.; Schmidt, F.; Wang, Z.; et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature 2021, 595, 278–282. [Google Scholar] [CrossRef]
- Koch-Nolte, F. Nanobody-based heavy chain antibodies and chimeric antibodies. Immunol. Rev. 2024, 328, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, R.; Liang, T.; Ren, H.; Park, C.; Tai, C.-H.; Ni, W.; Zhou, J.; Mackay, S.; Edmondson, E.; et al. Camel nanobody-based B7-H3 CAR-T cells show high efficacy against large solid tumours. Nat. Commun. 2023, 14, 5920. [Google Scholar] [CrossRef] [PubMed]
- De Marco, A. Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr. Purif. 2020, 172, 105645. [Google Scholar] [CrossRef] [PubMed]
- McMahon, C.; Baier, A.S.; Pascolutti, R.; Wegrecki, M.; Zheng, S.; Ong, J.X.; Erlandson, S.C.; Hilger, D.; Rasmussen, S.G.F.; Ring, A.M.; et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 2018, 25, 289–296. [Google Scholar] [CrossRef]
- Custodio, T.F.; Das, H.; Sheward, D.J.; Hanke, L.; Pazicky, S.; Pieprzyk, J.; Sorgenfrei, M.; Schroer, M.A.; Gruzinov, A.Y.; Jeffries, C.M.; et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat. Commun. 2020, 11, 5588. [Google Scholar] [CrossRef]
- Li, T.; Cai, H.; Yao, H.; Zhou, B.; Zhang, N.; van Vlissingen, M.F.; Kuiken, T.; Han, W.; GeurtsvanKessel, C.H.; Gong, Y.; et al. A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nat. Commun. 2021, 12, 4635. [Google Scholar] [CrossRef]
- Hanke, L.; Das, H.; Sheward, D.J.; Perez Vidakovics, L.; Urgard, E.; Moliner-Morro, A.; Kim, C.; Karl, V.; Pankow, A.; Smith, N.L.; et al. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nat. Commun. 2022, 13, 155. [Google Scholar] [CrossRef]
- Schoof, M.; Faust, B.; Saunders, R.A.; Sangwan, S.; Rezelj, V.; Hoppe, N.; Boone, M.; Billesbølle, C.B.; Puchades, C.; Azumaya, C.M.; et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 2020, 370, 1473–1479. [Google Scholar] [CrossRef]
- Xiang, Y.; Nambulli, S.; Xiao, Z.; Liu, H.; Sang, Z.; Duprex, W.P.; Schneidman-Duhovny, D.; Zhang, C.; Shi, Y. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 2020, 370, 1479–1484. [Google Scholar] [CrossRef]
- Nambulli, S.; Xiang, Y.; Tilston-Lunel, N.L.; Rennick, L.J.; Sang, Z.; Klimstra, W.B.; Reed, D.S.; Crossland, N.A.; Shi, Y.; Duprex, W.P. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci. Adv. 2021, 7, eabh0319. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Jin, Y.; Zhu, Y.; Wu, Y.; Li, C.; Kong, Y.; Song, W.; Tian, X.; Zhan, W.; et al. A non-ACE2 competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. Signal Transduct. Target. Ther. 2021, 6, 378. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, H. Expression of single-domain antibody in different systems. Appl. Microbiol. Biotechnol. 2018, 102, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Malaquias, A.D.M.; Marques, L.E.C.; Pereira, S.S.; de Freitas Fernandes, C.; Maranhao, A.Q.; Stabeli, R.G.; Florean, E.; Guedes, M.I.F.; Fernandes, C.F.C. A review of plant-based expression systems as a platform for single-domain recombinant antibody production. Int. J. Biol. Macromol. 2021, 193, 1130–1137. [Google Scholar] [CrossRef]
- Ma, Y.; Lee, C.J.; Park, J.S. Strategies for Optimizing the Production of Proteins and Peptides with Multiple Disulfide Bonds. Antibiotics 2020, 9, 541. [Google Scholar] [CrossRef] [PubMed]
- Hennigan, J.N.; Menacho-Melgar, R.; Sarkar, P.; Golovsky, M.; Lynch, M.D. Scalable, robust, high-throughput expression & purification of nanobodies enabled by 2-stage dynamic control. Metab. Eng. 2024, 85, 116–130. [Google Scholar] [CrossRef]
- Fuhner, V.; Heine, P.A.; Zilkens, K.J.C.; Meier, D.; Roth, K.D.R.; Moreira, G.; Hust, M.; Russo, G. Epitope Mapping via Phage Display from Single-Gene Libraries. Methods Mol. Biol. 2019, 1904, 353–375. [Google Scholar] [CrossRef]
- Tao, Z.; Zhao, X.; Wang, H.; Zhang, J.; Jiang, G.; Yu, B.; Chen, Y.; Zhu, M.; Long, J.; Yin, L.; et al. A method for rapid nanobody screening with no bias of the library diversity. iScience 2024, 27, 108966. [Google Scholar] [CrossRef]
- Jiang, R.; Yuan, S.; Zhou, Y.; Wei, Y.; Li, F.; Wang, M.; Chen, B.; Yu, H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol. Adv. 2024, 75, 108417. [Google Scholar] [CrossRef]
- Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef]
- Gawin, A.; Ertesvåg, H.; Hansen, S.A.H.; Malmo, J.; Brautaset, T. Translational regulation of periplasmic folding assistants and proteases as a valuable strategy to improve production of translocated recombinant proteins in Escherichia coli. BMC Biotech. 2020, 20, 24. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, R.; Zhu, D.; Wang, W.; Yi, L.; Ma, L. Non-peptide guided auto-secretion of recombinant proteins by super-folder green fluorescent protein in Escherichia coli. Sci. Rep. 2017, 7, 6990. [Google Scholar] [CrossRef] [PubMed]
- Salema, V.; Fernandez, L.A. Escherichia coli surface display for the selection of nanobodies. Microb. Biotechnol. 2017, 10, 1468–1484. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yang, G.; Xie, X.; Yan, G.; Wang, F.; Chen, W.; Ma, L. Whole-Cell Display of Phosphotransferase in Escherichia coli for High-Efficiency Extracellular ATP Production. Biomolecules 2022, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, B.; Wang, F.; Yang, Z.; Gao, D.; Zhang, C.; Ma, L.; Yu, X. Soluble expression of single-chain variable fragment (scFv) in Escherichia coli using superfolder green fluorescent protein as fusion partner. Appl. Microbiol. Biotechnol. 2019, 103, 6071–6079. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, X.; Li, H.; Deng, D.; Guo, Z.; Kang, L.; Li, A. Engineering of Unspecific Peroxygenases Using a Superfolder-Green-Fluorescent-Protein-Mediated Secretion System in Escherichia coli. JACS Au 2024, 4, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yu, S.; Qin, F.; Ning, W.; Ma, X.; Tian, K.; Li, Z.; Zhou, K. A secretion-based dual fluorescence assay for high-throughput screening of alcohol dehydrogenases. Biotechnol. Bioeng. 2021, 118, 1624–1635. [Google Scholar] [CrossRef]
- Zeng, W.; Jia, X.; Chi, X.; Zhang, X.; Li, E.; Wu, Y.; Liu, Y.; Han, J.; Ni, K.; Ye, X.; et al. An engineered bispecific nanobody in tetrameric secretory IgA format confers broad neutralization against SARS-CoV-1&2 and most variants. Int. J. Biol. Macromol. 2023, 253, 126817. [Google Scholar] [CrossRef]
- Huang, C.; Huang, J.; Zhu, S.; Tang, T.; Chen, Y.; Qian, F. Multivalent nanobodies with rationally optimized linker and valency for intravitreal VEGF neutralization. Chem. Eng. Sci. 2023, 270, 118521. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Zhang, S.; Jiang, H.; Zhu, J.; Jiang, G.; Liu, Y.; Zhu, Y.; Li, J. Bispecific Nanobody-Aptamer Conjugates for Enhanced Cancer Therapy in Solid Tumors. Small 2024, 20, 2308265. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, X.; Zheng, P.; Dube, P.H.; Zeng, W.; Chen, S.; Cheng, Q.; Yang, Y.; Wu, Y.; Zhou, J.; et al. Hetero-bivalent nanobodies provide broad-spectrum protection against SARS-CoV-2 variants of concern including Omicron. Cell Res. 2022, 32, 831–842. [Google Scholar] [CrossRef]
- Yu, F.; Li, X.; Wang, F.; Liu, Y.; Zhai, C.; Li, W.; Ma, L.; Chen, W. TLTC, a T5 exonuclease-mediated low-temperature DNA cloning method. Front. Bioeng. Biotechnol. 2023, 11, 1167534. [Google Scholar] [CrossRef] [PubMed]
- Koenig, P.A.; Das, H.; Liu, H.; Kummerer, B.M.; Gohr, F.N.; Jenster, L.M.; Schiffelers, L.D.J.; Tesfamariam, Y.M.; Uchima, M.; Wuerth, J.D.; et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 2021, 371, eabe6230. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, F.; Yang, S.; Jiang, W.; Gao, R.; Lin, S.; Deng, B.; Wang, X.; Cheng, W.; Liu, Y.; et al. Development of a Hyperthermostable Artificial Scaffold Based on Ultrahigh-Affinity Protein Pairs and Its Application in Cellulose Degradation. ACS Sustain. Chem. Eng. 2022, 10, 2072–2083. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Q.; Fan, H.; Liao, C.; Zhang, J.; Hu, H.; Yi, H.; Peng, Y.; Lu, J.; Chen, Z. A Multivalent and Thermostable Nanobody Neutralizing SARS-CoV-2 Omicron (B.1.1.529). Int. J. Nanomed. 2023, 18, 353–367. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Huo, J.; Le Bas, A.; Ruza, R.R.; Duyvesteyn, H.M.E.; Mikolajek, H.; Malinauskas, T.; Tan, T.K.; Rijal, P.; Dumoux, M.; Ward, P.N.; et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct. Mol. Biol. 2020, 27, 846–854. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, Z.; Li, H.; Zhong, K.; Zhao, Q.; Wang, Z.; Wu, Z.; Yang, D.; Sun, S.; Yang, N.; et al. Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. J. Nanobiotechnol. 2021, 19, 33. [Google Scholar] [CrossRef]
- Planas, D.; Bruel, T.; Grzelak, L.; Guivel-Benhassine, F.; Staropoli, I.; Porrot, F.; Planchais, C.; Buchrieser, J.; Rajah, M.M.; Bishop, E.; et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 2021, 27, 917–924. [Google Scholar] [CrossRef]
- Hu, J.; Peng, P.; Wang, K.; Fang, L.; Luo, F.Y.; Jin, A.S.; Liu, B.Z.; Tang, N.; Huang, A.L. Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies. Cell Mol. Immunol. 2021, 18, 1061–1063. [Google Scholar] [CrossRef]
- Tada, T.; Dcosta, B.M.; Samanovic, M.I.; Herati, R.S.; Cornelius, A.; Zhou, H.; Vaill, A.; Kazmierski, W.; Mulligan, M.J.; Landau, N.R. Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes. mBio 2021, 12, e0069621. [Google Scholar] [CrossRef]
- Cardoso, F.M.; Ibanez, L.I.; Van den Hoecke, S.; De Baets, S.; Smet, A.; Roose, K.; Schepens, B.; Descamps, F.J.; Fiers, W.; Muyldermans, S.; et al. Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J. Virol. 2014, 88, 8278–8296. [Google Scholar] [CrossRef] [PubMed]
- Detalle, L.; Stohr, T.; Palomo, C.; Piedra, P.A.; Gilbert, B.E.; Mas, V.; Millar, A.; Power, U.F.; Stortelers, C.; Allosery, K.; et al. Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob. Agents Chemother. 2016, 60, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Ingram, J.R.; Schmidt, F.I.; Ploegh, H.L. Exploiting Nanobodies’ Singular Traits. Annu. Rev. Immunol. 2018, 36, 695–715. [Google Scholar] [CrossRef] [PubMed]
- Muyldermans, S. Applications of Nanobodies. Annu. Rev. Anim. Biosci. 2021, 9, 401–421. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′-3′) |
---|---|---|
Fu2-sfGFP | Fu2-NF | CACCATCATCATCATCATCAGGTTCAGCTGGTTGAAAGC |
Fu2-NR | AGCAGCCGGATCTCATTTATACAGTTCATCCATGCCC | |
sfGFP-Fu2 | Fu2-CF | CACCATCATCATCATCATATGGTGAG |
Fu2-CR | AAGCGTAATCCGGAACATCATACGGGTAGCTGCTAACGGTAACCTGG | |
sfGFP-ANTE | ANTE-F | CACCATCATCATCATCATATGGTGAG |
ANTE-R | AAGCGTAATCCGGAACATCATACGGGTAAGAGCTAACGGTCACTTGC | |
sfGFP-mNb6 | mNb6-F | CACCATCATCATCATCATATGGTGAG |
mNb6-R | GCTGCCGCCGCCGCCGCTACTAACTGTAACTTGTGTTCCC | |
sfGFP-MR3-MR3 | MR3-F | CACCATCATCATCATCATATGGTGAG |
MR3-R | AGCAGCCGGATCTCACTATGCATAATCCGGAACATCATACG | |
n3113.1-sfGFP | n3113-F | CACCATCATCATCATCATGAGGTTCAACTAGTAGAATCAGGTGG |
n3113-R | AGCAGCCGGATCTCATTTATACAGTTCATCCATGCCC | |
pET-23a | 23a-F | TGAGATCCGGCTGCTAACAA |
23a-R | ATGATGATGATGATGGTGCATATGTATAT |
Plasmid/Strain | Description |
---|---|
pET-23a | Vector for expression proteins, T7 promoter, Ampr |
pFu2-sfGFP | pET-23a encoding Fu2-sfGFP, Ampr |
psfGFP-Fu2 | pET-23a encoding sfGFP-Fu2, Ampr |
psfGFP-ANTE | pET-23a encoding sfGFP-ANTE, Ampr |
psfGFP-mNb6 | pET-23a encoding sfGFP-mNb6, Ampr |
psfGFP-MR3-MR3 | pET-23a encoding sfGFP-MR3-MR3, Ampr |
pn3113.1-sfGFP | pET-23a encoding n3113.1-sfGFP, Ampr |
pFu2-sfGFP-ANTE | pET-23a encoding Fu2-sfGFP-ANTE, Ampr |
Strain | |
E-Fu2-sfGFP | E. coli BL21(DE3) (pFu2-sfGFP) |
E-sfGFP-Fu2 | E. coli BL21(DE3) (psfGFP-Fu2) |
E-sfGFP-ANTE | E. coli BL21(DE3) (psfGFP-ANTE) |
E-sfGFP-mNb6 | E. coli BL21(DE3) (psfGFP-mNb6) |
E-sfGFP-MR3-MR3 | E. coli BL21(DE3) (psfGFP-MR3-MR3) |
E-n3113.1-sfGFP | E. coli BL21(DE3) (pn3113.1-sfGFP) |
E-Fu2-sfGFP-ANTE | E. coli BL21(DE3) (pFu2-sfGFP-ANTE) |
Nanobodies | Number of Cysteines | MW (Target Protein) (kDa) | Secretion Production (mg/L) |
---|---|---|---|
Fu2-sfGFP | 4 | 45.1 | 188 |
sfGFP-Fu2 | 4 | 44.1 | 307 |
sfGFP-ANTE | 8 | 70.9 | 335 |
sfGFP-mNb6 | 8 | 82.2 | 331 |
sfGFP-MR3-MR3 | 6 | 69.9 | 294 |
n3113.1-sfGFP | 4 | 42.7 | 235 |
Fu2-sfGFP-ANTE | 10 | 97.9 | 272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zeng, W.; Yu, F.; Xu, P.; Chen, C.-Y.; Chen, W.; Dong, Y.; Wang, F.; Ma, L. Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with Escherichia coli. Biomolecules 2025, 15, 111. https://doi.org/10.3390/biom15010111
Zhao S, Zeng W, Yu F, Xu P, Chen C-Y, Chen W, Dong Y, Wang F, Ma L. Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with Escherichia coli. Biomolecules. 2025; 15(1):111. https://doi.org/10.3390/biom15010111
Chicago/Turabian StyleZhao, Shuai, Wanting Zeng, Fang Yu, Pingping Xu, Chin-Yu Chen, Wanping Chen, Yanming Dong, Fei Wang, and Lixin Ma. 2025. "Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with Escherichia coli" Biomolecules 15, no. 1: 111. https://doi.org/10.3390/biom15010111
APA StyleZhao, S., Zeng, W., Yu, F., Xu, P., Chen, C.-Y., Chen, W., Dong, Y., Wang, F., & Ma, L. (2025). Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with Escherichia coli. Biomolecules, 15(1), 111. https://doi.org/10.3390/biom15010111