Schild Analysis of the Interaction between Parthenolide and Cocaine Suggests an Allosteric Relationship for Their Effects on Planarian Motility
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birkholz, T.R.; Van Huizen, A.V.; Beane, W.S. Staying in Shape: Planarians as a Model for Understanding Regenerative Morphology. Semin. Cell Dev. Biol. 2019, 87, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Reddien, P.W. Positional Information and Stem Cells Combine to Result in Planarian Regeneration. Cold Spring Harb. Perspect. Biol. 2021, 14, a040717. [Google Scholar] [CrossRef] [PubMed]
- Ivankovic, M.; Haneckova, R.; Thommen, A.; Grohme, M.A.; Vila-Farré, M.; Werner, S.; Rink, J.C. Model Systems for Regeneration: Planarians. Development 2019, 146, dev167684. [Google Scholar] [CrossRef] [PubMed]
- Pagán, O.R. The First Brain: The Neuroscience of Planarians; Oxford University Press: Oxford, UK, 2014; ISBN 9780199965045. [Google Scholar]
- Ge, X.; Han, X.; Zhao, Y.; Cui, G.; Yang, Y. An Insight into Planarian Regeneration. Cell Prolif. 2022, 55, e13276. [Google Scholar] [CrossRef] [PubMed]
- Robb, S.M.C.; Gotting, K.; Ross, E.; Sánchez Alvarado, A. SmedGD 2.0: The Schmidtea mediterranea Genome Database. Genesis 2015, 53, 535–546. [Google Scholar] [CrossRef]
- Brandl, H.; Moon, H.; Vila-Farré, M.; Liu, S.-Y.; Henry, I.; Rink, J.C. PlanMine—A Mineable Resource of Planarian Biology and Biodiversity. Nucleic Acids Res. 2016, 44, D764–D773. [Google Scholar] [CrossRef]
- Cebrià, F. Regenerating the Central Nervous System: How Easy for Planarians! Dev. Genes. Evol. 2007, 217, 733–748. [Google Scholar] [CrossRef]
- Gentile, L.; Cebrià, F.; Bartscherer, K. The Planarian Flatworm: An in Vivo Model for Stem Cell Biology and Nervous System Regeneration. Dis. Models Mech. 2011, 4, 12–19. [Google Scholar] [CrossRef]
- Owlarn, S.; Bartscherer, K. Go Ahead, Grow a Head! A Planarian’s Guide to Anterior Regeneration: Planarian Anterior Regeneration. Regeneration 2016, 3, 139–155. [Google Scholar] [CrossRef]
- Ross, K.G.; Currie, K.W.; Pearson, B.J.; Zayas, R.M. Nervous System Development and Regeneration in Freshwater Planarians. WIREs Dev. Biol. 2017, 6, e266. [Google Scholar] [CrossRef]
- Wyss, L.S.; Bray, S.R.; Wang, B. Cellular Diversity and Developmental Hierarchy in the Planarian Nervous System. Curr. Opin. Genet. Dev. 2022, 76, 101960. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B.; Netsky, M.G. When Does a Ganglion Become a Brain? Evolutionary Origin of the Central Nervous System. Semin. Pediatr. Neurol. 2002, 9, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B.; Netsky, M.G. The Brain of the Planarian as the Ancestor of the Human Brain. Can. J. Neurol. Sci. 1985, 12, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Buttarelli, F.R.; Pellicano, C.; Pontieri, F.E. Neuropharmacology and Behavior in Planarians: Translations to Mammals. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 147, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.; El-Shehabi, F.; Patocka, N. Classical Transmitters and Their Receptors in Flatworms. Parasitology 2006, 131, S19. [Google Scholar] [CrossRef]
- Cebrià, F.; Kudome, T.; Nakazawa, M.; Mineta, K.; Ikeo, K.; Gojobori, T.; Agata, K. The Expression of Neural-Specific Genes Reveals the Structural and Molecular Complexity of the Planarian Central Nervous System. Mech. Dev. 2002, 116, 199–204. [Google Scholar] [CrossRef]
- Rawls, S.M.; Patil, T.; Tallarida, C.S.; Baron, S.; Kim, M.; Song, K.; Ward, S.; Raffa, R.B. Nicotine Behavioral Pharmacology: Clues from Planarians. Drug Alcohol. Depend. 2011, 118, 274–279. [Google Scholar] [CrossRef]
- Bach, D.J.; Tenaglia, M.; Baker, D.L.; Deats, S.; Montgomery, E.; Pagán, O.R. Cotinine Antagonizes the Behavioral Effects of Nicotine Exposure in the Planarian Girardia tigrina. Neurosci. Lett. 2016, 632, 204–208. [Google Scholar] [CrossRef]
- Raffa, R.B.; Baron, S.; Bhandal, J.S.; Brown, T.; Song, K.; Tallarida, C.S.; Rawls, S.M. Opioid Receptor Types Involved in the Development of Nicotine Physical Dependence in an Invertebrate (Planaria) Model. Pharmacol. Biochem. Behav. 2013, 112, 9–14. [Google Scholar] [CrossRef]
- Pagán, O.R.; Deats, S.; Baker, D.; Montgomery, E.; Wilk, G.; Tenaglia, M.; Semon, J. Planarians Require an Intact Brain to Behaviorally React to Cocaine, but Not to React to Nicotine. Neuroscience 2013, 246, 265–270. [Google Scholar] [CrossRef]
- Sal, F.; Prados, J.; Urcelay, G.P. Nicotine Chronic Tolerance Development and Withdrawal in the Planaria (Schmidtea mediterranea). Pharmacol. Biochem. Behav. 2021, 200, 173075. [Google Scholar] [CrossRef]
- Pagán, O.R.; Montgomery, E.; Deats, S.; Bach, D.; Baker, D. Evidence of Nicotine-Induced, Curare-Insensitive, Behavior in Planarians. Neurochem. Res. 2015, 40, 2087–2090. [Google Scholar] [CrossRef] [PubMed]
- Pagán, O.R.; Rowlands, A.L.; Fattore, A.L.; Coudron, T.; Urban, K.R.; Bidja, A.H.; Eterović, V.A. A Cembranoid from Tobacco Prevents the Expression of Nicotine-Induced Withdrawal Behavior in Planarian Worms. Eur. J. Pharmacol. 2009, 615, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Tallarida, C.S.; Egan, E.; Alejo, G.D.; Raffa, R.; Tallarida, R.J.; Rawls, S.M. Levamisole and Cocaine Synergism: A Prevalent Adulterant Enhances Cocaine’s Action in Vivo. Neuropharmacology 2014, 79, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Tallarida, C.S.; Bires, K.; Avershal, J.; Tallarida, R.J.; Seo, S.; Rawls, S.M. Ethanol and Cocaine: Environmental Place Conditioning, Stereotypy, and Synergism in Planarians. Alcohol 2014, 48, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Raffa, R.B.; Desai, P. Description and Quantification of Cocaine Withdrawal Signs in Planaria. Brain Res. 2005, 1032, 200–202. [Google Scholar] [CrossRef]
- Pagán, O.R. Planaria: An Animal Model That Integrates Development, Regeneration and Pharmacology. Int. J. Dev. Biol. 2017, 61, 519–529. [Google Scholar] [CrossRef]
- Tsuchiya, H. Anesthetic Agents of Plant Origin: A Review of Phytochemicals with Anesthetic Activity. Molecules 2017, 22, 1369. [Google Scholar] [CrossRef]
- Ruetsch, Y.A.; Böni, T.; Borgeat, A. From Cocaine to Ropivacaine: The History of Local Anesthetic Drugs. Curr. Top. Med. Chem. 2001, 1, 175–182. [Google Scholar] [CrossRef]
- Körner, J.; Albani, S.; Sudha Bhagavath Eswaran, V.; Roehl, A.B.; Rossetti, G.; Lampert, A. Sodium Channels and Local Anesthetics—Old Friends with New Perspectives. Front. Pharmacol. 2022, 13, 837088. [Google Scholar] [CrossRef]
- Nepal, B.; Das, S.; Reith, M.E.; Kortagere, S. Overview of the Structure and Function of the Dopamine Transporter and Its Protein Interactions. Front. Physiol. 2023, 14, 1150355. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X. Recent Advances on the Structural Modification of Parthenolide and Its Derivatives as Anticancer Agents. Chin. J. Nat. Med. 2022, 20, 814–829. [Google Scholar] [CrossRef] [PubMed]
- Mathema, V.B.; Koh, Y.-S.; Thakuri, B.C.; Sillanpää, M. Parthenolide, a Sesquiterpene Lactone, Expresses Multiple Anti-Cancer and Anti-Inflammatory Activities. Inflammation 2012, 35, 560–565. [Google Scholar] [CrossRef]
- Freund, R.R.A.; Gobrecht, P.; Fischer, D.; Arndt, H.-D. Advances in Chemistry and Bioactivity of Parthenolide. Nat. Prod. Rep. 2020, 37, 541–565. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cui, M.; Wang, Y.; Wang, J. Trends in Parthenolide Research over the Past Two Decades: A Bibliometric Analysis. Heliyon 2023, 9, e17843. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, E. The Sesquiterpene Lactone Mix: A Review of Past, Present and Future Aspects. Contact Dermat. 2023, 89, 434–441. [Google Scholar] [CrossRef]
- Pagán, O.R. Synthetic Local Anesthetics as Alleviators of Cocaine Inhibition of the Human Dopamine Transporter. Ph.D. Dissertation, Cornell University, Ithaca, NY, USA, 2005. [Google Scholar]
- Pagán, O.R.; Rowlands, A.L.; Azam, M.; Urban, K.R.; Bidja, A.H.; Roy, D.M.; Feeney, R.B.; Afshari, L.K. Reversal of Cocaine-Induced Planarian Behavior by Parthenolide and Related Sesquiterpene Lactones. Pharmacol. Biochem. Behav. 2008, 89, 160–170. [Google Scholar] [CrossRef]
- Rowlands, A.L.; Pagán, O.R. Parthenolide Prevents the Expression of Cocaine-Induced Withdrawal Behavior in Planarians. Eur. J. Pharmacol. 2008, 583, 170–172. [Google Scholar] [CrossRef]
- Baker, D.; Deats, S.; Boor, P.; Pruitt, J.; Pagán, O.R. Minimal Structural Requirements of Alkyl γ-Lactones Capable of Antagonizing the Cocaine-Induced Motility Decrease in Planarians. Pharmacol. Biochem. Behav. 2011, 100, 174–179. [Google Scholar] [CrossRef]
- Pagán, O.R.; Baker, D.; Deats, S.; Montgomery, E.; Tenaglia, M.; Randolph, C.; Kotturu, D.; Tallarida, C.; Bach, D.; Wilk, G.; et al. Planarians in Pharmacology: Parthenolide Is a Specific Behavioral Antagonist of Cocaine in the Planarian Girardia tigrina. Int. J. Dev. Biol. 2012, 56, 193–196. [Google Scholar] [CrossRef]
- Schwarz, D.; Bloom, D.; Castro, R.; Pagán, O.R.; Jiménez-Rivera, C.A. Parthenolide Blocks Cocaine’s Effect on Spontaneous Firing Activity of Dopaminergic Neurons in the Ventral Tegmental Area. Curr. Neuropharmacol. 2011, 9, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Pagán, O.R.; Rowlands, A.L.; Urban, K.R. Toxicity and Behavioral Effects of Dimethylsulfoxide in Planaria. Neurosci. Lett. 2006, 407, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Raffa, R.B.; Holland, L.J.; Schulingkamp, R.J. Quantitative Assessment of Dopamine D2 Antagonist Activity Using Invertebrate (Planaria) Locomotion as a Functional Endpoint. J. Pharmacol. Toxicol. Methods 2001, 45, 223–226. [Google Scholar] [CrossRef]
- Pagán, O.R.; Coudron, T.; Kaneria, T. The Flatworm Planaria as a Toxicology and Behavioral Pharmacology Animal Model in Undergraduate Research Experiences. J. Undergrad. Neurosci. Educ. 2009, 7, A48–A52. [Google Scholar] [PubMed]
- Weiss, J.N. The Hill Equation Revisited: Uses and Misuses. FASEB J. 1997, 11, 835–841. [Google Scholar] [CrossRef]
- Lavrinenko, I.A.; Vashanov, G.A.; Nechipurenko, Y.D. New Interpretation of the Hill Coefficient. Biophysics 2022, 67, 171–174. [Google Scholar] [CrossRef]
- Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Varga, B.; Juhasz, B.; Tosaki, A. The Hill Equation and the Origin of Quantitative Pharmacology. Arch. Hist. Exact. Sci. 2012, 66, 427–438. [Google Scholar] [CrossRef]
- Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P. The Hill Equation: A Review of Its Capabilities in Pharmacological Modelling. Fundam. Clin. Pharmacol. 2008, 22, 633–648. [Google Scholar] [CrossRef]
- Kenakin, T.P. The Schild Regression in the Process of Receptor Classification. Can. J. Physiol. Pharmacol. 1982, 60, 249–265. [Google Scholar] [CrossRef]
- Tallarida, R.J. Drug Synergism and Dose-Effect Data Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 2000; ISBN 9781584880455. [Google Scholar]
- Tallarida, R.J. Interactions between Drugs and Occupied Receptors. Pharmacol. Ther. 2007, 113, 197–209. [Google Scholar] [CrossRef]
- Colquhoun, D. Why the Schild Method Is Better than Schild Realised. Trends Pharmacol. Sci. 2007, 28, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Lara, S.; Pascual-Carreras, E.; Abril, J.F. PlanExp: Intuitive Integration of Complex RNA-Seq Datasets with Planarian Omics Resources. Bioinformatics 2020, 36, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Kawaguchi, A.; Zhao, C.; Toyoda, A.; Sharifi-Zarchi, A.; Mousavi, S.A.; Bagherzadeh, R.; Inoue, T.; Ogino, H.; Fujiyama, A.; et al. Draft Genome of Dugesia japonica Provides Insights into Conserved Regulatory Elements of the Brain Restriction Gene Nou-Darake in Planarians. Zool. Lett. 2018, 4, 24. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Hou, Y.; Gong, P. Bioactivities and the Structural Modification of Parthenolide: A Review. Med. Chem. Res. 2024, 33, 221–238. [Google Scholar] [CrossRef]
- Zhu, S.; Sun, P.; Bennett, S.; Charlesworth, O.; Tan, R.; Peng, X.; Gu, Q.; Kujan, O.; Xu, J. The Therapeutic Effect and Mechanism of Parthenolide in Skeletal Disease, Cancers, and Cytokine Storm. Front. Pharmacol. 2023, 14, 1111218. [Google Scholar] [CrossRef] [PubMed]
- Hargrave, B.Y.; Tiangco, D.A.; Lattanzio, F.A.; Beebe, S.J. Cocaine, Not Morphine, Causes the Generation of Reactive Oxygen Species and Activation of NF-κB in Transiently Cotransfected Heart Cells. Cardiovasc. Toxicol 2003, 3, 141–152. [Google Scholar] [CrossRef]
- Wang, Y.; Teng, H.; Sapozhnikov, D.M.; Du, Q.; Zhao, M. Transcriptome Sequencing Reveals Candidate NF-κB Target Genes Involved in Repeated Cocaine Administration. Int. J. Neuropsychopharmacol. 2018, 21, 697–704. [Google Scholar] [CrossRef]
- López-Pedrajas, R.; Almansa, I.; Sánchez-Villarejo, M.V.; Muriach, B.; Barcia, J.M.; Romero, F.J.; Muriach, M. Role of Hippocampal NF-κB and GluN2B in the Memory Acquisition Impairment of Experiences Gathered Prior to Cocaine Administration in Rats. Sci. Rep. 2021, 11, 20033. [Google Scholar] [CrossRef]
- Namba, M.D.; Phillips, M.N.; Neisewander, J.L.; Olive, M.F. Nuclear Factor Kappa B Signaling within the Rat Nucleus Accumbens Core Sex-Dependently Regulates Cue-Induced Cocaine Seeking and Matrix Metalloproteinase-9 Expression. Brain Behav. Immun. 2022, 102, 252–265. [Google Scholar] [CrossRef]
- Russo, S.J.; Wilkinson, M.B.; Mazei-Robison, M.S.; Dietz, D.M.; Maze, I.; Krishnan, V.; Renthal, W.; Graham, A.; Birnbaum, S.G.; Green, T.A.; et al. Nuclear Factor κB Signaling Regulates Neuronal Morphology and Cocaine Reward. J. Neurosci. 2009, 29, 3529–3537. [Google Scholar] [CrossRef]
- Nayak, S.; Roberts, A.; Bires, K.; Tallarida, C.S.; Kim, E.; Wu, M.; Rawls, S.M. Benzodiazepine Inhibits Anxiogenic-like Response in Cocaine or Ethanol Withdrawn Planarians. Behav. Pharmacol. 2016, 27, 556–558. [Google Scholar] [CrossRef] [PubMed]
- Zewde, A.M.; Yu, F.; Nayak, S.; Tallarida, C.; Reitz, A.B.; Kirby, L.G.; Rawls, S.M. PLDT (Planarian Light/Dark Test): An Invertebrate Assay to Quantify Defensive Responding and Study Anxiety-like Effects. J. Neurosci. Methods 2018, 293, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Rawls, S.M.; Patil, T.; Yuvasheva, E.; Raffa, R.B. First Evidence That Drugs of Abuse Produce Behavioral Sensitization and Cross Sensitization in Planarians. Behav. Pharmacol. 2010, 21, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, C.V.; Prados, J.; Davidson, C. Persistent Conditioned Place Preference to Cocaine and Withdrawal Hypo-Locomotion to Mephedrone in the Flatworm Planaria. Neurosci. Lett. 2015, 593, 19–23. [Google Scholar] [CrossRef]
- Hotta, T.; Haynes, S.E.; Blasius, T.L.; Gebbie, M.; Eberhardt, E.L.; Sept, D.; Cianfrocco, M.; Verhey, K.J.; Nesvizhskii, A.I.; Ohi, R. Parthenolide Destabilizes Microtubules by Covalently Modifying Tubulin. Curr. Biol. 2021, 31, 900–907.e6. [Google Scholar] [CrossRef]
- Miglietta, A.; Bozzo, F.; Gabriel, L.; Bocca, C. Microtubule-Interfering Activity of Parthenolide. Chem. -Biol. Interact. 2004, 149, 165–173. [Google Scholar] [CrossRef]
- Bocca, C.; Gabriel, L.; Bozzo, F.; Miglietta, A. A Sesquiterpene Lactone, Costunolide, Interacts with Microtubule Protein and Inhibits the Growth of MCF-7 Cells. Chem. -Biol. Interact. 2004, 147, 79–86. [Google Scholar] [CrossRef]
- Whipple, R.A.; Vitolo, M.I.; Boggs, A.E.; Charpentier, M.S.; Thompson, K.; Martin, S.S. Parthenolide and Costunolide Reduce Microtentacles and Tumor Cell Attachment by Selectively Targeting Detyrosinated Tubulin Independent from NF-κB Inhibition. Breast Cancer Res. 2013, 15, R83. [Google Scholar] [CrossRef]
- Damuka, N.; Orr, M.; Czoty, P.W.; Weiner, J.L.; Martin, T.J.; Nader, M.A.; Bansode, A.H.; Liyana Pathirannahel, B.S.; Mintz, A.; Macauley, S.L.; et al. Effect of Ethanol and Cocaine on [11C]MPC-6827 Uptake in SH-SY5Y Cells. Mol. Biol. Rep. 2021, 48, 3871–3876. [Google Scholar] [CrossRef]
- Calipari, E.S.; Godino, A.; Salery, M.; Damez-Werno, D.M.; Cahill, M.E.; Werner, C.T.; Gancarz, A.M.; Peck, E.G.; Jlayer, Z.; Rabkin, J.; et al. Synaptic Microtubule-Associated Protein EB3 and SRC Phosphorylation Mediate Structural and Behavioral Adaptations During Withdrawal from Cocaine Self-Administration. J. Neurosci. 2019, 39, 5634–5646. [Google Scholar] [CrossRef]
- Damuka, N.; Martin, T.J.; Bansode, A.H.; Krizan, I.; Martin, C.W.; Miller, M.; Whitlow, C.T.; Nader, M.A.; Solingapuram Sai, K.K. Initial Evaluations of the Microtubule-Based PET Radiotracer, [11C]MPC-6827 in a Rodent Model of Cocaine Abuse. Front. Med. 2022, 9, 817274. [Google Scholar] [CrossRef]
- Leibinger, M.; Zeitler, C.; Paulat, M.; Gobrecht, P.; Hilla, A.; Andreadaki, A.; Guthoff, R.; Fischer, D. Inhibition of Microtubule Detyrosination by Parthenolide Facilitates Functional CNS Axon Regeneration. eLife 2023, 12, RP88279. [Google Scholar] [CrossRef]
- Rabiasz, A.; Ziętkiewicz, E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. IJMS 2023, 24, 4472. [Google Scholar] [CrossRef] [PubMed]
- Rompolas, P.; Patel-King, R.S.; King, S.M. Schmidtea mediterranea. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 93, pp. 81–98. ISBN 9780123813770. [Google Scholar]
- Pagán, O.R.; Baker, D.L.; Deats, S.; O’Brien, M.; Dymond, R.; DeMichele, G. Measuring Functional Brain Recovery in Regenerating Planarians by Assessing the Behavioral Response to the Cholinergic Compound Cytisine. Int. J. Dev. Biol. 2020, 64, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Nam, N.-H. Naturally Occurring NF-kappaB Inhibitors. Mini Rev. Med. Chem. 2006, 6, 945–951. [Google Scholar] [CrossRef]
- Tamura, R.; Morimoto, K.; Hirano, S.; Wang, L.; Zhao, M.; Ando, M.; Kataoka, T. Santonin-Related Compound 2 Inhibits the Nuclear Translocation of NF-κB Subunit P65 by Targeting Cysteine 38 in TNF-α-Induced NF-κB Signaling Pathway. Biosci. Biotechnol. Biochem. 2012, 76, 2360–2363. [Google Scholar] [CrossRef]
Treatment | IC50 (μM ± SEM) | F-Test p-Value | DR | log (DR-1) | B (Cocaine, μM) | −log B |
Parthenolide (no Cocaine) | 127 ± 13 | - | - | - | - | |
Parthenolide +1 μM cocaine | 141 ± 11 | 0.543 | 1.11 | −0.96 | 1 | 0 |
Parthenolide (no Cocaine) | 118 ± 13 | - | - | - | - | |
Parthenolide +10 μM cocaine | 159 ± 24 | 0.236 | 1.35 | −0.46 | 10 | 1 |
Parthenolide (no Cocaine) | 115 ± 7 | - | - | - | - | |
Parthenolide +20 μM cocaine | 193 ± 25 | 0.0001 | 1.68 | −0.17 | 20 | 1.31 |
Parthenolide (no Cocaine) | 90 ± 6 | - | - | - | ||
Parthenolide +50 μM cocaine | 170 ± 10 | <0.0001 | 1.89 | −0.05 | 50 | 1.70 |
Treatment | IC50 (μM ± SEM) | F-Test p-Value | DR | log (DR-1) | B (Parthenolide, μM) | −log B |
Cocaine (no Parthenolide) | 158 ± 25 | - | - | - | - | |
Cocaine +1 μM Parthenolide | 195 ± 23 | 0.526 | 1.23 | −0.63 | 1 | 0 |
Cocaine (no Parthenolide) | 293 ± 37 | - | - | - | - | |
Cocaine +10 μM Parthenolide | 379 ± 59 | 0.443 | 1.29 | −0.53 | 10 | 1 |
Cocaine (no Parthenolide) | 224 ± 33 | - | - | - | ||
Parthenolide +25 μM cocaine | 268 ± 70 | 0.247 | 1.20 | −0.71 | 25 | 1.40 |
Cocaine (no Parthenolide) | 318 ± 71 | - | - | - | ||
Cocaine +50 μM Parthenolide | 952 ± 343 | 0.021 | 3.0 | 0.30 | 50 | 1.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakuturu, J.; O’Brien, M.; Pagán, O.R. Schild Analysis of the Interaction between Parthenolide and Cocaine Suggests an Allosteric Relationship for Their Effects on Planarian Motility. Biomolecules 2024, 14, 1168. https://doi.org/10.3390/biom14091168
Kakuturu J, O’Brien M, Pagán OR. Schild Analysis of the Interaction between Parthenolide and Cocaine Suggests an Allosteric Relationship for Their Effects on Planarian Motility. Biomolecules. 2024; 14(9):1168. https://doi.org/10.3390/biom14091168
Chicago/Turabian StyleKakuturu, Jyothi, Mary O’Brien, and Oné R. Pagán. 2024. "Schild Analysis of the Interaction between Parthenolide and Cocaine Suggests an Allosteric Relationship for Their Effects on Planarian Motility" Biomolecules 14, no. 9: 1168. https://doi.org/10.3390/biom14091168
APA StyleKakuturu, J., O’Brien, M., & Pagán, O. R. (2024). Schild Analysis of the Interaction between Parthenolide and Cocaine Suggests an Allosteric Relationship for Their Effects on Planarian Motility. Biomolecules, 14(9), 1168. https://doi.org/10.3390/biom14091168