Endothelial Dysfunction and Pre-Existing Cognitive Disorders in Stroke Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Data Collection
2.3. Standard Protocol Approvals, Registrations and Patient Consent
2.4. Measurement of Endothelial Function
2.5. Measurement of Biomarkers of Endothelial Function
2.6. Evaluation by Imaging
2.7. Statistical Analysis
3. Results
3.1. Endothelial Function and Pre-Existing Cognitive Disorders
3.2. Endothelial Function and Endothelium-Related Biomarkers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leys, D.; Henon, H.; Mackowiak-Cordoliani, M.A.; Pasquier, F. Post-stroke dementia. Lancet Neurol. 2005, 4, 752–759. [Google Scholar] [CrossRef]
- Pasquier, F.; Leys, D. Why are stroke patients prone to develop dementia? J. Neurol. 1997, 244, 135–142. [Google Scholar] [CrossRef]
- Chen, H.; Gu, S.; Liu, X.; Xie, A.; Wang, C. Association of blood amyloid beta-prtein 1-42 with post-stroke cognitive impairment: A systematic review and meta-analysis. Biomed Res. Int. 2022, 2022, 6552781. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, F.; Jiang, Z.; Chen, X.; Chen, Y.; Wei, J.; Xing, S.; Zhang, J.; Fan, Y.; Zeng, J. Is cerebral amyloid-β deposition related to post-stroke cognitive impairment? Transl. Stroke Res. 2021, 12, 946–957. [Google Scholar] [CrossRef]
- Ouk, T.; Gautier, S.; Pétrault, M.; Montaigne, D.; Maréchal, X.; Masse, I.; Devedjian, J.C.; Deplanque, D.; Bastide, M.; Nevière, R.; et al. Effect of PPAR-α agonist fenofibrate on acute and short-term consequences of cerebral ischemia. J. Cereb. Blood Flow Metab. 2014, 34, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Molad, J.; Hallevi, H.; Korczyn, A.; Kliper, E.; Auriel, E.; Bornstein, N.; Ben Assayag, E. Vascular and neurodegenerative markers for the prediction of post-stroke cognitive impairment: Results from the TABASCO study. J. Alzheimers Dis. 2019, 70, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R. The pathology and pathophysiology of vascular dementia. Neuropharmacology 2018, 134, 226–239. [Google Scholar] [CrossRef]
- Pendlebury, S.T.; Rothwell, P.M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol. 2009, 1, 1006–1018. [Google Scholar] [CrossRef] [PubMed]
- Vendemiale, G.; Romano, A.D.; Dagostino, M.; de Matthaeis, A.; Serviddio, G. Endothelial dysfunction associated with mild cognitive impairment in elderly population. Aging Clin. Exp. Res. 2013, 25, 247–255. [Google Scholar] [CrossRef]
- Bomboi, G.; Castello, L.; Giubilei, F.; Orzi, F.; Volpe, M. Alzheimer’s disease and endothelial dysfunction. Neurol. Sci. 2010, 31, 1–8. [Google Scholar] [CrossRef]
- Higashi, Y.; Maruhashi, T.; Noma, K.; Kihara, Y. Oxidative stress and endothelial dysfunction: Clinical evidence and therapeutic implications. Trends Cardiovasc. Med. 2014, 24, 165–169. [Google Scholar] [CrossRef]
- Munzel, T.; Sinnung CPost, F.; Wamholtz, A.; Schulz, E. Patholophysiology, diagnosis and prognostic implication of endothelial dysfunction. Ann. Med. 2008, 40, 180–196. [Google Scholar] [CrossRef]
- Gautier, S.; Ouk, T.; Petrault, O.; Caron, J.; Bordet, R. Neutrophils contribute to intracerebral haemorrhages after treatment with recombinant tissue plasminogen activator following cerebral ischemia. Br. J. Pharmacol. 2009, 156, 673–679. [Google Scholar] [CrossRef]
- Pétrault, O.; Ouk, T.; Gautier, S.; Laprais, M.; Gelé, P.; Bastide, M.; Bordet, R. Pharmacological neutropenia prevents endothelial dysfunction but not smooth muscle functions impairment induced by middle cerebral artery occlusion. Br. J. Pharmacol. 2005, 1148, 1051–1058. [Google Scholar] [CrossRef]
- Ouk, T.; Laprais, M.; Bastide, M.; Mustafa, K.; Gautier, S.; Bordet, R. Withdrawal of fenofibrate treatment partially abrogates preventive neuroprotection in stroke via loss of vascular protection. Vasc. Pharmacol. 2009, 51, 323–330. [Google Scholar] [CrossRef]
- Bastide, M.; Gelé, P.; Pétrault, O.; Pu, Q.; Caliez, A.; Robin, E.; Deplanque, D.; Duriez, P.; Bordet, R. Delayed cerebrovascular protective effect of lipopolysaccharide en parallel to brain ischemic tolerance. J. Cereb. Blood Flow Metab. 2003, 23, 399–405. [Google Scholar] [CrossRef]
- Deplanque, D.; Gelé, P.; Pétrault, O.; Six, I.; Furman, C.; Bouly, M.; Nion, S.; Dupuis, B.; Leys, D.; Fruchart, J.C.; et al. Peroxisome proliferator-activated receptor alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J. Neurosci. 2003, 23, 6264–6271. [Google Scholar] [CrossRef]
- Scherbakov, N.; Sandek, A.; Martens-Lobenhoffer, J.; Kung, T.; Turhan, G.; Liman, T.; Ebinger, M.; Von Haehling, S.; Bode-Böger, S.M.; Endres, M.; et al. Endothelial dysfunction of the peripheral vascular bed in the acute phase after ischemic stroke. Cerebrovasc. Dis. 2012, 33, 37–46. [Google Scholar] [CrossRef]
- Blum, A.; Vaispapir, V.; Keinan-Boker, L.; Soboh, S.; Yehuda, H.; Tamir, S. Endothelial dysfunction and procoagulant activity in acute ischemic stroke. J. Vasc. Interv. Neurol. 2012, 5, 33–39. [Google Scholar]
- Ponchel, A.; Labreuche, J.; Bombois, S.; Delmaire, C.; Bordet, R.; Henon, H. Influence of medication on fatigue six months after stroke. Stroke Res. Treat. 2016, 2016, 2410921. [Google Scholar] [CrossRef]
- Zietemann, V.; Georgakis, M.K.; Dondaine, T.; Müller, C.; Mendyk, A.M.; Kopczak, A.; Hénon, H.; Bombois, S.; Wollenweber, F.A.; Bordet, R.; et al. Early MoCA predicts long-terme cognitive and functional outcome and mortality after stroke. Neurology 2018, 91, e1838–e1850. [Google Scholar] [CrossRef]
- Jorm, A.F. A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Development and cross-validation. Psychol. Med. 1994, 24, 145–153. [Google Scholar] [CrossRef]
- Ganesh, A.; Luengo-Fernandez, R.; Wharton, R.M.; Gutnikov, S.A.; Silver, L.E.; Mehta, Z.; Rothwell, P.M. Oxford Vascular Study Time course of evolution of disability and cause-specific mortality after ischemic stroke: Implications for trial design. J. Am. Heart Assoc. 2017, 6, e005788. [Google Scholar] [CrossRef]
- Hamburger, M.N.; Benjamin, E.J. Assessement of endothelial function using digital pulse amplitude tonometry. Trends Cardiovasc. Med. 2008, 19, 6–11. [Google Scholar] [CrossRef]
- Li, J.; Flammer, A.J.; Nelson, R.E.; Gulati, R.; Friedman, P.A.; Thomas, R.J.; Sandhu, N.P.; Reriani, M.K.; Lerman, L.O.; Lerman, A. Normal Vascular Function as a Prerequisite for the Absence of Coronary Calcification in Patients Free of Cardiovascular Disease and Diabetes. Circ. J. 2012, 76, 2705–2710. [Google Scholar] [CrossRef]
- De Guio, F.; Jouvent, E.; Biessels, G.J.; Black, S.E.; Brayne, C.; Chen, C.; Cordonnier, C.; De Leeuw, F.E.; Dichgans, M.; Doubal, F.; et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J. Cereb. Blood Flow Metab. 2016, 36, 1319–1337. [Google Scholar] [CrossRef]
- Gaillard, F.; Deng, F.; Yasin, W.; Elfeky, M.; Qureshi, P.A.A.A.; Jasne, A.; Goel, A.; Thurston, M.; Størmer, J.; Tschauner, S.; et al. Fasekas Scale for White Matter Lesions. Available online: https://radiopaedia.org/articles/fazekas-scale-for-white-matter-lesions (accessed on 20 August 2018).
- Rudilosso, S.; San Román, L.; Blasco, J.; Hernández-Pérez, M.; Urra, X.; Chamorro, Á. Evaluation of white matter hypodensities on computed tomography in stroke patients using the Fazekas score. Clin. Imaging 2017, 46, 24–27. [Google Scholar] [CrossRef]
- Consoli, A.; Pasi, M.; Pantoni, L. Vascular mild cognitive impairment: Concept, definition, and directions for future studies. Aging Clin. Exp. Res. 2012, 24, 113–116. [Google Scholar] [CrossRef]
- Saito, S.; Yamamoto, Y.; Ihara, M. Mild cognitive impairment: At the crossroad of neurodegeneration and vascular dysfunction. Curr. Alzheimer Res. 2015, 12, 507–512. [Google Scholar] [CrossRef]
- Jellinger, K.A. The pathology of “vascular dementia”: A critical update. J. Alzheimers Dis. 2008, 14, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Morphologic diagnosis of “vascular dementia”—A critical update. J. Neurol. Sci. 2008, 270, 1–12. [Google Scholar] [CrossRef]
- Contreras, F.; Vasquez, J. Endothelial dysfunction in arterial hypertension. J. Human Hypertens. 2000, 14 (Suppl. S1), S20–S25. [Google Scholar] [CrossRef]
- Bernatova, I. Endothelial dysfunction in experimental models of arterial hypertension: Cause or consequence? Biomed Res. Int. 2014, 2014, 598271. [Google Scholar] [CrossRef]
- Konukoglu, D.; Uzun, H. Endothelial dysfunction and hypertension. Adv. Exp. Med. Biol. 2017, 956, 511–540. [Google Scholar]
- Heringa, S.M.; van den Berg, E.; Reijmer, Y.D.; Nijpels, G.; Stehouwer, C.D.; Schalkwijk, C.G.; Teerlink, T.; Scheffer, P.G.; van den Hurk, K.; Kappelle, L.J.; et al. Markers of low-grade inflammation and endothelial dysfunction are related to reduced information processing speed and executive functioning in an older population-the Hoorn Study. Psychoneuroendocrinology 2014, 40, 108–118. [Google Scholar] [CrossRef]
- Ji, Y.; Li, X.; Teng, Z.; Li, X.; Jin, W.; Lv, P.Y. Homocysteine is Associated with the Development of Cerebral Small Vessel Disease: Retrospective Analyses from Neuroimaging and Cognitive Outcomes. J. Stroke Cerebrovasc. Dis. 2020, 29, 105393. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, S.; Zhang, S.; Wu, B. Advances in Understanding the Pathogenesis of Lacunar Stroke: From Pathology and Pathophysiology to Neuroimaging. Cerebrovasc. Dis. 2021, 50, 588–596. [Google Scholar] [CrossRef]
- Parish, A.L. Degenerative or debilitative neurologic syndromes. Nurs. Clin. N. Am. 2018, 53, 447–457. [Google Scholar] [CrossRef]
- Lo, J.W.; Crawford, J.D.; Samaras, K.; Desmond, D.W.; Köhler, S.; Staals, J.; Verhey, F.R.J.; Bae, H.J.; Lee, K.J.; Kim, B.J.; et al. Association of Prediabetes and Type 2 Diabetes with Cognitive Function After Stroke: A STROKOG Collaboration Study. Stroke 2020, 51, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Sharma, S. Molecular mechanisms of cognitive impairment associated with stroke. Metab. Brain Dis. 2022, 37, 279–287. [Google Scholar] [CrossRef]
- Ungvari, Z.; Toth, P.; Tarantini, S.; Prodan, C.I.; Sorond, F.; Merkely, B.; Csiszar, A. Hypertension-induced cognitive impairment: From pathophysiology to public health. Nat. Rev. Nephrol. 2021, 17, 639–654. [Google Scholar] [CrossRef]
- Palazzo, P.; Maggio, P.; Passarelli, F.; Altavilla, R.; Altamura, C.; Pasqualetti, P.; Vernieri, F. Lack of correlation between cerebral vasomotor reactivity and flow-mediated dilation in subjects without vascular disease. Ultrasound Med. Biol. 2013, 39, 10–15. [Google Scholar] [CrossRef]
Total | RHI | p | ||
---|---|---|---|---|
Normal (>1.67) | Abnormal (≤1.67) | |||
No. (%) of patients | 86 | 53 (61.6) | 33 (38.4) | |
Age (years), mean ± SD | 63.5 ± 11.5 | 59.6 ± 10.8 | 69.7 ± 9.9 | <0.0001 |
Gender, male, n (%) | 52 (60.5) | 33 (62.3) | 19 (57.6) | 0.67 |
Vascular risk factors, n (%) | ||||
Arterial hypertension | 47 (54.7) | 24 (45.3) | 23 (69.7) | 0.027 |
Diabetes | 15 (17.4) | 8 (15.1) | 7 (21.2) | 0.47 |
Hypercholesterolemia | 40 (46.5) | 23 (43.4) | 17 (51.5) | 0.46 |
Smoking | 19 (22.1) | 10 (18.9) | 9 (27.3) | 0.36 |
Excessive alcohol | 10 (11.6) | 5 (9.4) | 5 (15.1) | 0.50 |
Physical activity | 54 (62.8) | 34 (64.2) | 20 (60.6) | 0.74 |
Treatments, n (%) | ||||
Antihypertensive drugs | 47 (54.7) | 24 (45.3) | 23 (69.7) | 0.027 |
Oral hypoglycemics | 11 (12.8) | 6 (11.3) | 5 (15.2) | 0.74 |
Statins | 28 (32.6) | 14 (26.4) | 14 (42.4) | 0.12 |
RHI | |||
---|---|---|---|
Normal (>1.67) (n = 53) | Abnormal (≤1.67) (n = 33) | p */† | |
IQ-CODE > 48, n (%) | 15 (28.3) | 18 (54.6) | 0.016/0.082 |
Total FAZEKAS score, median (IQR) | 2.0 (1.0 to 3.0) | 2.5 (2.0 to 3.5) | 0.008/0.22 |
0 | 8 (15.7) | 2 (6.2) | |
1 | 11 (21.6) | 2 (6.2) | |
2 | 17 (33.3) | 12 (37.5) | |
3 | 10 (19.6) | 8 (25) | |
4 | 5 (9.8) | 3 (9.4) | |
Periventricular lesions, n (%) | |||
0 | 10 (19.6) | 3 (9.4) | 0.015/0.38 |
1 | 26 (51.0) | 12 (37.5) | |
2 | 14 (27.4) | 12 (37.5) | |
3 | 1 (2.0) | 5 (15.6) | |
White matter lesions, n (%) | |||
0 | 17 (33.3) | 4 (12.5) | 0.007/0.10 |
1 | 30 (58.8) | 20 (62.5) | |
2 | 4 (7.8) | 6 (18.8) | |
3 | 0 (0.0) | 2 (6.3) | |
Atrophy score, n (%) | |||
0 | 14 (27.5) | 1 (3.1) | <0.001/0.045 |
1 | 28 (54.9) | 16 (50.0) | |
2 | 9 (17.6) | 12 (37.5) | |
3 | 0 (0.0) | 3 (9.4) | |
Previous lacunar infarct, n (%) | 11 (21.2) | 10 (31.3) | 0.30/0.94 |
Perivascular atrophy, n (%) | 5 (9.8) | 8 (25.0) | 0.064/0.41 |
RHI | |||
---|---|---|---|
Normal (>1.67) (n = 53) | Abnormal (≤1.67) (n = 33) | p */† | |
SE_selectin, ng/mL | 29.6 (10.2 to 37.9) | 30.6 (19.6 to 38.4) | 0.72/0.39 |
BDNF, pg/mL | 4003 (2146 to 5466) | 3814 (2301 to 5439) | 0.96/0.93 |
ICAM-1, µg/mL | 132,390 (86,536 to 189,955) | 160,772 (117,946 to 192,783) | 0.22/0.39 |
MPO, ng/mL | 86,565 (62,791 to 178,239) | 133,569 (62,791 to 336,719) | 0.23/0.32 |
NCAM, ng/mL | 360,421 (302,422 to 467,724) | 367,789 (315,689 to 446,092) | 0.80/0.61 |
VCAM-1, ng/mL | 1,320,000 (956,802 to 1,710,000) | 1,520,000 (1,300,000 to 1,700,000) | 0.051/0.12 |
S100B, ng/mL | 50 (27 to 125) | 27 (27 to 80) | 0.072/0.022 |
G-CSF, µg/mL | 8.8 (4.9 to 19.7) | 4.9 (4.9 to 19.7) | 0.38/0.29 |
GM_CSF, µg/mL | 1.6 (1.6 to 1.6) | 1.6 (1.6 to 1.6) | 0.41/0.39 |
MCP-1, pg/mL | 3.0 (3.0 to 7.8) | 14.7 (3.0 to 36.9) | 0.009/0.029 |
MIP_1a, ng/mL | 0.5 (0.1 to 1.1) | 1.0 (0.1 to 1.5) | 0.042/0.14 |
MIP_1b, ng/mL | 43 (31 to 59) | 53 (36 to 82) | 0.064/0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendyk-Bordet, A.-M.; Ouk, T.; Muhr-Tailleux, A.; Pétrault, M.; Vallez, E.; Gelé, P.; Dondaine, T.; Labreuche, J.; Deplanque, D.; Bordet, R. Endothelial Dysfunction and Pre-Existing Cognitive Disorders in Stroke Patients. Biomolecules 2024, 14, 721. https://doi.org/10.3390/biom14060721
Mendyk-Bordet A-M, Ouk T, Muhr-Tailleux A, Pétrault M, Vallez E, Gelé P, Dondaine T, Labreuche J, Deplanque D, Bordet R. Endothelial Dysfunction and Pre-Existing Cognitive Disorders in Stroke Patients. Biomolecules. 2024; 14(6):721. https://doi.org/10.3390/biom14060721
Chicago/Turabian StyleMendyk-Bordet, Anne-Marie, Thavarak Ouk, Anne Muhr-Tailleux, Maud Pétrault, Emmanuelle Vallez, Patrick Gelé, Thibaut Dondaine, Julien Labreuche, Dominique Deplanque, and Régis Bordet. 2024. "Endothelial Dysfunction and Pre-Existing Cognitive Disorders in Stroke Patients" Biomolecules 14, no. 6: 721. https://doi.org/10.3390/biom14060721
APA StyleMendyk-Bordet, A.-M., Ouk, T., Muhr-Tailleux, A., Pétrault, M., Vallez, E., Gelé, P., Dondaine, T., Labreuche, J., Deplanque, D., & Bordet, R. (2024). Endothelial Dysfunction and Pre-Existing Cognitive Disorders in Stroke Patients. Biomolecules, 14(6), 721. https://doi.org/10.3390/biom14060721