Phytochemical, Pharmacological, and Molecular Docking Study of Dry Extracts of Matricaria discoidea DC. with Analgesic and Soporific Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Reagents
2.2. Isolation of Essential Oil
2.2.1. Isolation of Essential Oil for Phytochemical and Pharmacological Analyses
2.2.2. Isolation of Essential Oil for Cytotoxicity Studies
2.3. Preparation of Extracts
2.4. Phytochemical Analysis
2.4.1. Gas-Chromatographic Analysis of Essential Oil
2.4.2. Measurement of Main Phenolics by Spectrophotometry
2.4.3. Analysis of Phenolic Compounds by UPLC-MS/MS
2.5. Molecular Docking of M. Discoidea BAS
- The lipoxygenase-5 (LOX-5) (PDB ID 6NCF) enzyme with a natural non-competitive inhibitor, pentacyclic triterpenoid acid (3α,8α,17α,18α-3-acetyloxy-11-oxours-12-en-23-oic acid; AKBA), in the active site [16];
- Ionotropic glutamate NMDA receptors in conformation with a non-competitive antagonist with direct actions: ketamine (7EU7) [19];
- The GABA receptor in conformation with the agonist phenobarbital (6X3W) [20].
2.6. Pharmacological Study
2.6.1. Cytotoxicity Studies
2.6.2. Analgesic Activity
- AA = the analgesic activity (%);
- Te = the difference in the corresponding response latency period in the group of animals after administering the extracts;
- Tc = the difference in the response latency period in the control group after administering the solvent.
2.6.3. Soporific Activity
2.7. Statistical Analysis
3. Results
3.1. Phytochemical Composition of Essential Oil and Dry Extracts
3.2. Optimization of a Dry Extract P2 Preparation
3.3. In Silico Prediction of the Pharmacological Activity of M. discoidea BAS
3.4. Pharmacological Study
3.4.1. Cytotoxicity Study
3.4.2. Analgesic Activity
3.4.3. Soporific Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arak, E.; Raal, A.; Tammeorg, J. Aerial Parts of Matricaria Matricarioides: A Substitute for Matricaria Recutita Flowers. Farmatsiya 1986, 35, 19–22. [Google Scholar]
- U.S.S.R. Pharmacopoeia, 10th ed.; Meditsina: Moscow, Russia, 1968. [Google Scholar]
- Orav, A.; Sepp, J.; Kailas, T.; Müürisepp, M.; Arak, E.; Raal, A. Composition of Essential Oil of Aerial Parts of Chamomilla Suaveolens from Estonia. Nat. Prod. Commun. 2010, 5, 133–136. [Google Scholar] [CrossRef]
- Raal, A.; Püssa, T.; Sepp, J.; Malmiste, B.; Arak, E. Content of Phenolic Compounds in Aerial Parts of Chamomilla Suaveolens from Estonia. Nat. Prod. Commun. 2011, 6, 1107–1110. [Google Scholar] [CrossRef]
- Raal, A.; Orav, A.; Püssa, T.; Valner, C.; Malmiste, B.; Arak, E. Content of Essential Oil, Terpenoids and Polyphenols in Commercial Chamomile (Chamomilla Recutita L. Rauschert) Teas from Different Countries. Food Chem. 2012, 131, 632–638. [Google Scholar] [CrossRef]
- Raal, A.; Kaur, H.; Orav, A.; Arak, E.; Kailas, T.; Müürisepp, M. Content and Composition of Essential Oils in Some Asteraceae Species. Proc. Est. Acad. Sci. 2011, 60, 55–63. [Google Scholar] [CrossRef]
- Martin, N.; Madrid-López, C.; Villalba-Méndez, G.; Talens-Peiró, L. New Techniques for Assessing Critical Raw Material Aspects in Energy and Other Technologies. Environ. Sci. Technol. 2022, 56, 17236–17245. [Google Scholar] [CrossRef]
- Shanaida, M.; Hudz, N.; Jasicka-Misiak, I.; Wieczorek, P.P. Polyphenols and Pharmacological Screening of a Monarda Fistulosa L. Dry Extract Based on a Hydrodistilled Residue By-Product. Front. Pharmacol. 2021, 12, 563436. [Google Scholar] [CrossRef]
- Dobrochaeva, D.N.; Kotov, M.I.; Prokudin, Y.N.; Barbarich, A.I. Key to Higher Plants of Ukraine; Naukova Dumka: Kyiv, Ukraine, 1999. [Google Scholar]
- European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022.
- Huzio, N.; Grytsyk, A.; Raal, A.; Grytsyk, L.; Koshovyi, O. Phytochemical and Pharmacological Research in Agrimonia Eupatoria L. Herb Extract with Anti-Inflammatory and Hepatoprotective Properties. Plants 2022, 11, 2371. [Google Scholar] [CrossRef]
- Shinkovenko, I.L.; Kashpur, N.V.; Ilyina, T.V.; Kovalyova, A.M.; Goryacha, O.V.; Koshovyi, O.M.; Kryvoruchko, O. The Immunomodulatory Activity of the Extracts and Complexes of Biologically Active Compounds of Galium Verum L. Herb. Ceska Slov. Farm. 2018, 67, 25–29. [Google Scholar]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic Fractions from Vaccinium Vitis-Idaea L. and Their Antioxidant and Anticancer Activities Assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational Protein–Ligand Docking and Virtual Drug Screening with the AutoDock Suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef]
- Protein Data Bank. Available online: https://www.rcsb.org/search (accessed on 6 February 2024).
- Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. Structural and Mechanistic Insights into 5-Lipoxygenase Inhibition by Natural Products. Nat. Chem. Biol. 2020, 16, 783–790. [Google Scholar] [CrossRef]
- Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers. Biochemistry 2010, 49, 7069–7079. [Google Scholar] [CrossRef]
- Wang, J.L.; Limburg, D.; Graneto, M.J.; Springer, J.; Hamper, J.R.B.; Liao, S.; Pawlitz, J.L.; Kurumbail, R.G.; Maziasz, T.; Talley, J.J.; et al. The Novel Benzopyran Class of Selective Cyclooxygenase-2 Inhibitors. Part 2: The Second Clinical Candidate Having a Shorter and Favorable Human Half-Life. Bioorganic Med. Chem. Lett. 2010, 20, 7159–7163. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, F.; Zhang, T.; Lv, S.; Zhou, L.; Du, D.; Lin, H.; Guo, F.; Luo, C.; Zhu, S. Structural Basis of Ketamine Action on Human NMDA Receptors. Nature 2021, 596, 301–305. [Google Scholar] [CrossRef]
- Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh, R.M.; Lindahl, E.; Hibbs, R.E. Shared Structural Mechanisms of General Anaesthetics and Benzodiazepines. Nature 2020, 585, 303–308. [Google Scholar] [CrossRef]
- European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. Off. J. 1986, 222, 31–37.
- Council Directive 2010/63/EU of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Off. J. Eur. Union 2010, 276, 33–79. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC098296/ (accessed on 6 February 2024).
- The Law of Ukraine “On the Protection of Animals from Cruel Treatment” dated 12/15/2009. Available online: https://zakon.rada.gov.ua/laws/show/3447-15#Text (accessed on 8 September 2021).
- The Order of the Ministry of Health of Ukraine No. 944 dated 14 December 2009 “On approval of the Procedure for Preclinical Study of Medicinal Products and Examination of Materials of Preclinical Study of Medicinal Products”. Available online: https://zakon.rada.gov.ua/laws/show/z0972-01#Text (accessed on 1 February 2010).
- Council Directive of 18 December 1986 on the Lows, Regulating the Application of Principles of Good Laboratory Practice and the Verification of Their Applications for Tests on Chemical Substances (87/18/EEC)/The Rules Governing Medicinal Products in the European Community; Commission of the European Communities: Brussels, Belgium, 18 December 1991; Volume 1, pp. 145–146.
- Stefanov, O.V. Preclinical Studies of Drugs; Avicenna: Kyiv, Ukraine, 2001. [Google Scholar]
- Masocha, W.; Kombian, S.B.; Edafiogho, I.O. Evaluation of the Antinociceptive Activities of Enaminone Compounds on the Formalin and Hot Plate Tests in Mice. Sci. Rep. 2016, 6, 21582. [Google Scholar] [CrossRef]
- Inaltekin, A.; Kivrak, Y. Evaluation of the Effect of Vortioxetine on Pain Threshold by Hot-Plate Test in Mice. Arch. Neuropsychiatry 2021, 58, 274–277. [Google Scholar] [CrossRef]
- Hossain, M.F.; Talukder, B.; Rana, M.N.; Tasnim, R.; Nipun, T.S.; Uddin, S.M.N.; Hossen, S.M.M. In Vivo Sedative Activity of Methanolic Extract of Stericulia Villosa Roxb. Leaves. BMC Complement. Altern. Med. 2016, 16, 398. [Google Scholar] [CrossRef]
- Forouzanfar, F.; Ghorbani, A.; Hosseini, M.; Rakhshandeh, H. Hydroalcoholic Extract of Needles of Pinus Eldarica Enhances Pentobarbital-Induced Sleep: Possible Involvement of GABAergic System. Avicenna J. Phytomed 2016, 6, 449–457. [Google Scholar]
- Sepp, J.; Koshovyi, O.; Jakstas, V.; Žvikas, V.; Botsula, I.; Kireyev, I.; Tsemenko, K.; Kukhtenko, O.; Kogermann, K.; Heinämäki, J.; et al. Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria Chamomilla L.) Flowers. Plants 2024, 13, 350. [Google Scholar] [CrossRef]
- Kafarov, V.V. Methods of Cybernetics in Chemistry and Chemical Technology; Mir Publishers: Moscow, Russia, 1976. [Google Scholar]
- Marzullo, L.; Ochkur, O.; Orlandini, S.; Renai, L.; Gotti, R.; Koshovyi, O.; Furlanetto, S.; Del Bubba, M. Quality by Design in Optimizing the Extraction of (Poly)Phenolic Compounds from Vaccinium Myrtillus Berries. J. Chromatogr. A 2022, 1677, 463329. [Google Scholar] [CrossRef]
- Vyshnevska, L.; Severina, H.I.; Prokopenko, Y.; Shmalko, A. Molecular Docking Investigation of Anti-Inflammatory Herbal Compounds as Potential LOX-5 and COX-2 Inhibitors. Pharmacia 2022, 69, 733–744. [Google Scholar] [CrossRef]
- Gupta Chamomile: A Herbal Medicine of the Past with a Bright Future (Review). Mol. Med. Rep. 2010, 3. [CrossRef]
- Chang, S.; Chen, C. Effects of an Intervention with Drinking Chamomile Tea on Sleep Quality and Depression in Sleep Disturbed Postnatal Women: A Randomized Controlled Trial. J. Adv. Nurs. 2016, 72, 306–315. [Google Scholar] [CrossRef]
- Arak, E.H. Results of Essential Oil Analysis of Pineapple Weed and Wild Chamomile by Gas Chromatographic Method; Estonian Scientific Society of Pharmacists: Tallinn, Estonia, 1981; p. 79. [Google Scholar]
- Orav, A.; Kailas, T.; Kann, J. Volatile Constituents of Matricaria Matricariodes (Less.) Port. J. Essent. Oil Res. 1999, 11, 243–245. [Google Scholar] [CrossRef]
- Jain, T.C.; Karchesy, J.J. Concerning the Chemical Constituents of Matricaria Marticarioides. Phytochemistry 1971, 10, 2825–2826. [Google Scholar] [CrossRef]
- Lawrence, B.M.; Terhune, S.J.; Hogg, J.W. Volatile Constituents of Matricaria Matricarioides. Phytochemistry 1971, 10, 2827. [Google Scholar] [CrossRef]
- Oleshko, G.I.; Prosovskyi, M.A. Dynamics of the Contents of Essential Oil and Its Main Components in Matricaria Discoidea DC. Rastit. Resur. 1986, 22, 377–382. [Google Scholar]
- Lopes, D.; Kolodziejczyk, P.P. Essential Oil Composition of Pineapple-Weed (Matricaria Discoidea DC.) Grown in Canada. J. Essent. Oil Bear. Plants 2005, 8, 178–182. [Google Scholar] [CrossRef]
- Ma, C.; Winsor, L.; Daneshtalab, M. Quantification of Spiroether Isomers and Herniarin of Different Parts of Matricaria Matricarioides and Flowers of Chamaemelum Nobile. Phytochem. Anal. 2007, 18, 42–49. [Google Scholar] [CrossRef]
- Chaves, P.F.P.; Hocayen, P.D.A.S.; Dallazen, J.L.; De Paula Werner, M.F.; Iacomini, M.; Andreatini, R.; Cordeiro, L.M.C. Chamomile Tea: Source of a Glucuronoxylan with Antinociceptive, Sedative and Anxiolytic-like Effects. Int. J. Biol. Macromol. 2020, 164, 1675–1682. [Google Scholar] [CrossRef]
- Fan, X.; Du, K.; Li, N.; Zheng, Z.; Qin, Y.; Liu, J.; Sun, R.; Su, Y. Evaluation of Anti-Nociceptive and Anti-Inflammatory Effect of Luteolin in Mice. J. Env. Pathol. Toxicol. Oncol. 2018, 37, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Panossian, A.; Schweitzer, I.; Stough, C.; Scholey, A. Herbal Medicine for Depression, Anxiety and Insomnia: A Review of Psychopharmacology and Clinical Evidence. Eur. Neuropsychopharmacol. 2011, 21, 841–860. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.S.L.D.S.; Pardo, P.E.; Oba, E.; Kronka, S.D.N.; Frazatti-Gallina, N.M. Matricaria Chamomilla CH 12 Decreases Handling Stress in Nelore Calves. J. Vet. Sci. 2006, 7, 189. [Google Scholar] [CrossRef]
- Shinomiya, K.; Inoue, T.; Utsu, Y.; Tokunaga, S.; Masuoka, T.; Ohmori, A.; Kamei, C. Hypnotic Activities of Chamomile and Passiflora Extracts in Sleep-Disturbed Rats. Biol. Pharm. Bull. 2005, 28, 808–810. [Google Scholar] [CrossRef]
- Amsterdam, J.D.; Li, Y.; Soeller, I.; Rockwell, K.; Mao, J.J.; Shults, J. A Randomized, Double-Blind, Placebo-Controlled Trial of Oral Matricaria Recutita (Chamomile) Extract Therapy for Generalized Anxiety Disorder. J. Clin. Psychopharmacol. 2009, 29, 378–382. [Google Scholar] [CrossRef] [PubMed]
RI (DB-5) | Compound | Content in the Oil, % | |
---|---|---|---|
M. Chamomilla * | M. Discoidea | ||
987 | Myrcene | <0.01 | 7.99 |
1455 | (E)-ß-Farnesene | 24.72 | 42.51 |
1472 | Germacrene D | 1.01 | 1.23 |
1570 | Spathulenol | 2.39 | 1.12 |
1609 | Geranyl isovalerate | <0.01 | 29.50 |
1649 | α-Bisabolol oxide B | 22.27 | 1.06 |
1673 | α-Bisabolone oxide A | 10.40 | 2.11 |
1715 | Chamazulene | 7.89 | - |
1740 | α-Bisabolol oxide A | 21.78 | 1.48 |
1874 | (Z)-Enyne-dicycloether | 8.26 | 8.86 |
Total | 98.72 | 95.86 |
Substance | Retention Time, min | Content in the Extract | ||
---|---|---|---|---|
P1 | P2 | P3 | ||
UPLC-MS/MS, µg/g of dry extract | ||||
Neochlorogenic acid | 2.61 | 2109.57 ± 70.12 | 474.21 ± 4.02 | 805.71± 32.49 |
Luteolin | 7.12 | 271.53 ± 24.12 | 1927.41 ± 70.51 | 114.13 ± 25.62 |
Cryptochlorogenic acid | 3.86 | 19.81 ± 2.66 | 228.8 ± 17.58 | 23.44 ± 3.11 |
Luteolin-4-O-glucoside | 6.05 | 6.93 ± 1.07 | 9.27 ± 1.98 | 0 |
Chlorogenic acid | 3.95 | 3148.29 ± 143.312 | 10,836.74 ± 203.23 | 2202.01 ± 20.64 |
Isorhamnetin-3-glucoside | 5.80 | 49.65 ± 3.11 | 40.52 ± 7.19 | 18.79 ± 1.86 |
Luteolin-3,7-diglucoside | 5.02 | 117.36 ± 5.927 | 157.59 ± 2.80 | 21.69 ± 2.3 |
Vanillic acid | 4.28 | 23.87 ± 2.87 | 22.45 ± 1.19 | 14.25 ± 1.18 |
Caffeic acid | 4.32 | 37.32 ± 3.81 | 32.33± 3.26 | 51.82 ± 5.66 |
3,4-Dihydroxyphenylacetic acid | 2.30 | 335.69 ± 9.49 | 117.88 ± 7.33 | 146.11 ± 7.11 |
Isorhamnetin | 7.95 | 6.6 ± 0.39 | 26.96 ± 2.32 | 8. 4 ± 1.29 |
Hyperoside | 5.42 | 139.61 ± 1.91 | 194.14 ± 17.13 | 51.95 ± 0.93 |
Luteolin-7-O-glucoside | 5.56 | 2844.8± 212.97 | 8101.17 ± 1237.03 | 766.53 ± 188.39 |
4,5-Dicaffeoylquinic acid | 5.68 | 3339.61 ± 52.33 | 3049.98 ± 143.4 | 925.79 ± 48.57 |
3,5-Dicaffeoylquinic acid | 6.06 | 1708.29 ± 26.77 | 1578.86 ± 99.56 | 471.56 ± 26.17 |
3,4-Dicaffeoylquinic acid | 5.85 | 3502.78 ± 54.88 | 3233.96 ± 208.24 | 967.68 ± 54.97 |
Spectrophotometry, % | ||||
Phenolic compounds | 5.62 ± 0.06 | 10.74 ± 0.39 | 3.17 ± 0.08 | |
Hydrocinnamic acids | 1.55 ± 0.28 | 3.31 ± 0.25 | 0.98 ± 0.31 | |
Flavonoids | 2.37 ± 0.13 | 8.09 ± 0.54 | 0.28 ± 0.06 |
Extraction Stage | Dry Residue, % | % in the Dry Residue | ||
---|---|---|---|---|
Phenolic Compounds | Hydrocinnamic Acids | Flavonoids | ||
1 | 3.57 ± 0.88 | 12.11 ± 0.22 | 2.73 ± 0.07 | 8.75 ± 0.38 |
2 | 1.77 ± 0.52 | 10.74 ± 0.16 | 3.91 ± 0.13 | 9.47 ± 0.11 |
3 | 1.13 ± 0.09 | 8.96 ± 0.25 | 3.73 ± 0.26 | 5.13 ± 0.15 |
4 | 0.67 ± 0.25 | 7.53 ± 0.53 | 2.59 ± 0.39 | 2.88 ± 0.04 |
5 | 0.3 | 7.00 ± 0.15 | 1.55 ± 0.19 | 2.25 ± 0.16 |
6 | 0.2 | 4.84 ± 0.18 | 1.01 ± 0.12 | 1.29 ± 0.03 |
Ligand | Biotargets | ||||
---|---|---|---|---|---|
LOX-5 (6NCF) | COX-1 (3N8Y) | COX-2 (3LN1) | NMDA (7EU7) | ГАМКА (6X3W) | |
AKBA | −10.0 | – | – | – | – |
Diclofenac | – | −8.5 | -8.4 | – | – |
Celecoxib | – | – | −12.2 | – | – |
Ketamine | – | – | – | −5.6 | – |
Phenobarbital | – | – | – | – | −7.3 |
Neochlorogenic acid | −7.9 | −7.1 | −7.5 | −7.1 | −6.8 |
Chlorogenic acid | −7.8 | −7.1 | −7.5 | −6.9 | −6.8 |
Cryptochlorogenic acid | −7.8 | −6.6 | −7.9 | −7.0 | −6.4 |
Luteolin | −8.1 | −8.1 | −9.8 | −7.4 | −6.6 |
Luteolin-4-O-glucoside | −9.0 | −5.6 | −8.6 | −8.1 | −6.0 |
Luteolin-7-O-glucoside | −9.6 | −5.4 | −6.2 | −8.4 | −6.5 |
Luteolin-3,7-diglucoside | −9.7 | −5.3 | −6.8 | −7.9 | −6.5 |
Isorhamnetin-3-glucoside | −7.8 | −1.8 | −8.8 | −7.9 | −6.5 |
Vanillic acid | −6.7 | −6.2 | −6.4 | −4.9 | −5.1 |
Caffeic acid | −6.0 | −6.5 | −7.4 | −5.1 | −5.0 |
3,4-Dihydroxyphenylacetic acid | −6.7 | −6.1 | −6.6 | −5.2 | −4.9 |
Isorhamnetin | −7.9 | −7.8 | −9.6 | −7.3 | −6.4 |
Rutin | −8.9 | −0.6 | −3.7 | −9.1 | −6.2 |
Hyperoside | −8.6 | −2.1 | −8.2 | −7.7 | −6.6 |
4,5-Dicaffeoylquinic acid | −8.8 | −6.1 | −9.1 | −8.1 | −7.0 |
3,5-Dicaffeoylquinic acid | −9.0 | −6.8 | −8.5 | −7.9 | −7.5 |
3,4-Dicaffeoylquinic acid | −8.8 | −6.0 | −8.8 | −7.9 | −7.3 |
LOX-5 (6NCF) | Luteolin- 3,7-diglucoside | a: Thr104, His130, Leu163, Glu134, Pro164; b: Thr137, Val107(3); c: Arg101(Pi-Cation). |
Rutin | a: Arg68, Arg101, Glu134, His130, Thr137; b: Lys133, Val107(3). | |
3,5-Dicaffeoylquinic acid | a: Arg68, Arg101, Val110, His130, Asp166, Glu108; b: His130, Leu66, Val107. | |
COX-1 | Luteolin | a: Ser530(2), TYR385; b: Ala527(4), Gly526(2), Val349(2), Leu531. |
Isorhamnetin | a: Ser530(2), Met522, Ala527; b: Gly526(2), Ala527(4), Val349(2), Leu531. | |
Chlorogenic acid | a: Tyr385, Ser530, Tyr385, Met522; b: Val349, Leu359, Ala527, Leu531. | |
COX-2 | Isorhamnetin | a: Tyr341, Ser516, Ser339, Tyr371; Leu338(2); b: Val509, Val335. |
Luteolin | a: Tyr341, Ser516, Ile503, Phe504, Tyr371; b: Leu338, Val509(2), Leu338, Val335. | |
4,5-Dicaffeoylquinic acid | a: Arg106, Tyr371, Gly512 b: Val509(3), Tyr341, Val102, Leu345, Ala502. | |
NMDA | 4,5-Dicaffeoylquinic acid | a: Asn616(2), Asn614, Leu611, Asn616; b: Val644, Val639, Leu642, Met641, Ala645. |
Luteolin | a: Phe613, Leu611(2), Asn615(2); b: Val644(2), Val639, Leu642. |
Agent | Group | Dose, mg/kg | The Time of Response(s)/Analgesic Effect (%) in Comparison to (Reference Drug) and [Control] | ||||
---|---|---|---|---|---|---|---|
After Administration in | |||||||
30 min | 60 min | 120 min | 180 min | 240 min | |||
Control group | 1 | 7.10 ± 0.32 | 7.00 ± 0.50 | 7.05 ± 0.28 | 6.98 ± 0.52 | 6.40 ± 0.63 | |
Extract P1 | 2 | 25 | 8.85 ± 0.69/ [25%] (−15%) | 9.13 ± 0.77/ [30%] * (−12%) | 10.67 ± 0.49/ [51%] * (1%) | 10.40 ± 0.55/ [49%] * (9%) | 9.12 ± 0.51/ [42%] * (9%) |
3 | 50 | 10.15 ± 1.49/ [43%] (−3%) | 10.30 ± 1.01/ [47%] * (−1%) | 12.15 ± 0.39/ [72%] * (15%) | 11.07 ± 0,54/ [58%] * (16%) | 9.65 ± 0.28/ [51%] * (15%) # | |
4 | 100 | 10.67 ± 2.79/ [50%] (2%) | 12.07 ± 2.40/ [72%] (16%) | 11.12 ± 1.27/ [58%] * (5%) | 10.57 ± 1.19/ [50%] * (11%) | 8.87 ± 1.27/ [39%] (6%) | |
Extract P2 | 5 | 25 | 10.63 ± 1.01/ [50%] * (2%) | 10.42 ± 0.88/ [49%] * (0%) | 10.72 ± 0.62/ [52%] * (1%) | 10.47 ± 0.67/ [50%] * (10%) | 9.48 ± 0.92/ [48%] * (13%) |
6 | 50 | 10.98 ± 0.58/ [55%] * (5%) | 11.67 ± 0.53/ [67%] * (12%) | 12.78 ± 1.87/ [81%] * (21%) | 11.72 ± 1.76/ [68%] * (23%) | 10.10 ± 1.20/ [58%] * (20%) | |
7 | 100 | 11.65 ± 1.46/ [64%] (12%) | 12.72 ± 1.58/ [82%] * (22%) | 12.55 ± 1.53/ [78%] * (19%) | 10.30 ± 0.94/ [47%] * (8%) | 9.93 ± 1.01/ [55%] * (18%) | |
Extract P3 | 8 | 25 | 8.97 ± 0.83/ [26%] (−14%) | 9.42 ± 1.31/ [35%] (−10%) | 9.93 ± 1.11/ [41%] * (−6%) | 9.57 ± 0.74/ [37%] * (1%) | 9.00 ± 0.79/ [41%] * (7%) |
9 | 50 | 7.98 ± 0.47/ [12%] (−24%) # | 9.85 ± 1.17/ [41%] (−6%) | 10.37 ± 1.21/ [47%] (−2%) | 10.08 ± 0.99/ [44%] (6%) | 8.12 ± 1.02/ [27%] (−3%) | |
10 | 100 | 9.07 ± 0.77/ [28%] (−13%) | 10.33 ± 0.65/ [48%] * (−1%) | 11.03 ± 0.75/ [57%] * (4%) | 10.25 ± 1.10/ [47%] * (8%) | 8.75 ± 0.60/ [37%] * (4%) | |
Acetaminophen | 11 | 50 | 10.45 ± 0.73 [45%] * | 10.43 ± 0.59 [49%] * | 10.57 ± 0.71 [50%] * | 9.50 ± 0.57 [36%] * | 8.38 ± 0.33 [31%] * |
Agent | Group | Dose, mg/kg | Average Sleep Duration, min | Soporific Activity, % |
---|---|---|---|---|
Control group | 1 | 40 | 87.33 ± 11.56 | 100.0% |
Extract P1 | 2 | 25 | 180.17 ± 11.37 * | 206.3% |
3 | 50 | 171.67 ± 2.87 * | 196.6% | |
4 | 100 | 170.00 ± 9.27 * | 195.8% | |
Extract P2 | 5 | 25 | 243.00 ± 8.07 *# | 278.2% |
6 | 50 | 215.50 ± 10.57 *# | 246.8% | |
7 | 100 | 248.67 ± 6.10 *# | 284.7% | |
Extract P3 | 8 | 25 | 165.67 ± 12.26 * | 189.7% |
9 | 50 | 156.17 ± 10.81 *# | 178.8% | |
10 | 100 | 167.67 ± 10.11 * | 192.0% | |
Valerian extract | 11 | 2.15 | 185.33 ± 5.42 * | 212.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepp, J.; Koshovyi, O.; Jakštas, V.; Žvikas, V.; Botsula, I.; Kireyev, I.; Severina, H.; Kukhtenko, O.; Põhako-Palu, K.; Kogermann, K.; et al. Phytochemical, Pharmacological, and Molecular Docking Study of Dry Extracts of Matricaria discoidea DC. with Analgesic and Soporific Activities. Biomolecules 2024, 14, 361. https://doi.org/10.3390/biom14030361
Sepp J, Koshovyi O, Jakštas V, Žvikas V, Botsula I, Kireyev I, Severina H, Kukhtenko O, Põhako-Palu K, Kogermann K, et al. Phytochemical, Pharmacological, and Molecular Docking Study of Dry Extracts of Matricaria discoidea DC. with Analgesic and Soporific Activities. Biomolecules. 2024; 14(3):361. https://doi.org/10.3390/biom14030361
Chicago/Turabian StyleSepp, Janne, Oleh Koshovyi, Valdas Jakštas, Vaidotas Žvikas, Iryna Botsula, Igor Kireyev, Hanna Severina, Oleksandr Kukhtenko, Kaisa Põhako-Palu, Karin Kogermann, and et al. 2024. "Phytochemical, Pharmacological, and Molecular Docking Study of Dry Extracts of Matricaria discoidea DC. with Analgesic and Soporific Activities" Biomolecules 14, no. 3: 361. https://doi.org/10.3390/biom14030361