Non-Coding RNAs: Novel Regulators of Macrophage Homeostasis in Ocular Vascular Diseases
Abstract
1. Introduction
2. Macrophage Homeostasis and Ocular Vascular Diseases
3. Functions of NcRNAs
3.1. MiRNAs
3.2. LncRNAs
3.3. CircRNAs
4. NcRNAs Regulate Macrophage Homeostasis in Ocular Pathological Angiogenesis-Related Disorders
4.1. AMD
4.2. DR
4.3. ROP
4.4. Ocular Tumor
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Hou, X.-W.; Wang, Y.; Ke, C.-F.; Li, M.-Y.; Pan, C.-W. Metabolomics and Biomarkers in Retinal and Choroidal Vascular Diseases. Metabolites 2022, 12, 814. [Google Scholar] [CrossRef]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The Chemokine System in Diverse Forms of Macrophage Activation and Polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Patel, U.; Rajasingh, S.; Samanta, S.; Cao, T.; Dawn, B.; Rajasingh, J. Macrophage Polarization in Response to Epigenetic Modifiers during Infection and Inflammation. Drug Discov. Today 2017, 22, 186–193. [Google Scholar] [CrossRef]
- Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol. 2017, 79, 541–566. [Google Scholar] [CrossRef] [PubMed]
- Weisser, S.B.; McLarren, K.W.; Kuroda, E.; Sly, L.M. Generation and Characterization of Murine Alternatively Activated Macrophages. Methods Mol. Biol. 2013, 946, 225–239. [Google Scholar] [CrossRef]
- Porta, C.; Riboldi, E.; Ippolito, A.; Sica, A. Molecular and Epigenetic Basis of Macrophage Polarized Activation. Semin. Immunol. 2015, 27, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Abak, A.; Tavakkoli Avval, S.; Shoorei, H.; Taheri, M.; Samadian, M. The Impact of Non-Coding RNAs on Macrophage Polarization. Biomed. Pharmacother. 2021, 142, 112112. [Google Scholar] [CrossRef]
- Tauber, A.I. Metchnikoff and the Phagocytosis Theory. Nat. Rev. Mol. Cell Biol. 2003, 4, 897–901. [Google Scholar] [CrossRef]
- Pollard, J.W. Trophic Macrophages in Development and Disease. Nat. Rev. Immunol. 2009, 9, 259–270. [Google Scholar] [CrossRef]
- Kerr, E.C.; Raveney, B.J.E.; Copland, D.A.; Dick, A.D.; Nicholson, L.B. Analysis of Retinal Cellular Infiltrate in Experimental Autoimmune Uveoretinitis Reveals Multiple Regulatory Cell Populations. J. Autoimmun. 2008, 31, 354–361. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Ly, L.V.; Baghat, A.; Versluis, M.; Jordanova, E.S.; Luyten, G.P.M.; van Rooijen, N.; van Hall, T.; van der Velden, P.A.; Jager, M.J. In Aged Mice, Outgrowth of Intraocular Melanoma Depends on Proangiogenic M2-Type Macrophages. J. Immunol. 2010, 185, 3481–3488. [Google Scholar] [CrossRef] [PubMed]
- Cursiefen, C.; Chen, L.; Borges, L.P.; Jackson, D.; Cao, J.; Radziejewski, C.; D’Amore, P.A.; Dana, M.R.; Wiegand, S.J.; Streilein, J.W. VEGF-A Stimulates Lymphangiogenesis and Hemangiogenesis in Inflammatory Neovascularization via Macrophage Recruitment. J. Clin. Investig. 2004, 113, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Ii, M.; Cursiefen, C.; Jackson, D.G.; Keino, H.; Tomita, M.; Van Rooijen, N.; Takenaka, H.; D’Amore, P.A.; Stein-Streilein, J.; et al. Inflammation-Induced Lymphangiogenesis in the Cornea Arises from CD11b-Positive Macrophages. J. Clin. Investig. 2005, 115, 2363–2372. [Google Scholar] [CrossRef]
- Wang, N.; Liang, H.; Zen, K. Molecular Mechanisms That Influence the Macrophage M1-M2 Polarization Balance. Front. Immunol. 2014, 5, 614. [Google Scholar] [CrossRef]
- Perez, V.L.; Saeed, A.M.; Tan, Y.; Urbieta, M.; Cruz-Guilloty, F. The Eye: A Window to the Soul of the Immune System. J. Autoimmun. 2013, 45, 7–14. [Google Scholar] [CrossRef]
- Murakami, Y.; Ishikawa, K.; Nakao, S.; Sonoda, K.-H. Innate Immune Response in Retinal Homeostasis and Inflammatory Disorders. Prog. Retin. Eye Res. 2020, 74, 100778. [Google Scholar] [CrossRef]
- ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef]
- Tani, H.; Numajiri, A.; Aoki, M.; Umemura, T.; Nakazato, T. Short-Lived Long Noncoding RNAs as Surrogate Indicators for Chemical Stress in HepG2 Cells and Their Degradation by Nuclear RNases. Sci. Rep. 2019, 9, 20299. [Google Scholar] [CrossRef]
- Calin, G.A.; Croce, C.M. Chronic Lymphocytic Leukemia: Interplay between Noncoding RNAs and Protein-Coding Genes. Blood 2009, 114, 4761–4770. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.; Girnita, L.; Varani, G.; Calin, G.A. Decrypting Noncoding RNA Interactions, Structures, and Functional Networks. Genome Res. 2019, 29, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Walther, K.; Schulte, L.N. The Role of lncRNAs in Innate Immunity and Inflammation. RNA Biol. 2021, 18, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Kumar Kingsley, S.M.; Vishnu Bhat, B. Role of MicroRNAs in the Development and Function of Innate Immune Cells. Int. Rev. Immunol. 2017, 36, 154–175. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Pioppini, C.; Ozpolat, B.; Calin, G.A. Non-Coding RNAs Regulation of Macrophage Polarization in Cancer. Mol. Cancer 2021, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.B.; Moolani, H.V.; Sene, A.; Sidhu, R.; Kell, P.; Lin, J.B.; Dong, Z.; Ban, N.; Ory, D.S.; Apte, R.S. Macrophage microRNA-150 Promotes Pathological Angiogenesis as Seen in Age-Related Macular Degeneration. JCI Insight 2018, 3, e120157. [Google Scholar] [CrossRef]
- Schratt, G. microRNAs at the Synapse. Nat. Rev. Neurosci. 2009, 10, 842–849. [Google Scholar] [CrossRef]
- Pillman, K.A.; Phillips, C.A.; Roslan, S.; Toubia, J.; Dredge, B.K.; Bert, A.G.; Lumb, R.; Neumann, D.P.; Li, X.; Conn, S.J.; et al. miR-200/375 Control Epithelial Plasticity-Associated Alternative Splicing by Repressing the RNA-Binding Protein Quaking. EMBO J. 2018, 37, e99016. [Google Scholar] [CrossRef]
- Schorr, A.L.; Mangone, M. miRNA-Based Regulation of Alternative RNA Splicing in Metazoans. Int. J. Mol. Sci. 2021, 22, 11618. [Google Scholar] [CrossRef]
- Liang, W.-C.; Wang, Y.; Xiao, L.-J.; Wang, Y.-B.; Fu, W.-M.; Wang, W.-M.; Jiang, H.-Q.; Qi, W.; Wan, D.C.-C.; Zhang, J.-F.; et al. Identification of miRNAs That Specifically Target Tumor Suppressive KLF6-FL Rather than Oncogenic KLF6-SV1 Isoform. RNA Biol. 2014, 11, 845–854. [Google Scholar] [CrossRef]
- Lin, L.; Hu, K. MiR-147: Functions and Implications in Inflammation and Diseases. Microrna 2021, 10, 91–96. [Google Scholar] [CrossRef]
- Lawrence, T.; Natoli, G. Transcriptional Regulation of Macrophage Polarization: Enabling Diversity with Identity. Nat. Rev. Immunol. 2011, 11, 750–761. [Google Scholar] [CrossRef]
- Roy, S. miRNA in Macrophage Development and Function. Antioxid. Redox Signal. 2016, 25, 795–804. [Google Scholar] [CrossRef]
- Dai, Y.; Yi, X.; Huang, Y.; Qian, K.; Huang, L.; Hu, J.; Liu, Y. MiR-345-3p Modulates M1/M2 Macrophage Polarization to Inhibit Inflammation in Bone Infection via Targeting MAP3K1 and NF-κB Pathway. J. Immunol. 2024, 212, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Liu, X.-J.; Zhou, Q.; Xie, J.; Ma, T.-T.; Meng, X.-M.; Li, J. MiR-146a Modulates Macrophage Polarization by Inhibiting Notch1 Pathway in RAW264.7 Macrophages. Int. Immunopharmacol. 2016, 32, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhu, S.-J.; Xiao, S.-S.; Xue, M. MiR-217 Inhibits M2-like Macrophage Polarization by Suppressing Secretion of Interleukin-6 in Ovarian Cancer. Inflammation 2019, 42, 1517–1529. [Google Scholar] [CrossRef]
- Necsulea, A.; Kaessmann, H. Evolutionary Dynamics of Coding and Non-Coding Transcriptomes. Nat. Rev. Genet. 2014, 15, 734–748. [Google Scholar] [CrossRef]
- Hermans-Beijnsberger, S.; van Bilsen, M.; Schroen, B. Long Non-Coding RNAs in the Failing Heart and Vasculature. Noncoding RNA Res. 2018, 3, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Haddad, G.; Kölling, M.; Lorenzen, J.M. The Hypoxic Kidney: Pathogenesis and Noncoding RNA-Based Therapeutic Strategies. Swiss Med. Wkly. 2019, 149, w14703. [Google Scholar] [CrossRef]
- Tang, X.; Luo, Y.; Yuan, D.; Calandrelli, R.; Malhi, N.K.; Sriram, K.; Miao, Y.; Lou, C.-H.; Tsark, W.; Tapia, A.; et al. Long Noncoding RNA LEENE Promotes Angiogenesis and Ischemic Recovery in Diabetes Models. J. Clin. Investig. 2023, 133, e161759. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Ma, X.; Sun, X.; Zhou, C.; Zhao, P.; Wang, Y.; Yang, Y. RNA Fluorescence in Situ Hybridization for Long Non-Coding RNA Localization in Human Osteosarcoma Cells. J. Vis. Exp. 2023, 196. [Google Scholar] [CrossRef]
- Paraskevopoulou, M.D.; Hatzigeorgiou, A.G. Analyzing MiRNA-LncRNA Interactions. Methods Mol. Biol. 2016, 1402, 271–286. [Google Scholar] [CrossRef]
- Fernandes, J.C.R.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 2019, 5, 17. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Zanzoni, A.; Cipriano, A.; Delli Ponti, R.; Spinelli, L.; Ballarino, M.; Bozzoni, I.; Tartaglia, G.G.; Brun, C. Protein Complex Scaffolding Predicted as a Prevalent Function of Long Non-Coding RNAs. Nucleic Acids Res. 2018, 46, 917–928. [Google Scholar] [CrossRef]
- Fang, Y.; Fullwood, M.J. Roles, Functions, and Mechanisms of Long Non-Coding RNAs in Cancer. Genom. Proteom. Bioinform. 2016, 14, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Chang, H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Marchese, F.P.; Raimondi, I.; Huarte, M. The Multidimensional Mechanisms of Long Noncoding RNA Function. Genome Biol. 2017, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Valverde, A.; Ahmad, F.; Naqvi, A.R. Long Noncoding RNA in Myeloid and Lymphoid Cell Differentiation, Polarization and Function. Cells 2020, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Tacke, F.; Ginhoux, F.; Jakubzick, C.; van Rooijen, N.; Merad, M.; Randolph, G.J. Immature Monocytes Acquire Antigens from Other Cells in the Bone Marrow and Present Them to T Cells after Maturing in the Periphery. J. Exp. Med. 2006, 203, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Yuan, L.; Tan, X.; Huang, D.; Wang, X.; Zheng, Z.; Mao, X.; Li, X.; Yang, L.; Huang, K.; et al. The LPS-Inducible lncRNA Mirt2 Is a Negative Regulator of Inflammation. Nat. Commun. 2017, 8, 2049. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, Z.-H. Downregulation of lncRNA NEAT1 Ameliorates LPS-Induced Inflammatory Responses by Promoting Macrophage M2 Polarization via miR-125a-5p/TRAF6/TAK1 Axis. Inflammation 2020, 43, 1548–1560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, J.; Liang, C.; Gu, B.; Xu, Y.; Lu, H.; Cao, B.; Xu, H. LncRNA IGHCγ1 Acts as a ceRNA to Regulate Macrophage Inflammation via the miR-6891-3p/TLR4 Axis in Osteoarthritis. Mediat. Inflamm. 2020, 2020, 9743037. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, X.; Zhang, M.; Lv, K. Microarray Analysis of Circular RNA Expression Patterns in Polarized Macrophages. Int. J. Mol. Med. 2017, 39, 373–379. [Google Scholar] [CrossRef]
- Song, H.; Yang, Y.; Sun, Y.; Wei, G.; Zheng, H.; Chen, Y.; Cai, D.; Li, C.; Ma, Y.; Lin, Z.; et al. Circular RNA Cdyl Promotes Abdominal Aortic Aneurysm Formation by Inducing M1 Macrophage Polarization and M1-Type Inflammation. Mol. Ther. 2022, 30, 915–931. [Google Scholar] [CrossRef]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer 2020, 6, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Mo, Y.; Peng, M.; Tang, T.; Zhong, Y.; Deng, X.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; et al. Emerging Role of Tumor-Related Functional Peptides Encoded by lncRNA and circRNA. Mol. Cancer 2020, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, F.; Jiang, X.; Zhang, W.; Xiang, T.; Pan, Q.; Cai, L.; Zhao, J.; Weng, D.; Li, Y.; et al. CircITGB6 Promotes Ovarian Cancer Cisplatin Resistance by Resetting Tumor-Associated Macrophage Polarization toward the M2 Phenotype. J. Immunother. Cancer 2022, 10, e004029. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J.; Qiu, Y.; Chen, J.; Yang, J. MITA Promotes Macrophage Proinflammatory Polarization and Its circRNA-Related Regulatory Mechanism in Recurrent Miscarriage. Int. J. Mol. Sci. 2023, 24, 9545. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, T.; Wang, W.; Xi, W.; Zhang, T.; Li, Q.; Yang, A.; Wang, T. Circular RNAs in Immune Responses and Immune Diseases. Theranostics 2019, 9, 588–607. [Google Scholar] [CrossRef] [PubMed]
- Ambati, J.; Fowler, B.J. Mechanisms of Age-Related Macular Degeneration. Neuron 2012, 75, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Curcio, C.A. Drusen Characterization with Multimodal Imaging. Retina 2010, 30, 1441–1454. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Messinger, J.D.; Sloan, K.R.; Wong, J.; Roorda, A.; Duncan, J.L.; Curcio, C.A. Abundance and multimodal visibility of soft drusen in early age-related macular degeneration: A Clinicopathologic Correlation. Retina 2020, 40, 1644–1648. [Google Scholar] [CrossRef] [PubMed]
- Guillonneau, X.; Eandi, C.M.; Paques, M.; Sahel, J.-A.; Sapieha, P.; Sennlaub, F. On Phagocytes and Macular Degeneration. Prog. Retin. Eye Res. 2017, 61, 98–128. [Google Scholar] [CrossRef]
- Gupta, N.; Brown, K.E.; Milam, A.H. Activated Microglia in Human Retinitis Pigmentosa, Late-Onset Retinal Degeneration, and Age-Related Macular Degeneration. Exp. Eye Res. 2003, 76, 463–471. [Google Scholar] [CrossRef]
- Daftarian, N.; Zandi, S.; Piryaie, G.; Nikougoftar Zarif, M.; Ranaei Pirmardan, E.; Yamaguchi, M.; Behzadian Nejad, Q.; Hasanpour, H.; Samiei, S.; Pfister, I.B.; et al. Peripheral Blood CD163(+) Monocytes and Soluble CD163 in Dry and Neovascular Age-Related Macular Degeneration. FASEB J. 2020, 34, 8001–8011. [Google Scholar] [CrossRef]
- Gschwandtner, M.; Derler, R.; Midwood, K.S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front. Immunol. 2019, 10, 2759. [Google Scholar] [CrossRef]
- Zor, R.K.; Erşan, S.; Küçük, E.; Yıldırım, G.; Sarı, İ. Serum Malondialdehyde, Monocyte Chemoattractant Protein-1, and Vitamin C Levels in Wet Type Age-Related Macular Degeneration Patients. Ther. Adv. Ophthalmol. 2020, 12, 2515841420951682. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Xu, M.; Gao, J.; Zhao, W.; Yao, Y.; Shang, Q. mTORC1 Signaling Pathway Regulates Macrophages in Choroidal Neovascularization. Mol. Immunol. 2020, 121, 72–80. [Google Scholar] [CrossRef]
- Zhu, Y.; Tan, W.; Demetriades, A.M.; Cai, Y.; Gao, Y.; Sui, A.; Lu, Q.; Shen, X.; Jiang, C.; Xie, B.; et al. Interleukin-17A Neutralization Alleviated Ocular Neovascularization by Promoting M2 and Mitigating M1 Macrophage Polarization. Immunology 2016, 147, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guo, A.; Tu, Y.; Li, W.; Li, L.; Liu, W.; Ju, Y.; Zhou, Y.; Sang, A.; Zhu, M. Fruquintinib Inhibits VEGF/VEGFR2 Axis of Choroidal Endothelial Cells and M1-Type Macrophages to Protect against Mouse Laser-Induced Choroidal Neovascularization. Cell Death Dis. 2020, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, X.; Zhang, B.; Li, C.; Lu, P. Bioinformatical Analysis of miRNA-mRNA Interaction Network Underlying Macrophage Aging and Cholesterol-Responsive Difference between Young and Aged Macrophages. BioMed Res. Int. 2020, 2020, 9267475. [Google Scholar] [CrossRef]
- Roblain, Q.; Louis, T.; Yip, C.; Baudin, L.; Struman, I.; Caolo, V.; Lambert, V.; Lecomte, J.; Noël, A.; Heymans, S. Intravitreal Injection of Anti-miRs against miR-142-3p Reduces Angiogenesis and Microglia Activation in a Mouse Model of Laser-Induced Choroidal Neovascularization. Aging 2021, 13, 12359–12377. [Google Scholar] [CrossRef] [PubMed]
- Grunin, M.; Hagbi-Levi, S.; Rinsky, B.; Smith, Y.; Chowers, I. Transcriptome Analysis on Monocytes from Patients with Neovascular Age-Related Macular Degeneration. Sci. Rep. 2016, 6, 29046. [Google Scholar] [CrossRef]
- Zhao, S.; Lu, L.; Liu, Q.; Chen, J.; Yuan, Q.; Qiu, S.; Wang, X. MiR-505 Promotes M2 Polarization in Choroidal Neovascularization Model Mice by Targeting Transmembrane Protein 229B. Scand. J. Immunol. 2019, 90, e12832. [Google Scholar] [CrossRef] [PubMed]
- Mukai, A.; Otsuki, Y.; Ito, E.; Fujita, T.; Ueno, M.; Maeda, T.; Kinoshita, S.; Sotozono, C.; Hamuro, J. Mitochondrial miRNA494-3p in Extracellular Vesicles Participates in Cellular Interplay of iPS-Derived Human Retinal Pigment Epithelium with Macrophages. Exp. Eye Res. 2021, 208, 108621. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, B.; Xu, F.; Wang, C.; Zhang, R.; Liu, Y.; Wei, C.; Mei, L. Analysis of Long Noncoding RNAs in Choroid Neovascularization. Curr. Eye Res. 2020, 45, 1403–1414. [Google Scholar] [CrossRef]
- Su, Y.; Yi, Y.; Li, L.; Chen, C. circRNA-miRNA-mRNA Network in Age-Related Macular Degeneration: From Construction to Identification. Exp. Eye Res. 2021, 203, 108427. [Google Scholar] [CrossRef]
- Fumagalli, S.; Perego, C.; Pischiutta, F.; Zanier, E.R.; De Simoni, M.-G. The Ischemic Environment Drives Microglia and Macrophage Function. Front. Neurol. 2015, 6, 81. [Google Scholar] [CrossRef]
- Fulzele, S.; El-Sherbini, A.; Ahmad, S.; Sangani, R.; Matragoon, S.; El-Remessy, A.; Radhakrishnan, R.; Liou, G.I. MicroRNA-146b-3p Regulates Retinal Inflammation by Suppressing Adenosine Deaminase-2 in Diabetes. BioMed Res. Int. 2015, 2015, 846501. [Google Scholar] [CrossRef]
- Samra, Y.A.; Saleh, H.M.; Hussein, K.A.; Elsherbiny, N.M.; Ibrahim, A.S.; Elmasry, K.; Fulzele, S.; El-Shishtawy, M.M.; Eissa, L.A.; Al-Shabrawey, M.; et al. Adenosine Deaminase-2-Induced Hyperpermeability in Human Retinal Vascular Endothelial Cells Is Suppressed by MicroRNA-146b-3p. Investig. Ophthalmol. Vis. Sci. 2017, 58, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Ahn, B.J.; Shin, M.-W.; Song, Y.-S.; Choi, Y.; Oh, G.T.; Kim, K.-W.; Lee, H.-J. miR-125a-5p Attenuates Macrophage-Mediated Vascular Dysfunction by Targeting Ninjurin1. Cell Death Differ. 2022, 29, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.A.; Chen, Z.; Park, J.T.; Wang, M.; Lanting, L.; Zhang, Q.; Bhatt, K.; Leung, A.; Wu, X.; Putta, S.; et al. Regulation of Inflammatory Phenotype in Macrophages by a Diabetes-Induced Long Noncoding RNA. Diabetes 2014, 63, 4249–4261. [Google Scholar] [CrossRef]
- Reddy, M.A.; Amaram, V.; Das, S.; Tanwar, V.S.; Ganguly, R.; Wang, M.; Lanting, L.; Zhang, L.; Abdollahi, M.; Chen, Z.; et al. lncRNA DRAIR Is Downregulated in Diabetic Monocytes and Modulates the Inflammatory Phenotype via Epigenetic Mechanisms. JCI Insight 2021, 6, e143289. [Google Scholar] [CrossRef] [PubMed]
- Fevereiro-Martins, M.; Guimarães, H.; Marques-Neves, C.; Bicho, M. Retinopathy of Prematurity: Contribution of Inflammatory and Genetic Factors. Mol. Cell. Biochem. 2022, 477, 1739–1763. [Google Scholar] [CrossRef] [PubMed]
- Rathi, S.; Jalali, S.; Patnaik, S.; Shahulhameed, S.; Musada, G.R.; Balakrishnan, D.; Rani, P.K.; Kekunnaya, R.; Chhablani, P.P.; Swain, S.; et al. Abnormal Complement Activation and Inflammation in the Pathogenesis of Retinopathy of Prematurity. Front. Immunol. 2017, 8, 1868. [Google Scholar] [CrossRef] [PubMed]
- Dammann, O. Inflammation and Retinopathy of Prematurity. Acta Paediatr. 2010, 99, 975–977. [Google Scholar] [CrossRef]
- Sullivan, J.L. Retinopathy of Prematurity and Iron: A Modification of the Oxygen Hypothesis. Pediatrics 1986, 78, 1171–1172. [Google Scholar] [CrossRef]
- Fischer, F.; Martin, G.; Agostini, H.T. Activation of Retinal Microglia Rather than Microglial Cell Density Correlates with Retinal Neovascularization in the Mouse Model of Oxygen-Induced Retinopathy. J. Neuroinflamm. 2011, 8, 120. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, X.; Hu, Y.; Yang, B.; Tsui, C.-K.; Yu, S.; Lu, L.; Liang, X. Melatonin Attenuated Retinal Neovascularization and Neuroglial Dysfunction by Inhibition of HIF-1α-VEGF Pathway in Oxygen-Induced Retinopathy Mice. J. Pineal Res. 2018, 64, e12473. [Google Scholar] [CrossRef]
- Yan, L.; Lee, S.; Lazzaro, D.R.; Aranda, J.; Grant, M.B.; Chaqour, B. Single and Compound Knock-Outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia. J. Biol. Chem. 2015, 290, 23264–23281. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wu, Y.; Hu, Z.; Sun, L.; Dou, G.; Zhang, Z.; Wang, H.; Guo, C.; Wang, Y. Exosomes from Microglia Attenuate Photoreceptor Injury and Neovascularization in an Animal Model of Retinopathy of Prematurity. Mol. Ther. Nucleic Acids 2019, 16, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fu, X.; Zeng, H.; Wang, J.-H.; Peng, Y.; Zhao, H.; Zou, J.; Zhang, L.; Li, Y.; Yoshida, S.; et al. Microarray Analysis of Long Non-Coding RNAs and Messenger RNAs in a Mouse Model of Oxygen-Induced Retinopathy. Int. J. Med. Sci. 2019, 16, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Song, H.; Wu, Y.; Liu, X.; Li, J.; Zhao, H.; Tang, M.; Ji, X.; Zhang, L.; Su, Y.; et al. Oxygen-Induced circRNA Profiles and Coregulatory Networks in a Retinopathy of Prematurity Mouse Model. Exp. Ther. Med. 2019, 18, 2037–2050. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Zhang, L.; Wang, J.-H.; Zeng, H.; Peng, Y.; Zou, J.; Shi, J.; Zhang, L.; Li, Y.; Yoshida, S.; et al. Identifying circRNA-Associated-ceRNA Networks in Retinal Neovascularization in Mice. Int. J. Med. Sci. 2019, 16, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Nagarkatti-Gude, N.; Wang, Y.; Ali, M.J.; Honavar, S.G.; Jager, M.J.; Chan, C.-C. Genetics of Primary Intraocular Tumors. Ocul. Immunol. Inflamm. 2012, 20, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.K.; Di Nicola, M. Ocular Oncology-Primary and Metastatic Malignancies. Med. Clin. N. Am. 2021, 105, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Cohen, V.M.L. Ocular Metastases. Eye 2013, 27, 137–141. [Google Scholar] [CrossRef]
- Cassetta, L.; Pollard, J.W. Targeting Macrophages: Therapeutic Approaches in Cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef]
- Liu, J.; Geng, X.; Hou, J.; Wu, G. New Insights into M1/M2 Macrophages: Key Modulators in Cancer Progression. Cancer Cell Int. 2021, 21, 389. [Google Scholar] [CrossRef]
- Italiani, P.; Boraschi, D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014, 5, 514. [Google Scholar] [CrossRef] [PubMed]
- Mäkitie, T.; Carpén, O.; Vaheri, A.; Kivelä, T. Ezrin as a Prognostic Indicator and Its Relationship to Tumor Characteristics in Uveal Malignant Melanoma. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2442–2449. [Google Scholar]
- Ma, Y.; Lin, H.; Wang, P.; Yang, H.; Yu, J.; Tian, H.; Li, T.; Ge, S.; Wang, Y.; Jia, R.; et al. A miRNA-Based Gene Therapy Nanodrug Synergistically Enhances pro-Inflammatory Antitumor Immunity against Melanoma. Acta Biomater. 2023, 155, 538–553. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Liu, Q.; Feng, S.; Li, X.; Jiang, Q. Non-Coding RNAs: Novel Regulators of Macrophage Homeostasis in Ocular Vascular Diseases. Biomolecules 2024, 14, 328. https://doi.org/10.3390/biom14030328
Zhang Q, Liu Q, Feng S, Li X, Jiang Q. Non-Coding RNAs: Novel Regulators of Macrophage Homeostasis in Ocular Vascular Diseases. Biomolecules. 2024; 14(3):328. https://doi.org/10.3390/biom14030328
Chicago/Turabian StyleZhang, Qiuyang, Qing Liu, Siguo Feng, Xiumiao Li, and Qin Jiang. 2024. "Non-Coding RNAs: Novel Regulators of Macrophage Homeostasis in Ocular Vascular Diseases" Biomolecules 14, no. 3: 328. https://doi.org/10.3390/biom14030328
APA StyleZhang, Q., Liu, Q., Feng, S., Li, X., & Jiang, Q. (2024). Non-Coding RNAs: Novel Regulators of Macrophage Homeostasis in Ocular Vascular Diseases. Biomolecules, 14(3), 328. https://doi.org/10.3390/biom14030328