Synthesis of Pore-Size-Tunable Porous Silica Particles and Their Effects on Dental Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of DPS Particles
2.3. Fabrication of DPS-Reinforced DRCs
2.4. Characterization
2.4.1. Morphology and Structure of DPS Particles
2.4.2. Physicochemical Properties of DPS-Reinforced DRCs
2.5. Statistical Analysis
3. Results
3.1. Morphology Characterization of DPS Particles
3.2. Structure Characterization of DPS Particles
3.3. Physicochemical−Cytocompatibility Properties of DPS-Reinforced RBCs
3.3.1. Degree of Conversion, Depth of Cure and Viscosity
3.3.2. Mechanical Properties
3.3.3. Fracture Morphology
3.3.4. Wear Resistance
3.3.5. Cytotoxicity Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental Caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.A.; Finer, Y. Biostable, antidegradative and antimicrobial restorative systems based on host-biomaterials and microbial interactions. Dent. Mater. 2019, 35, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite-state of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Liu, H.M.; Wang, R.L.; Jiang, X.Z.; Zhu, M.F. Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites. Dent. Mater. 2021, 37, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Sarrett, D.C. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent. Mater. 2005, 21, 9–20. [Google Scholar] [CrossRef]
- Opdam, N.J.M.; Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.D.N.J.M.; Dijken, J.W. Longevity of Posterior Composite Restorations: A Systematic Review and Meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef]
- Liu, F.W.; Wang, R.L.; Cheng, Y.H.; Jiang, X.Z.; Zhang, Q.H.; Zhu, M.F. Polymer grafted hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties. Mater. Sci. Eng. C 2013, 33, 4994–5000. [Google Scholar] [CrossRef]
- Chan, K.S.; Lee, Y.D.; Nicolella, D.P.; Furman, B.R.; Wellinghoff, S.; Rawls, H.R. Improving fracture toughness of dental nanocomposites by interface engineering and micromechanics. Eng. Fract. Mech. 2007, 74, 1857–1871. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Hua, H.F.; Yu, Y.J.; Chen, G.Y.; Zhu, M.F.; Zhu, X.X. Dental resin composites reinforced by rough core-shell SiO2 nanoparticles with a controllable mesoporous structure. ACS Appl. Bio. Mater. 2019, 2, 4233–4241. [Google Scholar] [CrossRef]
- Habib, E.; Wang, R.L.; Wang, Y.Z.; Zhu, M.F.; Zhu, X.X. Inorganic fillers for dental resin composites: Present and future. ACS Biomater. Sci. Eng. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Antonucci, J.M.; Dickens, S.H.; Fowler, B.O.; Xu, H.H.K. Chemistry of silanes: Interfaces in dental polymers and composites. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Rahim, T.N.A.T.; Mohamad, D.; Akil, H.M.; Rahman, I.A. Water sorption characteristics of restorative dental composites immersed in acidic drinks. Dent. Mater. 2012, 28, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.L.; Reed, L.E. Semi-porous reinforcing fillers for composite resins. 2. Heat-treatments and etching characteristics. J. Dent. Res. 1976, 55, 748–756. [Google Scholar] [CrossRef]
- Zandinejad, A.A.; Atai, M.; Pahlevan, A. The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dent. Mater. 2006, 22, 382–387. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhu, M.F.; Zhu, X.X. Functional Fillers for Dental Resin Composites. Acta Biomater. 2021, 122, 50–65. [Google Scholar] [CrossRef]
- Wang, R.L.; Habib, E.; Zhu, X.X. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites. Dent. Mater. 2017, 33, 1139–1148. [Google Scholar] [CrossRef]
- Samuel, S.P.; Li, S.X.; Mukherjee, I.; Guo, Y.; Patel, A.C.; Baran, G. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent. Mater. 2009, 25, 296–301. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Greener, E.H. Fourier transform infrared analysis of degree of polymerization in unfilled resins-methods comparison. J. Dent. Res. 1984, 63, 1093–1095. [Google Scholar] [CrossRef]
- ISO 4049; Dentistry-Polymer-Based Restorative Materials, International Organization for Standardization. ISO: Geneva, Switzerland, 2009.
- ISO 10993-10995; Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity, International Organization for Standardization. ISO: Geneva, Switzerland, 2009.
- Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of interparticle interactions on size determination of zirconia and silica based systems—A comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett. 2012, 521, 91–97. [Google Scholar] [CrossRef]
- Shen, D.K.; Yang, J.P.; Li, X.M.; Zhou, L.; Zhang, R.Y.; Li, W. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.J.; Xing, J.L.; Pang, J.L.; Jiang, S.H.; Lam, K.F.; Yang, T.Q.; Xue, Q.S. Facile synthesis of size controllable dendritic mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 22655–22665. [Google Scholar] [CrossRef]
- Du, X.; He, J.H. Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers. Nanoscale 2012, 4, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Du, X.; Shi, B.Y.; Bi, J.X.; Kleitz, F.; Qiao, S.Z. Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. J. Mater. Chem. B 2015, 3, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Al-Sharaa, K.A.; Watts, D.C. Stickiness prior to setting of some light cured resin-composites. Dent. Mater. 2003, 19, 182–187. [Google Scholar] [CrossRef]
- Takahashi, Y.; Chai, J.; Tan, S.C. Effect of water storage on the impact strength of three glass fiber-reinforced composites. Dent. Mater. 2006, 22, 291–297. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, Y.H.; Li, M.; Shen, Y.; Nan, C.W. Characterization of mesoporous silica nanoparticle composites at low filler content. J. Compos. Mater. 2016, 50, 715–722. [Google Scholar] [CrossRef]
- Hong, Z.K.; Zhang, P.B.; He, C.L.; Qiu, X.Y.; Liu, A.X.; Chen, L. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 2005, 26, 6296–6304. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate based dental resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef]
- Brackett, M.G.; Bouillaguet, S.; Lockwood, P.E.; Rotenberg, S.; Lewis, J.B.; Messer, R.L.W. In vitro cytotoxicity of dental composites based on new and traditional polymerization chemistries. J. Biomed. Mater. Res. Part B 2007, 81B, 397–402. [Google Scholar] [CrossRef]
- Frauscher, K.E.; Ilie, N. Degree of conversion of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin. Oral Investig. 2013, 17, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.S.; Ma, Z.Y.; Wang, R.L.; Zhu, M.F. Synthesis and characterization of methacrylate-functionalized betulin derivatives as antibacterial comonomer for dental restorative Resins. ACS Biomater. Sci. Eng. 2021, 7, 3132–3140. [Google Scholar] [CrossRef] [PubMed]
- Viljanena, E.K.; Skrifvars, M.; Vallittua, P.K. Dendritic copolymers and particulate filler composites for dental applications: Degree of conversion and thermal properties. Dent. Mater. 2007, 23, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.H.; Greener, E.H. Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. J. Oral Rehabil. 1990, 17, 487–494. [Google Scholar] [CrossRef]
- Bai, X.X.; Lin, C.C.; Wang, Y.Y.; Ma, J.; Wang, X.; Yao, X.H. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent. Mater. 2020, 36, 794–807. [Google Scholar] [CrossRef]
- Amirouche-Korichi, A.; Mouzali, M.; Watts, D.C. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent. Mater. 2009, 25, 1411–1418. [Google Scholar] [CrossRef]
- Metalwala, Z.; Khoshroo, K.; Rasoulianboroujeni, M.; Tahriri, M.; Johnson, A.; Baeten, J. Rheological properties of contemporary nanohybrid dental resin composites: The influence of preheating. Polym. Test 2018, 72, 157–163. [Google Scholar] [CrossRef]
- Tana, Y.N.; Liu, Y.; Grover, L.M.; Huang, B.Y. Wear behavior of light-cured dental composites filled with porous glass-ceramic particles. J. Mech. Behav. Biomed. Mater. 2010, 3, 77–84. [Google Scholar] [CrossRef]
- Atai, M.; Pahlavan, A.; Moin, N. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent. Mater. 2012, 28, 133–145. [Google Scholar] [CrossRef]
- Elfakhri, F.; Alkahtani, R.; Li, C.C.; Khaliq, J. Influence of filler characteristics on the performance of dental composites: A comprehensive review. Ceram. Int. 2022, 48, 27280–27294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Luo, J.; Yang, J.; Zeng, C.; Jiang, X. Synthesis of Pore-Size-Tunable Porous Silica Particles and Their Effects on Dental Resin Composites. Biomolecules 2023, 13, 1290. https://doi.org/10.3390/biom13091290
Chen H, Luo J, Yang J, Zeng C, Jiang X. Synthesis of Pore-Size-Tunable Porous Silica Particles and Their Effects on Dental Resin Composites. Biomolecules. 2023; 13(9):1290. https://doi.org/10.3390/biom13091290
Chicago/Turabian StyleChen, Hongyan, Jiaxin Luo, Jiawei Yang, Chen Zeng, and Xinquan Jiang. 2023. "Synthesis of Pore-Size-Tunable Porous Silica Particles and Their Effects on Dental Resin Composites" Biomolecules 13, no. 9: 1290. https://doi.org/10.3390/biom13091290