Immune Cells Localize to Sites of Corneal Erosions in C57BL/6 Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Corneal Wound Healing
2.2. Immunofluorescence
2.3. Confocal Image Analysis and Imaris 3D Surface Rendering
2.4. Statistical Analysis
3. Results
3.1. Immune Cell Phenotypes during Re-Epithelialization
3.2. Stromal Immune Cells Are Not Detected at D7
3.3. Immune Cells Are Found at Erosion Sites
3.4. Macrophages in Mouse Corneas with Erosions Express Arg1, CD206, and Not iNOS
3.5. CD3+ and CD4+ T Cells Can Be Seen at Erosion Sites
3.6. Whether or Not Erosions Develop, Corneal Sensory Nerve Reinnervation Remains Partial at D28 after Debridement Injury
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ljubimov, A.V. Diabetic complications in the cornea. Vis. Res. 2017, 139, 138–152. [Google Scholar] [CrossRef]
- Oliver, V.F.; Van Bysterveldt, K.A.; Cadzow, M.; Steger, B.; Romano, V.; Markie, D.; Hewitt, A.W.; MacKey, D.A.; Willoughby, C.E.; Sherwin, T.; et al. A COL17A1 splice-altering mutation is prevalent in inherited recurrent corneal erosions. Ophthalmology 2016, 123, 709–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisch, W.; Weiss, J.S. Clinical and genetic update of corneal dystrophies. Exp. Eye Res. 2019, 186, 107715. [Google Scholar] [CrossRef] [PubMed]
- Bourges, J.L. Corneal dystrophies. J. Fr. Ophtalmol. 2017, 40, e177–e192. [Google Scholar] [CrossRef]
- Yang, Y.; Mimouni, M.; Trinh, T.; Sorkin, N.; Cohen, E.; Santaella, G.; Rootman, D.S.; Chan, C.C.; Slomovic, A.R. Phototherapeutic keratectomy versus epithelial debridement combined with anterior stromal puncture or diamond burr for recurrent corneal erosions. Can. J. Ophthalmol. 2022, 58, 198–203. [Google Scholar] [CrossRef]
- Pal-Ghosh, S.; Tadvalkar, G.; Jurjus, R.A.; Zieske, J.D.; Stepp, M.A. BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds. Exp. Eye Res. 2008, 87, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Pal-Ghosh, S.; Pajoohesh-Ganji, A.; Tadvalkar, G.; Kyne, B.M.; Guo, X.; Zieske, J.D.; Stepp, M.A. Topical Mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea. Exp. Eye Res. 2016, 146, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gao, N.; Wu, L.; Lee, P.S.Y.; Me, R.; Dai, C.; Xie, L.; Yu, F.S.X. Role of vip and sonic hedgehog signaling pathways in mediating epithelial wound healing, sensory nerve regeneration, and their defects in diabetic corneas. Diabetes 2020, 69, 1549–1561. [Google Scholar] [CrossRef]
- Ma, W.; Xie, Z.; Chen, H.; Zeng, L.; Chen, X.; Feng, S.; Lu, X. Nuclear translocation of β-catenin induced by E-cadherin endocytosis causes recurrent erosion of diabetic cornea. Exp. Biol. Med. 2021, 246, 1167–1176. [Google Scholar] [CrossRef]
- Bentley, E.; Abrams, G.A.; Covitz, D.; Cook, C.S.; Fischer, C.A.; Hacker, D.; Stuhr, C.M.; Reid, T.W.; Murphy, C.J. Morphology and immunohistochemistry of spontaneous chronic corneal epithelial defects (SCCED) in dogs. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2262–2269. [Google Scholar]
- Kadar, T.; Turetz, J.; Fishbine, E.; Sahar, R.; Chapman, S.; Amir, A. Characterization of acute and delayed ocular lesions induced by sulfur mustard in rabbits. Curr. Eye Res. 2001, 22, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Stepp, M.A.; Zieske, J.D.; Trinkaus-Randall, V.; Kyne, B.M.; Pal-Ghosh, S.; Tadvalkar, G.; Pajoohesh-Ganji, A. Wounding the cornea to learn how it heals. Exp. Eye Res. 2014, 121, 178–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal-Ghosh, S.; Pajoohesh-Ganji, A.; Tadvalkar, G.; Stepp, M.A. Removal of the basement membrane enhances corneal wound healing. Exp. Eye Res. 2011, 93, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Pal-Ghosh, S.; Blanco, T.; Tadvalkar, G.; Pajoohesh-Ganji, A.; Parthasarathy, A.; Zieske, J.D.; Stepp, M.A. MMP9 cleavage of the β4 integrin ectodomain leads to recurrent epithelial erosions in mice. J. Cell Sci. 2011, 124, 2666–2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazlett, L.D. Corneal response to Pseudomonas aeruginosa infection. Prog. Retin. Eye Res. 2004, 23, 1–30. [Google Scholar] [CrossRef]
- Hazlett, L.D.; McClellan, S.; Kwon, B.; Barrett, R. Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Investig. Ophthalmol. Vis. Sci. 2000, 41, 805–810. [Google Scholar]
- Sullivan, D.A.; Rocha, E.M.; Aragona, P.; Clayton, J.A.; Ding, J.; Golebiowski, B.; Hampel, U.; McDermott, A.M.; Schaumberg, D.A.; Srinivasan, S.; et al. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul. Surf. 2017, 15, 284–333. [Google Scholar] [CrossRef]
- Gagliano, C.; Caruso, S.; Napolitano, G.; Malaguarnera, G.; Cicinelli, M.V.; Amato, R.; Reibaldi, M.; Incarbone, G.; Bucolo, C.; Drago, F.; et al. Low levels of 17-β-oestradiol, oestrone and testosterone correlate with severe evaporative dysfunctional tear syndrome in postmenopausal women: A case-control study. Br. J. Ophthalmol. 2014, 98, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Pajoohesh-Ganji, A.; Pal-Ghosh, S.; Tadvalkar, G.; Stepp, M.A. K14 + compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev. Dyn. 2016, 245, 132–143. [Google Scholar] [CrossRef]
- Kligys, K.; Wu, Y.; Hamill, K.J.; Lewandowski, K.T.; Hopkinson, S.B.; Budinger, G.R.S.; Jones, J.C.R. Laminin-332 and α3β1 integrin-supported migration of bronchial epithelial cells is modulated by fibronectin. Am. J. Respir. Cell Mol. Biol. 2013, 49, 731–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeDreu, J.; Pal-Ghosh, S.; Mattapallil, M.J.; Caspi, R.R.; Stepp, M.A.; Menko, A.S. Uveitis-mediated immune cell invasion through the extracellular matrix of the lens capsule. FASEB J. 2022, 36, e21995. [Google Scholar] [CrossRef] [PubMed]
- Stepp, M.A.; Pal-Ghosh, S.; Tadvalkar, G.; Williams, A.; Pflugfelder, S.C.; de Paiva, C.S. Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice. Exp. Eye Res. 2018, 169, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Stepp, M.A.; Pal-Ghosh, S.; Tadvalkar, G.; Williams, A.R.; Pflugfelder, S.C.; de Paiva, C.S. Reduced corneal innervation in the CD25 null model of Sjögren syndrome. Int. J. Mol. Sci. 2018, 19, 3821. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.R.; Aldave, A.J.; Chodosh, J. Recurrent corneal erosion syndrome. Br. J. Ophthalmol. 2019, 103, 1204–1208. [Google Scholar] [CrossRef]
- Miller, D.D.; Hasan, S.A.; Simmons, N.L.; Stewart, M.W. Recurrent corneal erosion: A comprehensive review. Clin. Ophthalmol. 2019, 13, 325–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajoohesh-Ganji, A.; Pal-Ghosh, S.; Tadvalkar, G.; Kyne, B.M.; Saban, D.R.; Stepp, M.A. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. Lab. Investig. 2015, 95, 1305–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepp, M.A.; Pal-Ghosh, S.; Tadvalkar, G.; Li, L.; Brooks, S.R.; Morasso, M.I. Molecular basis of Mitomycin C enhanced corneal sensory nerve repair after debridement wounding. Sci. Rep. 2018, 8, 16960. [Google Scholar] [CrossRef] [Green Version]
- Pal-Ghosh, S.; Pajoohesh-Ganji, A.; Brown, M.; Stepp, M.A. A mouse model for the study of recurrent corneal epithelial erosions: α9β1 integrin implicated in progression of the disease. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1775–1788. [Google Scholar] [CrossRef] [Green Version]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [Green Version]
- Campbell, L.; Saville, C.R.; Murray, P.J.; Cruickshank, S.M.; Hardman, M.J. Local arginase 1 activity is required for cutaneous wound healing. J. Investig. Derm. 2013, 133, 2461–2470. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, P.; Di, G.; Qi, X.; Zhou, Q.; Gao, H. Netrin-1 promotes diabetic corneal wound healing through molecular mechanisms mediated via the adenosine 2B receptor. Sci. Rep. 2018, 8, 5994. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Pham, T.L.; Kakazu, A.; Bazan, H.E.P. Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment. Diabetes 2017, 66, 2511–2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Xue, Y.; Dong, D.; Xiao, C.; Lin, C.; Wang, H.; Song, F.; Fu, T.; Wang, Z.; Chen, J.; et al. CCR2(−) and CCR2(+) corneal macrophages exhibit distinct characteristics and balance inflammatory responses after epithelial abrasion. Mucosal. Immunol. 2017, 10, 1145–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Hu, X.; Qi, X.; Di, G.; Zhang, Y.; Wang, Q.; Zhou, Q. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice. Mol. Vis. 2018, 24, 274–285. [Google Scholar]
- Ahmed, R.; Gray, D. Immunological memory and protective immunity: Understanding their relation. Science 1996, 272, 54–60. [Google Scholar] [CrossRef]
- Farber, D.L.; Netea, M.G.; Radbruch, A.; Rajewsky, K.; Zinkernagel, R.M. Immunological memory: Lessons from the past and a look to the future. Nat. Rev. Immunol. 2016, 16, 124–128. [Google Scholar] [CrossRef]
- Mueller, S.N.; Mackay, L.K. Tissue-resident memory T cells: Local specialists in immune defence. Nat. Rev. Immunol. 2016, 16, 79–89. [Google Scholar] [CrossRef]
- Ryu, J.S.; Kim, S.Y.; Kim, M.K.; Oh, J.Y. Inflammation Confers Healing Advantage to Corneal Epithelium Following Subsequent Injury. Int. J. Mol. Sci. 2023, 24, 3329. [Google Scholar] [CrossRef]
- Naik, S.; Larsen, S.B.; Gomez, N.C.; Alaverdyan, K.; Sendoel, A.; Yuan, S.; Polak, L.; Kulukian, A.; Chai, S.; Fuchs, E. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 2017, 550, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Ordovas-Montanes, J.; Dwyer, D.F.; Nyquist, S.K.; Buchheit, K.M.; Vukovic, M.; Deb, C.; Wadsworth, M.H.; Hughes, T.K.; Kazer, S.W.; Yoshimoto, E.; et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 2018, 560, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Lim, A.I.; McFadden, T.; Link, V.M.; Han, S.J.; Karlsson, R.M.; Stacy, A.; Farley, T.K.; Lima, D.S., Jr.; Harrison, O.J.; Desai, J.V.; et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 2021, 373, eabf3002. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, K.A.U.; Polak, L.; Matos, I.; Tierney, M.T.; Gola, A.; Wong, E.; Infarinato, N.R.; Nikolova, M.; Luo, S.; Liu, S.; et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 2021, 374, eabh2444. [Google Scholar] [CrossRef] [PubMed]
Antibody | Clone | Dilution | Host | Company | Conjugate | Cat # |
---|---|---|---|---|---|---|
Arginase1 | D4E3M | 1:50 | Rabbit | Cell Signaling | Alexa Fluor 488 & 647 | 66297S & 43279S |
β2 integrin | M18/2 | 1:50 | Rat | Biolegend | Alexa Fluor 594 | 101416 |
β3 tubulin | N/A | 1:100 | Rabbit | Abcam | N/A | ab18207 |
CD11b | M1/70 | 1:200 | Rat | Abcam | Alexa Fluor 647 | ab197702 |
CD206 | C068C2 | 1:50 | Rat | Biolegend | Alexa Fluor 647 | 141712 |
CD3 | 17A2 | 1:100 | Rat | Biolegend | Alexa Fluor 488 | 100210 |
CD4 | RM4-5 | 1:100 | Rat | Biolegend | Alexa Fluor 488 | 100532 |
CD49f/ α6 integrin | GoH3 | 1:100 | Rat | BD Pharmingen | N/A | 555734 |
CD68 | FA-11 | 1:50 | Rat | Biolegend | Alexa Fluor 488 & 594 | 137012 & 137020 |
CD8b | YTS156.7.7 | 1:50 | Rat | Biolegend | Alexa Fluor 594 | 126635 |
F4/80 | BM8 | 1:50 | Rat | Biolegend | Alexa Fluor 488 & 594 | 123120 & 123140 |
GR1 | RB6-8C5 | 1:50 | Rat | Stem Cell Technologies | Alexa Fluor 488 | 60028AD |
iNOS | D6B6S | 1:50 | Rabbit | Cell Signaling | Alexa Fluor 488 | 93421S |
LMN332 | J18 | 1:100 | Rabbit | Jonathan C. Jones, Kevin Hamill [20] | ||
LY6C | ER-MP20 | 1:100 | Rat | Invitrogen | N/A | MA1-81899 |
LY6G | 1A8 | 1:100 | Rat | Biolegend | Alexa Fluor 488 | 127626 |
Myeloperoxidase | N/A | 1:100 | Goat | R&D Systems | N/A | AF3667 |
Host | Target | Conjugate | Jackson ImmunoResearch Cat # |
---|---|---|---|
Donkey | Goat | Alexa Fluor 594 | 705-585-003 |
Goat | Rat | Alexa Fluor 594 | 112-585-003 |
Goat | Rat | Alexa Fluor 647 | 112-605-003 |
Goat | Rat | Alexa Fluor 488 | 112-545-167 |
Goat | Rabbit | Alexa Fluor 488 | 111-545-003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, P.M.; Pal-Ghosh, S.; Menko, A.S.; Stepp, M.A. Immune Cells Localize to Sites of Corneal Erosions in C57BL/6 Mice. Biomolecules 2023, 13, 1059. https://doi.org/10.3390/biom13071059
Le PM, Pal-Ghosh S, Menko AS, Stepp MA. Immune Cells Localize to Sites of Corneal Erosions in C57BL/6 Mice. Biomolecules. 2023; 13(7):1059. https://doi.org/10.3390/biom13071059
Chicago/Turabian StyleLe, Phuong M., Sonali Pal-Ghosh, A. Sue Menko, and Mary Ann Stepp. 2023. "Immune Cells Localize to Sites of Corneal Erosions in C57BL/6 Mice" Biomolecules 13, no. 7: 1059. https://doi.org/10.3390/biom13071059
APA StyleLe, P. M., Pal-Ghosh, S., Menko, A. S., & Stepp, M. A. (2023). Immune Cells Localize to Sites of Corneal Erosions in C57BL/6 Mice. Biomolecules, 13(7), 1059. https://doi.org/10.3390/biom13071059