Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases?
Abstract
:1. Introduction
2. What Are Antimicrobial Peptides (AMPs)?
3. Why Is Trypanosomiasis Important?
4. Current Treatment of Trypanosomiases
5. Other Therapeutic Alternatives against Trypanosomiasis
6. AMPs with Antiparasitic Activity
7. Antimicrobial Peptides against Kinetoplastids Causing Neglected Tropical Diseases
7.1. AMPs against T. brucei
7.2. AMPs against T. cruzi
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- d’Avila-Levy, C.M.; Boucinha, C.; Kostygov, A.; Santos, H.L.C.; Morelli, K.A.; Grybchuk-Ieremenko, A.; Duval, L.; Votýpka, J.; Yurchenko, V.; Grellier, P.; et al. Exploring the Environmental Diversity of Kinetoplastid Flagellates in the High-Throughput DNA Sequencing Era. Memórias Inst. Oswaldo Cruz 2015, 110, 956–965. [Google Scholar] [CrossRef]
- Stuart, K.; Brun, R.; Croft, S.; Fairlamb, A.; Gürtler, R.E.; McKerrow, J.; Reed, S.; Tarleton, R. Kinetoplastids: Related Protozoan Pathogens, Different Diseases. J. Clin. Investig. 2008, 118, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- Crowe, L.P.; Morris, M.T. Glycosome Heterogeneity in Kinetoplastids. Biochem. Soc. Trans. 2021, 49, 29–39. [Google Scholar] [CrossRef]
- Kourbeli, V.; Chontzopoulou, E.; Moschovou, K.; Pavlos, D.; Mavromoustakos, T.; Papanastasiou, I.P. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021, 26, 4629. [Google Scholar] [CrossRef] [PubMed]
- Filardy, A.A.; Guimarães-Pinto, K.; Nunes, M.P.; Zukeram, K.; Fliess, L.; Pereira, L.; Oliveira Nascimento, D.; Conde, L.; Morrot, A. Human Kinetoplastid Protozoan Infections: Where Are We Going Next? Front. Immunol. 2018, 9, 1493. [Google Scholar] [CrossRef]
- Trypanosomiasis, Human African (Sleeping Sickness). Available online: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed on 3 December 2022).
- Rao, S.P.S.; Barrett, M.P.; Dranoff, G.; Faraday, C.J.; Gimpelewicz, C.R.; Hailu, A.; Jones, C.L.; Kelly, J.M.; Lazdins-Helds, J.K.; Mäser, P.; et al. Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infect. Dis. 2019, 5, 152–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, M.P.; Kyle, D.E.; Sibley, L.D.; Radke, J.B.; Tarleton, R.L. Protozoan Persister-like Cells and Drug Treatment Failure. Nat. Rev. Microbiol. 2019, 17, 607–620. [Google Scholar] [CrossRef]
- Ward, A.I.; Olmo, F.; Atherton, R.L.; Taylor, M.C.; Kelly, J.M. Trypanosoma Cruzi Amastigotes That Persist in the Colon during Chronic Stage Murine Infections Have a Reduced Replication Rate. Open Biol. 2020, 10, 200261. [Google Scholar] [CrossRef]
- Crilly, N.P.; Mugnier, M.R. Thinking Outside the Blood: Perspectives on Tissue-Resident Trypanosoma Brucei. PLoS Pathog. 2021, 17, e1009866. [Google Scholar] [CrossRef]
- Sánchez-Valdéz, F.J.; Padilla, A.; Wang, W.; Orr, D.; Tarleton, R.L. Spontaneous Dormancy Protects Trypanosoma Cruzi during Extended Drug Exposure. eLife 2018, 7, e34039. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.; Nagle, A.S.; Biggart, A.; Lai, Y.H.; Liang, F.; Davis, L.C.; Barnes, S.W.; Mathison, C.J.N.; Myburgh, E.; Gao, M.-Y.; et al. Proteasome Inhibition for Treatment of Leishmaniasis, Chagas Disease and Sleeping Sickness. Nature 2016, 537, 229–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sales Junior, P.A.; Molina, I.; Fonseca Murta, S.M.; Sánchez-Montalvá, A.; Salvador, F.; Corrêa-Oliveira, R.; Carneiro, C.M. Experimental and Clinical Treatment of Chagas Disease: A Review. Am. J. Trop. Med. Hyg. 2017, 97, 1289–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steketee, P.C.; Vincent, I.M.; Achcar, F.; Giordani, F.; Kim, D.-H.; Creek, D.J.; Freund, Y.; Jacobs, R.; Rattigan, K.; Horn, D.; et al. Benzoxaborole Treatment Perturbs S-Adenosyl-L-Methionine Metabolism in Trypanosoma Brucei. PLoS Negl. Trop. Dis. 2018, 12, e0006450. [Google Scholar] [CrossRef] [Green Version]
- Georgiadis, M.-O.; Kourbeli, V.; Papanastasiou, I.P.; Tsotinis, A.; Taylor, M.C.; Kelly, J.M. Synthesis and Evaluation of Novel 2,4-Disubstituted Arylthiazoles against T. Brucei. RSC Med. Chem. 2020, 11, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Harrington, J.M. Antimicrobial Peptide Killing of African Trypanosomes. Parasite Immunol. 2011, 33, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.L.A.; Faria, R.X.; Calabrese, K.S.; Hardoim, D.J.; Taniwaki, N.; Alves, L.A.; De Simone, S.G. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma Cruzi. PLoS ONE 2016, 11, e0157673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Dirany, R.; Shahrour, H.; Dirany, Z.; Abdel-Sater, F.; Gonzalez-Gaitano, G.; Brandenburg, K.; Martinez de Tejada, G.; Nguewa, P.A. Activity of Anti-Microbial Peptides (AMPs) against Leishmania and Other Parasites: An Overview. Biomolecules 2021, 11, 984. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The Antimicrobial Peptides and Their Potential Clinical Applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar]
- Amino, R.; Martins, R.M.; Procopio, J.; Hirata, I.Y.; Juliano, M.A.; Schenkman, S. Trialysin, a Novel Pore-Forming Protein from Saliva of Hematophagous Insects Activated by Limited Proteolysis. J. Biol. Chem. 2002, 277, 6207–6213. [Google Scholar] [CrossRef] [Green Version]
- Deslouches, B.; Di, Y.P. Antimicrobial Peptides: A Potential Therapeutic Option for Surgical Site Infections. Clin. Surg. 2017, 2, 1740. [Google Scholar]
- Díaz-Garrido, P.; Cárdenas-Guerra, R.E.; Martínez, I.; Poggio, S.; Rodríguez-Hernández, K.; Rivera-Santiago, L.; Ortega-López, J.; Sánchez-Esquivel, S.; Espinoza, B. Differential Activity on Trypanosomatid Parasites of a Novel Recombinant Defensin Type 1 from the Insect Triatoma (Meccus) Pallidipennis. Insect. Biochem. Mol. Biol. 2021, 139, 103673. [Google Scholar] [CrossRef]
- Papagianni, M. Ribosomally Synthesized Peptides with Antimicrobial Properties: Biosynthesis, Structure, Function, and Applications. Biotechnol. Adv. 2003, 21, 465–499. [Google Scholar] [CrossRef]
- Buda De Cesare, G.; Cristy, S.A.; Garsin, D.A.; Lorenz, M.C. Antimicrobial Peptides: A New Frontier in Antifungal Therapy. mBio 2020, 11, e02123-20. [Google Scholar] [CrossRef] [PubMed]
- Finking, R.; Marahiel, M.A. Biosynthesis of Nonribosomal Peptides1. Annu. Rev. Microbiol. 2004, 58, 453–488. [Google Scholar] [CrossRef] [PubMed]
- Marahiel, M.A.; Stachelhaus, T.; Mootz, H.D. Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. Chem. Rev. 1997, 97, 2651–2674. [Google Scholar] [CrossRef] [PubMed]
- Ueki, N.; Someya, K.; Matsuo, Y.; Wakamatsu, K.; Mukai, H. Cryptides: Functional Cryptic Peptides Hidden in Protein Structures. Biopolymers 2007, 88, 190–198. [Google Scholar] [CrossRef]
- Park, C.B.; Yi, K.-S.; Matsuzaki, K.; Kim, M.S.; Kim, S.C. Structure–Activity Analysis of Buforin II, a Histone H2A-Derived Antimicrobial Peptide: The Proline Hinge Is Responsible for the Cell-Penetrating Ability of Buforin II. Proc. Natl. Acad. Sci. USA 2000, 97, 8245–8250. [Google Scholar] [CrossRef] [Green Version]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell. Infect. Microbiol. 2021, 11, 453. [Google Scholar] [CrossRef]
- Ma, R.; Wong, S.W.; Ge, L.; Shaw, C.; Siu, S.W.; Kwok, H.F. In Vitro and MD Simulation Study to Explore Physicochemical Parameters for Antibacterial Peptide to Become Potent Anticancer Peptide. Mol. Ther. Oncolytics 2019, 16, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Koehbach, J.; Craik, D.J. The Vast Structural Diversity of Antimicrobial Peptides. Trends Pharmacol. Sci. 2019, 40, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial Peptides (AMPs): A Promising Class of Antimicrobial Compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Nicoletto, S.F. Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics. Open Life Sci. 2007, 2, 1–33. [Google Scholar] [CrossRef]
- Giovati, L.; Ciociola, T.; Magliani, W.; Conti, S. Antimicrobial Peptides with Antiprotozoal Activity: Current State and Future Perspectives. Future Med. Chem. 2018, 10, 2569–2572. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.A.; Cruz, G.S.; Vieira, F.A.; Queiroz, B.R.S.; Freitas, C.D.T.; Mesquita, F.P.; Souza, P.F.N. Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta Trop. 2022, 236, 106675. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J.; Cheng, X.-R.; Liu, J.; Kang, J.; Fu, C.-Y. Antimicrobial Peptides: Mechanism of Action, Activity and Clinical Potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.-G.; Kim, I. Recent Advances in Poly(α-L-Glutamic Acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022, 12, 636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kim, I.; Lu, Y.; Xu, Y.; Yu, D.-G.; Song, W. Intelligent Poly(l-Histidine)-Based Nanovehicles for Controlled Drug Delivery. J. Control. Release 2022, 349, 963–982. [Google Scholar] [CrossRef]
- Patchornik, A.; Berger, A.; Katchalski, E. Poly-L-Histidine. J. Am. Chem. Soc. 1957, 79, 5227–5230. [Google Scholar] [CrossRef]
- Deming, T.J. Synthetic Polypeptides for Biomedical Applications. Prog. Polym. Sci. 2007, 32, 858–875. [Google Scholar] [CrossRef]
- Wahane, A.; Malik, S.; Shih, K.-C.; Gaddam, R.R.; Chen, C.; Liu, Y.; Nieh, M.-P.; Vikram, A.; Bahal, R. Dual-Modality Poly-l-Histidine Nanoparticles to Deliver Peptide Nucleic Acids and Paclitaxel for In Vivo Cancer Therapy. ACS Appl. Mater. Interfaces 2021, 13, 45244–45258. [Google Scholar] [CrossRef] [PubMed]
- Cayla, M.; Rojas, F.; Silvester, E.; Venter, F.; Matthews, K.R. African Trypanosomes. Parasit Vectors 2019, 12, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverria, L.E.; Morillo, C.A. American Trypanosomiasis (Chagas Disease). Infect. Dis. Clin. N. Am. 2019, 33, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Kasozi, K.I.; Zirintunda, G.; Ssempijja, F.; Buyinza, B.; Alzahrani, K.J.; Matama, K.; Nakimbugwe, H.N.; Alkazmi, L.; Onanyang, D.; Bogere, P.; et al. Epidemiology of Trypanosomiasis in Wildlife—Implications for Humans at the Wildlife Interface in Africa. Front. Vet. Sci. 2021, 8, 621699. [Google Scholar] [CrossRef]
- Pinheiro, E.; Brum-Soares, L.; Reis, R.; Cubides, J.-C. Chagas Disease: Review of Needs, Neglect, and Obstacles to Treatment Access in Latin America. Rev. Soc. Bras. Med. Trop. 2017, 50, 296–300. [Google Scholar] [CrossRef]
- Kargbo, A.; Jawo, E.; Amoutchi, A.I.; Koua, H.; Kuye, R.; Dabre, Z.; Bojang, A.; Vieira, R.F.C. Knowledge, Attitude, and Practice of Livestock Owners and Livestock Assistants towards African Trypanosomiasis Control in The Gambia. J. Parasitol. Res. 2022, 2022, 3379804. [Google Scholar] [CrossRef]
- Gao, J.-M.; Qian, Z.-Y.; Hide, G.; Lai, D.-H.; Lun, Z.-R.; Wu, Z.-D. Human African Trypanosomiasis: The Current Situation in Endemic Regions and the Risks for Non-Endemic Regions from Imported Cases. Parasitology 2020, 147, 922–931. [Google Scholar] [CrossRef]
- Chisi, J.E.; Misiri, H.; Zverev, Y.; Nkhoma, A.; Sternberg, J.M. Anaemia in Human African Trypanosomiasis Caused by Trypanosoma Brucei Rhodesiense. East Afr. Med. J. 2004, 81, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, P.G.E.; Rodgers, J. Clinical and Neuropathogenetic Aspects of Human African Trypanosomiasis. Front. Immunol. 2019, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Boukobza, M.; Lariven, S.; Houze, S.; Laissy, J.-P. 3 Tesla Serial Magnetic Resonance Imaging of Human African Trypanosomiasis (Trypanosoma Brucei Gambiense) and Review of the Literature. Rev. Neurol. 2021, 177, 1176–1182. [Google Scholar] [CrossRef]
- WHO, 2022 Mapping and Tracking Transmission Until the Elimination of Human African Trypanosomiasis. Available online: https://www.who.int/activities/mapping-and-tracking-transmission-until-the-elimination-of-human-african-trypanosomiasis (accessed on 16 December 2022).
- Mwiinde, A.M.; Simuunza, M.; Namangala, B.; Chama-Chiliba, C.M.; Machila, N.; Anderson, N.; Shaw, A.; Welburn, S.C. Estimating the Economic and Social Consequences for Patients Diagnosed with Human African Trypanosomiasis in Muchinga, Lusaka and Eastern Provinces of Zambia (2004–2014). Infect. Dis. Poverty 2017, 6, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, C.S.; Tediosi, F. Is the Elimination of ‘Sleeping Sickness’ Affordable? Who Will Pay the Price? Assessing the Financial Burden for the Elimination of Human African Trypanosomiasis Trypanosoma Brucei Gambiense in Sub-Saharan Africa. BMJ Glob. Health 2019, 4, e001173. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Molina, J.A.; Molina, I. Chagas Disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Hernández, D.-A.; García-Rodríguez-Arana, R.; Ortiz-Hernández, A.; Álvarez-Sánchez, M.; Wu, M.; Mejia, R.; Martínez-Juárez, L.-A.; Montoya, A.; Gallardo-Rincon, H.; Vázquez-López, R.; et al. A Systematic Review of Historical and Current Trends in Chagas Disease. Ther. Adv. Infect. Dis. 2021, 8, 20499361211033716. [Google Scholar] [CrossRef] [PubMed]
- Alberca, R.W.; Yendo, T.M.; Leuzzi Ramos, Y.Á.; Fernandes, I.G.; Oliveira, L. de M.; Teixeira, F.M.E.; Beserra, D.R.; de Oliveira, E.A.; Gozzi-Silva, S.C.; Andrade, M.M.d.S.; et al. Case Report: COVID-19 and Chagas Disease in Two Coinfected Patients. Am. J. Trop. Med. Hyg. 2020, 103, 2353–2356. [Google Scholar] [CrossRef] [PubMed]
- Lascano, F.; García Bournissen, F.; Altcheh, J. Review of Pharmacological Options for the Treatment of Chagas Disease. Br. J. Clin. Pharmacol. 2022, 88, 383–402. [Google Scholar] [CrossRef] [PubMed]
- Mora-Criollo, P.; Basu, R.; Qian, Y.; Costales, J.A.; Guevara-Aguirre, J.; Grijalva, M.J.; Kopchick, J.J. Growth Hormone Modulates Trypanosoma Cruzi Infection in Vitro. Growth Horm. IGF Res. 2022, 64, 101460. [Google Scholar] [CrossRef]
- La Tripanosomiasis Africana (Enfermedad del Sueño). Available online: https://www.who.int/es/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed on 5 November 2022).
- Enfermedad de Chagas—OPS/OMS | Organización Panamericana de la Salud. Available online: https://www.paho.org/es/temas/enfermedad-chagas (accessed on 7 November 2022).
- Lee, B.Y.; Bacon, K.M.; Bottazzi, M.E.; Hotez, P.J. Global Economic Burden of Chagas Disease: A Computational Simulation Model. Lancet Infect. Dis. 2013, 13, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ochoa, S.A.; Rojas, L.Z.; Echeverría, L.E.; Muka, T.; Franco, O.H. Global, Regional, and National Trends of Chagas Disease from 1990 to 2019: Comprehensive Analysis of the Global Burden of Disease Study. Glob. Heart 2022, 17, 59. [Google Scholar] [CrossRef]
- López- Monteon, A.; Dumonteil, E.; Ramos-Ligonio, A. More Than a Hundred Years in the Search for an Accurate Diagnosis for Chagas Disease: Current Panorama and Expectations | IntechOpen. Available online: https://www.intechopen.com/chapters/67456 (accessed on 9 January 2023).
- Venturelli, A.; Tagliazucchi, L.; Lima, C.; Venuti, F.; Malpezzi, G.; Magoulas, G.E.; Santarem, N.; Calogeropoulou, T.; Cordeiro-da-Silva, A.; Costi, M.P. Current Treatments to Control African Trypanosomiasis and One Health Perspective. Microorganisms 2022, 10, 1298. [Google Scholar] [CrossRef]
- Dickie, E.A.; Giordani, F.; Gould, M.K.; Mäser, P.; Burri, C.; Mottram, J.C.; Rao, S.P.S.; Barrett, M.P. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop. Med. Infect. Dis. 2020, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Fairlamb, A.H.; Horn, D. Melarsoprol Resistance in African Trypanosomiasis. Trends Parasitol. 2018, 34, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, J.; Ortiz, J.F.; Fabara, S.P.; Eissa-Garcés, A.; Reddy, D.; Collins, K.D.; Tirupathi, R. Efficacy and Toxicity of Fexinidazole and Nifurtimox Plus Eflornithine in the Treatment of African Trypanosomiasis: A Systematic Review. Cureus 2021, 13, e16881. [Google Scholar] [CrossRef]
- Unciti-Broceta, J.D.; Arias, J.L.; Maceira, J.; Soriano, M.; Ortiz-González, M.; Hernández-Quero, J.; Muñóz-Torres, M.; de Koning, H.P.; Magez, S.; Garcia-Salcedo, J.A. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis. PLoS Pathog. 2015, 11, e1004942. [Google Scholar] [CrossRef]
- DNDi European Medicines Agency Recommends Fexinidazole, the First All-Oral Treatment for Sleeping Sickness | DNDi. Available online: https://dndi.org/press-releases/2018/ema-recommends-fexinidazole-first-all-oral-treatment-sleeping-sickness/ (accessed on 29 December 2022).
- FDA Search Orphan Drug Designations and Approvals. Available online: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=513915 (accessed on 9 November 2022).
- Deeks, E.D. Fexinidazole: First Global Approval. Drugs 2019, 79, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, S.; Foth, B.J.; Kelner, A.; Sokolova, A.Y.; Berriman, M.; Fairlamb, A.H. Nitroheterocyclic Drug Resistance Mechanisms in Trypanosoma Brucei. J. Antimicrob. Chemother. 2016, 71, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesu, V.K.B.K.; Kalonji, W.M.; Bardonneau, C.; Mordt, O.V.; Tete, D.N.; Blesson, S.; Simon, F.; Delhomme, S.; Bernhard, S.; Mbembo, H.M.; et al. Oral Fexinidazole for Stage 1 or Early Stage 2 African Trypanosoma Brucei Gambiense Trypanosomiasis: A Prospective, Multicentre, Open-Label, Cohort Study. Lancet Glob. Health 2021, 9, e999–e1008. [Google Scholar] [CrossRef] [PubMed]
- Lutje, V.; Probyn, K.; Seixas, J.; Bergman, H.; Villanueva, G. Chemotherapy for Second-stage Human African Trypanosomiasis: Drugs in Use. Cochrane Database Syst. Rev. 2021, 2021, CD015374. [Google Scholar] [CrossRef]
- Apt, W.; Zulantay, I. Update on the treatment of Chagas’ disease. Rev. Med. Chil. 2011, 139, 247–257. [Google Scholar] [CrossRef]
- Ribeiro, V.; Dias, N.; Paiva, T.; Hagström-Bex, L.; Nitz, N.; Pratesi, R.; Hecht, M. Current Trends in the Pharmacological Management of Chagas Disease. Int. J. Parasitol. Drugs Drug Resist. 2019, 12, 7–17. [Google Scholar] [CrossRef]
- Jackson, Y.; Wyssa, B.; Chappuis, F. Tolerance to Nifurtimox and Benznidazole in Adult Patients with Chronic Chagas’ Disease. J. Antimicrob. Chemother. 2020, 75, 690–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, C.; García-Vázquez, E.; Carrilero, B.; Simón, M.; Franco, F.; Iborra, M.A.; Gil-Gallardo, L.J.; Segovia, M. Pregnancy and Chagas Disease: Benznidazole’s Impact on Pregnancy and Newborns: A Report of Four Cases. Am. J. Trop. Med. Hyg. 2020, 102, 1075–1077. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.S.; Montgomery, S.P. Chagas Disease: Implementation of Screening to Benefit Mother and Infant. Clin. Perinatol. 2021, 48, 331–342. [Google Scholar] [CrossRef]
- Campos, M.C.O.; Leon, L.L.; Taylor, M.C.; Kelly, J.M. Benznidazole-Resistance in Trypanosoma Cruzi: Evidence That Distinct Mechanisms Can Act in Concert. Mol. Biochem. Parasitol. 2014, 193, 17–19. [Google Scholar] [CrossRef]
- Revollo, S.; Oury, B.; Vela, A.; Tibayrenc, M.; Sereno, D. In Vitro Benznidazole and Nifurtimox Susceptibility Profile of Trypanosoma Cruzi Strains Belonging to Discrete Typing Units TcI, TcII, and TcV. Pathogens 2019, 8, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A.; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; et al. Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy. N. Engl. J. Med. 2015, 373, 1295–1306. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, I.; Rabelo, R.A.N.; Barbosa, C.; Rates, M.; Fuentes-Retamal, S.; González-Herrera, F.; Guzmán-Rivera, D.; Quintero, H.; Kemmerling, U.; Castillo, C.; et al. Aspirin-Triggered Resolvin D1 Reduces Parasitic Cardiac Load by Decreasing Inflammation in a Murine Model of Early Chronic Chagas Disease. PLoS Negl. Trop. Dis. 2021, 15, e0009978. [Google Scholar] [CrossRef]
- Fexinidazole for Chagas | DNDi. Available online: https://dndi.org/research-development/portfolio/fexinidazole-chagas/ (accessed on 9 November 2022).
- Torrico, F.; Gascón, J.; Ortiz, L.; Pinto, J.; Rojas, G.; Palacios, A.; Barreira, F.; Blum, B.; Schijman, A.G.; Vaillant, M.; et al. A Phase-2, Randomized, Multicenter, Placebo-Controlled, Proof-of-Concept Trial of Oral Fexinidazole in Adults with Chronic Indeterminate Chagas Disease. Clin. Infect. Dis. 2022, 76, e1186–e1194. [Google Scholar] [CrossRef]
- Fauro, R.; Lo Presti, S.; Bazan, C.; Baez, A.; Strauss, M.; Triquell, F.; Cremonezzi, D.; Negrete, O.S.; Willhuber, G.C.; Paglini-Oliva, P.; et al. Use of Clomipramine as Chemotherapy of the Chronic Phase of Chagas Disease. Parasitology 2013, 140, 917–927. [Google Scholar] [CrossRef]
- Sbaraglini, M.L.; Bellera, C.L.; Fraccaroli, L.; Larocca, L.; Carrillo, C.; Talevi, A.; Alba Soto, C.D. Novel Cruzipain Inhibitors for the Chemotherapy of Chronic Chagas Disease. Int. J. Antimicrob. Agents 2016, 48, 91–95. [Google Scholar] [CrossRef]
- Vanden Eynde, J.J.; Mayence, A.; Mottamal, M.; Bacchi, C.J.; Yarlett, N.; Kaiser, M.; Brun, R.; Huang, T.L. Alkanediamide-Linked Bisbenzamidines Are Promising Antiparasitic Agents. Pharmaceuticals 2016, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilar-Pereira, G.; Carneiro, V.C.; Mata-Santos, H.; Vicentino, A.R.R.; Ramos, I.P.; Giarola, N.L.L.; Feijó, D.F.; Meyer-Fernandes, J.R.; Paula-Neto, H.A.; Medei, E.; et al. Resveratrol Reverses Functional Chagas Heart Disease in Mice. PLoS Pathog. 2016, 12, e1005947. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.D.; Mesquita, J.T.; da Costa Silva, T.A.; Romanelli, M.M.; da Gama Jaen Batista, D.; da Silva, C.F.; da Gama, A.N.S.; Neves, B.J.; Melo-Filho, C.C.; Correia Soeiro, M. de N.; et al. Efficacy of Sertraline against Trypanosoma Cruzi: An in Vitro and in Silico Study. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 30. [Google Scholar] [CrossRef]
- Cipriani, M.; Rostán, S.; León, I.; Li, Z.-H.; Gancheff, J.S.; Kemmerling, U.; Olea Azar, C.; Etcheverry, S.; Docampo, R.; Gambino, D.; et al. Multi-Target Heteroleptic Palladium Bisphosphonate Complexes. J. Biol. Inorg. Chem. 2020, 25, 509–519. [Google Scholar] [CrossRef] [PubMed]
- de Souza, T.B.; Caldas, I.S.; Paula, F.R.; Rodrigues, C.C.; Carvalho, D.T.; Dias, D.F. Synthesis, Activity, and Molecular Modeling Studies of 1,2,3-Triazole Derivatives from Natural Phenylpropanoids as New Trypanocidal Agents. Chem. Biol. Drug Des. 2020, 95, 124–129. [Google Scholar] [CrossRef]
- Hulpia, F.; Campagnaro, G.D.; Alzahrani, K.J.; Alfayez, I.A.; Ungogo, M.A.; Mabille, D.; Maes, L.; de Koning, H.P.; Caljon, G.; Van Calenbergh, S. Structure-Activity Relationship Exploration of 3’-Deoxy-7-Deazapurine Nucleoside Analogues as Anti-Trypanosoma Brucei Agents. ACS Infect. Dis. 2020, 6, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.R.; Conserva, G.A.A.; Varela, M.T.; Costa-Silva, T.A.; Thevenard, F.; Ponci, V.; Fortuna, A.; Falcão, A.C.; Tempone, A.G.; Fernandes, J.P.S.; et al. Improving the Drug-Likeness of Inspiring Natural Products—Evaluation of the Antiparasitic Activity against Trypanosoma Cruzi through Semi-Synthetic and Simplified Analogues of Licarin A. Sci. Rep. 2020, 10, 5467. [Google Scholar] [CrossRef] [Green Version]
- Mazzeti, A.L.; Capelari-Oliveira, P.; Bahia, M.T.; Mosqueira, V.C.F. Review on Experimental Treatment Strategies Against Trypanosoma Cruzi. J. Exp. Pharmacol. 2021, 13, 409–432. [Google Scholar] [CrossRef] [PubMed]
- Steketee, P.C.; Giordani, F.; Vincent, I.M.; Crouch, K.; Achcar, F.; Dickens, N.J.; Morrison, L.J.; MacLeod, A.; Barrett, M.P. Transcriptional Differentiation of Trypanosoma Brucei during in Vitro Acquisition of Resistance to Acoziborole. PLoS Negl. Trop. Dis. 2021, 15, e0009939. [Google Scholar] [CrossRef]
- Jones, A.J.; Grkovic, T.; Sykes, M.L.; Avery, V.M. Trypanocidal Activity of Marine Natural Products. Mar. Drugs 2013, 11, 4058–4082. [Google Scholar] [CrossRef] [Green Version]
- Veas, R.; Rojas-Pirela, M.; Castillo, C.; Olea-Azar, C.; Moncada, M.; Ulloa, P.; Rojas, V.; Kemmerling, U. Microalgae Extracts: Potential Anti-Trypanosoma Cruzi Agents? Biomed. Pharmacother. 2020, 127, 110178. [Google Scholar] [CrossRef] [PubMed]
- García-Huertas, P.; Cardona-Castro, N. Advances in the Treatment of Chagas Disease: Promising New Drugs, Plants and Targets. Biomed. Pharmacother. 2021, 142, 112020. [Google Scholar] [CrossRef] [PubMed]
- Lazarin-Bidóia, D.; Garcia, F.P.; Ueda-Nakamura, T.; Silva, S.d.O.; Nakamura, C.V. Natural Compounds Based Chemotherapeutic against Chagas Disease and Leishmaniasis: Mitochondrion as a Strategic Target. Mem. Inst. Oswaldo Cruz 2022, 117, e220396. [Google Scholar] [CrossRef]
- McGwire, B.S.; Kulkarni, M.M. Interactions of Antimicrobial Peptides with Leishmania and Trypanosomes and Their Functional Role in Host Parasitism. Exp. Parasitol. 2010, 126, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.L.; Lima, D.B.; de Menezes, R.R.P.P.B.; Sampaio, T.L.; Silva, B.P.; Serra Nunes, J.V.; Cavalcanti, M.M.; Morlighem, J.-E.; Martins, A.M.C. Antichagasic Effect of Hemocyanin Derived from Antimicrobial Peptides of Penaeus Monodon Shrimp. Exp. Parasitol. 2020, 215, 107930. [Google Scholar] [CrossRef] [PubMed]
- Higyno, P.M.; Mendes, P.F.; de Miranda, M.B.; Pereira, D.E.; Mota, A.P.; Nogueira, K.D.; Caldas, I.S.; de Lima Moura, S.A.; da Silva Menezes, C.A. Vasoactive Intestinal Peptide Reduces the Inflammatory Profile in Mice Infected with Trypanosoma Cruzi. Exp. Parasitol. 2015, 159, 72–78. [Google Scholar] [CrossRef]
- Brand, G.D.; Leite, J.R.S.A.; Silva, L.P.; Albuquerque, S.; Prates, M.V.; Azevedo, R.B.; Carregaro, V.; Silva, J.S.; Sá, V.C.L.; Brandão, R.A.; et al. Dermaseptins from Phyllomedusa Oreades and Phyllomedusa Distincta. Anti-Trypanosoma Cruzi Activity without Cytotoxicity to Mammalian Cells. J. Biol. Chem. 2002, 277, 49332–49340. [Google Scholar] [CrossRef] [Green Version]
- Pinto, E.G.; Pimenta, D.C.; Antoniazzi, M.M.; Jared, C.; Tempone, A.G. Antimicrobial Peptides Isolated from Phyllomedusa Nordestina (Amphibia) Alter the Permeability of Plasma Membrane of Leishmania and Trypanosoma Cruzi. Exp. Parasitol. 2013, 135, 655–660. [Google Scholar] [CrossRef]
- Pretzel, J.; Mohring, F.; Rahlfs, S.; Becker, K. Antiparasitic Peptides. Adv. Biochem. Eng. Biotechnol. 2013, 135, 157–192. [Google Scholar] [CrossRef]
- de Moura, G.A.; de Oliveira, J.R.; Rocha, Y.M.; de Oliveira Freitas, J.; Rodrigues, J.P.V.; Ferreira, V.P.G.; Nicolete, R. Antitumor and Antiparasitic Activity of Antimicrobial Peptides Derived from Snake Venom: A Systematic Review Approach. Curr. Med. Chem. 2022, 29, 5358–5368. [Google Scholar] [CrossRef]
- Ramazi, S.; Mohammadi, N.; Allahverdi, A.; Khalili, E.; Abdolmaleki, P. A Review on Antimicrobial Peptides Databases and the Computational Tools. Database 2022, 2022, baac011. [Google Scholar] [CrossRef] [PubMed]
- Bell, A. Antimalarial Peptides: The Long and the Short of It. Curr. Pharm. Des. 2011, 17, 2719–2731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacerda, A.F.; Pelegrini, P.B.; de Oliveira, D.M.; Vasconcelos, É.A.R.; Grossi-de-Sá, M.F. Anti-Parasitic Peptides from Arthropods and Their Application in Drug Therapy. Front. Microbiol. 2016, 7, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parapep ParaPep-Database of Anti-Parasitic Peptides. Available online: http://crdd.osdd.net/raghava/parapep/ (accessed on 20 October 2022).
- Gwadz, R.W.; Kaslow, D.; Lee, J.Y.; Maloy, W.L.; Zasloff, M.; Miller, L.H. Effects of Magainins and Cecropins on the Sporogonic Development of Malaria Parasites in Mosquitoes. Infect. Immun. 1989, 57, 2628–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morampudi, V.; Braun, M.Y.; D’Souza, S. Modulation of Early β-Defensin-2 Production as a Mechanism Developed by Type I Toxoplasma Gondii To Evade Human Intestinal Immunity. Infect. Immun. 2011, 79, 2043–2050. [Google Scholar] [CrossRef] [Green Version]
- Vale, N.; Aguiar, L.; Gomes, P. Antimicrobial Peptides: A New Class of Antimalarial Drugs? Front. Pharmacol. 2014, 5, 275. [Google Scholar] [CrossRef]
- Cabezas-Cruz, A.; Tonk, M.; Bouchut, A.; Pierrot, C.; Pierce, R.J.; Kotsyfakis, M.; Rahnamaeian, M.; Vilcinskas, A.; Khalife, J.; Valdés, J.J. Antiplasmodial Activity Is an Ancient and Conserved Feature of Tick Defensins. Front. Microbiol. 2016, 7, 1682. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, J.M.; Burton, C.A.; Barr, S.B.; Jeffers, G.W.; Julian, G.R.; White, K.L.; Enright, F.M.; Klei, T.R.; Laine, R.A. In Vitro Cytocidal Effect of Novel Lytic Peptides on Plasmodium Falciparum and Trypanosoma Cruzi1. FASEB J. 1988, 2, 2878–2883. [Google Scholar] [CrossRef] [Green Version]
- Gumila, C.; Ancelin, M.L.; Jeminet, G.; Delort, A.M.; Miquel, G.; Vial, H.J. Differential in Vitro Activities of Ionophore Compounds against Plasmodium Falciparum and Mammalian Cells. Antimicrob. Agents Chemother. 1996, 40, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, J.K.; Shaool, D.; Guillaud, P.; Cicéron, L.; Mazier, D.; Kustanovich, I.; Shai, Y.; Mor, A. Selective Cytotoxicity of Dermaseptin S3 toward Intraerythrocytic Plasmodium Falciparum and the Underlying Molecular Basis. J. Biol. Chem. 1997, 272, 31609–31616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krugliak, M.; Feder, R.; Zolotarev, V.Y.; Gaidukov, L.; Dagan, A.; Ginsburg, H.; Mor, A. Antimalarial Activities of Dermaseptin S4 Derivatives. Antimicrob. Agents Chemother. 2000, 44, 2442–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, C.K.; Rodrigues, F.G.; Ghosh, A.; Varotti, F.d.P.; Miranda, A.; Daffre, S.; Jacobs-Lorena, M.; Moreira, L.A. Effect of the Antimicrobial Peptide Gomesin against Different Life Stages of Plasmodium spp. Exp. Parasitol. 2007, 116, 346–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couto, J.; Tonk, M.; Ferrolho, J.; Antunes, S.; Vilcinskas, A.; de la Fuente, J.; Domingos, A.; Cabezas-Cruz, A. Antiplasmodial Activity of Tick Defensins in a Mouse Model of Malaria. Ticks Tick Borne Dis. 2018, 9, 844–849. [Google Scholar] [CrossRef]
- Darkin-Rattray, S.J.; Gurnett, A.M.; Myers, R.W.; Dulski, P.M.; Crumley, T.M.; Allocco, J.J.; Cannova, C.; Meinke, P.T.; Colletti, S.L.; Bednarek, M.A.; et al. Apicidin: A Novel Antiprotozoal Agent That Inhibits Parasite Histone Deacetylase. Proc. Natl. Acad. Sci. USA 1996, 93, 13143–13147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreidenweiss, A.; Kremsner, P.G.; Mordmüller, B. Comprehensive Study of Proteasome Inhibitors against Plasmodium Falciparum Laboratory Strains and Field Isolates from Gabon. Malar. J 2008, 7, 187. [Google Scholar] [CrossRef] [Green Version]
- Schoof, S.; Pradel, G.; Aminake, M.N.; Ellinger, B.; Baumann, S.; Potowski, M.; Najajreh, Y.; Kirschner, M.; Arndt, H.-D. Antiplasmodial Thiostrepton Derivatives: Proteasome Inhibitors with a Dual Mode of Action. Angew. Chem. Int. Ed. Engl. 2010, 49, 3317–3321. [Google Scholar] [CrossRef]
- Rogers, M.J.; Bukhman, Y.V.; McCutchan, T.F.; Draper, D.E. Interaction of Thiostrepton with an RNA Fragment Derived from the Plastid-Encoded Ribosomal RNA of the Malaria Parasite. RNA 1997, 3, 815–820. [Google Scholar]
- Rosenthal, P.J.; Wollish, W.S.; Palmer, J.T.; Rasnick, D. Antimalarial Effects of Peptide Inhibitors of a Plasmodium Falciparum Cysteine Proteinase. J. Clin. Investig. 1991, 88, 1467–1472. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.V.; Joshi, R.; Tekwani, B.L.; Singh, R.L.; Chauhan, V.S. Synthetic Peptides Corresponding to a Repetitive Sequence of Malarial Histidine Rich Protein Bind Haem and Inhibit Haemozoin Formation in Vitro. Mol. Biochem. Parasitol. 1997, 90, 281–287. [Google Scholar] [CrossRef]
- Semenov, A.; Olson, J.E.; Rosenthal, P.J. Antimalarial Synergy of Cysteine and Aspartic Protease Inhibitors. Antimicrob. Agents Chemother. 1998, 42, 2254–2258. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; D’Annessa, I.; Nielsen, C.J.F.; Tordrup, D.; Laursen, R.R.; Knudsen, B.R.; Desideri, A.; Andersen, F.F. Peptide Inhibition of Topoisomerase IB from Plasmodium Falciparum. Mol. Biol. Int. 2011, 2011, 854626. [Google Scholar] [CrossRef] [Green Version]
- Arrighi, R.B.G.; Nakamura, C.; Miyake, J.; Hurd, H.; Burgess, J.G. Design and Activity of Antimicrobial Peptides against Sporogonic-Stage Parasites Causing Murine Malarias. Antimicrob. Agents Chemother. 2002, 46, 2104–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovati, L.; Santinoli, C.; Mangia, C.; Vismarra, A.; Belletti, S.; D’Adda, T.; Fumarola, C.; Ciociola, T.; Bacci, C.; Magliani, W.; et al. Novel Activity of a Synthetic Decapeptide Against Toxoplasma Gondii Tachyzoites. Front. Microbiol. 2018, 9, 753. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Rahman, M.M.; Battur, B.; Boldbaatar, D.; Liao, M.; Umemiya-Shirafuji, R.; Xuan, X.; Fujisaki, K. Parasiticidal Activity of Human Alpha-Defensin-5 against Toxoplasma Gondii. In Vitro Cell Dev. Biol. Anim. 2010, 46, 560–565. [Google Scholar] [CrossRef]
- Torrent, M.; Pulido, D.; Rivas, L.; Andreu, D. Antimicrobial Peptide Action on Parasites. Curr. Drug Targets 2012, 13, 1138–1147. [Google Scholar] [CrossRef]
- Rivas, L.; Rojas, V. Cyanobacterial Peptides as a Tour de Force in the Chemical Space of Antiparasitic Agents. Arch. Biochem. Biophys. 2019, 664, 24–39. [Google Scholar] [CrossRef]
- Chalk, R.; Townson, H.; Ham, P.J. Brugia Pahangi: The Effects of Cecropins on Microfilariae in Vitro and in Aedes Aegypti. Exp. Parasitol. 1995, 80, 401–406. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, J.; Nascimento, C.; Miura, L.M.C.V.; Leite, J.R.S.A.; Nakano, E.; Kawano, T. Evaluation of the in Vitro Activity of Dermaseptin 01, a Cationic Antimicrobial Peptide, against Schistosoma Mansoni. Chem. Biodivers 2011, 8, 548–558. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, J.; Keiser, J.; Ingram, K.; Nascimento, C.; Yamaguchi, L.F.; Bittencourt, C.R.; Bemquerer, M.P.; Leite, J.R.; Kato, M.J.; Nakano, E. In Vitro Synergistic Interaction between Amide Piplartine and Antimicrobial Peptide Dermaseptin against Schistosoma Mansoni Schistosomula and Adult Worms. Curr. Med. Chem. 2013, 20, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Aruleba, R.T.; Tincho, M.B.; Pretorius, A.; Kappo, A.P. In Silico Prediction of New Antimicrobial Peptides and Proteins as Druggable Targets towards Alternative Anti-Schistosomal Therapy. Sci. Afr. 2021, 12, e00804. [Google Scholar] [CrossRef]
- Fogarty, C.E.; Suwansa-ard, S.; Phan, P.; McManus, D.P.; Duke, M.G.; Wyeth, R.C.; Cummins, S.F.; Wang, T. Identification of Putative Neuropeptides That Alter the Behaviour of Schistosoma Mansoni Cercariae. Biology 2022, 11, 1344. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Jang, S.-H.; Lee, D.G.; Hahm, K.-S. Antinematodal Effect of Antimicrobial Peptide, PMAP-23, Isolated from Porcine Myeloid against Caenorhabditis Elegans. J. Pept. Sci. 2004, 10, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.P.O.; Alves, E.S.F.; Ferreira, C.S.; Ferreira-Silva, A.; Góes-Neto, A.; Verly, R.M.; Lião, L.M.; Oliveira, S.C.; de Magalhães, M.T.Q. Schistocins: Novel Antimicrobial Peptides Encrypted in the Schistosoma Mansoni Kunitz Inhibitor SmKI-1. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129989. [Google Scholar] [CrossRef]
- Castro, G.A. Helminths: Structure, Classification, Growth, and Development. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; ISBN 978-0-9631172-1-2. [Google Scholar]
- Smyth, D.J.; Glanfield, A.; McManus, D.P.; Hacker, E.; Blair, D.; Anderson, G.J.; Jones, M.K. Two Isoforms of a Divalent Metal Transporter (DMT1) in Schistosoma Mansoni Suggest a Surface-Associated Pathway for Iron Absorption in Schistosomes. J. Biol. Chem. 2006, 281, 2242–2248. [Google Scholar] [CrossRef] [Green Version]
- Retra, K.; deWalick, S.; Schmitz, M.; Yazdanbakhsh, M.; Tielens, A.G.M.; Brouwers, J.F.H.M.; van Hellemond, J.J. The Tegumental Surface Membranes of Schistosoma Mansoni Are Enriched in Parasite-Specific Phospholipid Species. Int. J. Parasitol. 2015, 45, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, C.; Geary, J.F.; Mackenzie, C.D.; Geary, T.G. Characterization of Divalent Metal Transporter 1 (DMT1) in Brugia Malayi Suggests an Intestinal-Associated Pathway for Iron Absorption. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 341–349. [Google Scholar] [CrossRef]
- Glanfield, A.; McManus, D.P.; Anderson, G.J.; Jones, M.K. Pumping Iron: A Potential Target for Novel Therapeutics against Schistosomes. Trends Parasitol. 2007, 23, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Hoeckendorf, A.; Leippe, M. SPP-3, a Saposin-like Protein of Caenorhabditis Elegans, Displays Antimicrobial and Pore-Forming Activity and Is Located in the Intestine and in One Head Neuron. Dev. Comp. Immunol. 2012, 38, 181–186. [Google Scholar] [CrossRef]
- Bruno, R.; Maresca, M.; Canaan, S.; Cavalier, J.-F.; Mabrouk, K.; Boidin-Wichlacz, C.; Olleik, H.; Zeppilli, D.; Brodin, P.; Massol, F.; et al. Worms’ Antimicrobial Peptides. Mar. Drugs 2019, 17, 512. [Google Scholar] [CrossRef] [Green Version]
- Deshwal, S.; Mallon, E.B. Antimicrobial Peptides Play a Functional Role in Bumblebee Anti-Trypanosome Defense. Dev. Comp. Immunol. 2014, 42, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Cauchard, S.; Van Reet, N.; Büscher, P.; Goux, D.; Grötzinger, J.; Leippe, M.; Cattoir, V.; Laugier, C.; Cauchard, J. Killing of Trypanozoon Parasites by the Equine Cathelicidin ECATH1. Antimicrob. Agents Chemother. 2016, 60, 2610–2619. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Quevedo, Y.; Barbosa-Vinasco, H.J.; Gutiérrez-Garnizo, S.A.; Olaya-Morales, J.L.; Zabala-González, D.; Carranza-Martínez, J.C.; Guhl-Nannetti, F.; Cantillo-Barraza, O.; Vallejo, G.A. Innate Trypanolytic Factors in Triatomine Hemolymph against Trypanosoma Rangeli and T. Cruzi: A Comparative Study in Eight Chagas Disease Vectors. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2020, 44, 88–104. [Google Scholar] [CrossRef]
- Hu, Y.; Aksoy, S. An Antimicrobial Peptide with Trypanocidal Activity Characterized from Glossina Morsitans Morsitans. Insect Biochem. Mol. Biol. 2005, 35, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.; Anderson, P.; Garcia-Salcedo, J.A.; Caro, M.; Gonzalez-Rey, E. Neuropeptides Kill African Trypanosomes by Targeting Intracellular Compartments and Inducing Autophagic-like Cell Death. Cell Death Differ. 2009, 16, 406–416. [Google Scholar] [CrossRef] [Green Version]
- Haines, L.R.; Hancock, R.E.W.; Pearson, T.W. Cationic Antimicrobial Peptide Killing of African Trypanosomes and Sodalis Glossinidius, a Bacterial Symbiont of the Insect Vector of Sleeping Sickness. Vector Borne Zoonotic Dis. 2003, 3, 175–186. [Google Scholar] [CrossRef]
- Boulanger, N.; Brun, R.; Ehret-Sabatier, L.; Kunz, C.; Bulet, P. Immunopeptides in the Defense Reactions of Glossina Morsitans to Bacterial and Trypanosoma Brucei Brucei Infections. Insect Biochem. Mol. Biol. 2002, 32, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Kasumba, I.; Lehane, M.J.; Gibson, W.C.; Kwon, J.; Aksoy, S. Tsetse Immune Responses and Trypanosome Transmission: Implications for the Development of Tsetse-Based Strategies to Reduce Trypanosomiasis. Proc. Natl. Acad. Sci. USA 2001, 98, 12648–12653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulanger, N.; Munks, R.J.L.; Hamilton, J.V.; Vovelle, F.; Brun, R.; Lehane, M.J.; Bulet, P. Epithelial Innate Immunity. A Novel Antimicrobial Peptide with Antiparasitic Activity in the Blood-Sucking Insect Stomoxys Calcitrans. J. Biol. Chem. 2002, 277, 49921–49926. [Google Scholar] [CrossRef] [Green Version]
- McGwire, B.S.; Olson, C.L.; Tack, B.F.; Engman, D.M. Killing of African Trypanosomes by Antimicrobial Peptides. J. Infect. Dis. 2003, 188, 146–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, L.R.; Thomas, J.M.; Jackson, A.M.; Eyford, B.A.; Razavi, M.; Watson, C.N.; Gowen, B.; Hancock, R.E.W.; Pearson, T.W. Killing of Trypanosomatid Parasites by a Modified Bovine Host Defense Peptide, BMAP-18. PLoS Negl. Trop. Dis. 2009, 3, e373. [Google Scholar] [CrossRef]
- Souto-Padrón, T. The Surface Charge of Trypanosomatids. An. Acad. Bras. Ciências 2002, 74, 649–675. [Google Scholar] [CrossRef] [Green Version]
- Souza-Moreira, L.; Campos-Salinas, J.; Caro, M.; Gonzalez-Rey, E. Neuropeptides as Pleiotropic Modulators of the Immune Response. Neuroendocrinology 2011, 94, 89–100. [Google Scholar] [CrossRef]
- Catalani, E.; De Palma, C.; Perrotta, C.; Cervia, D. Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy. Biomed Res. Int. 2017, 2017, 5856071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustyniak, D.; Kramarska, E.; Mackiewicz, P.; Orczyk-Pawiłowicz, M.; Lundy, F.T. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int. J. Mol. Sci. 2021, 22, 3658. [Google Scholar] [CrossRef]
- Campos-Salinas, J.; Gonzalez-Rey, E. Autophagy and Neuropeptides at the Crossroad for Parasites: To Survive or to Die? Autophagy 2009, 5, 551–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packchanian, A. Chemotherapy of African Sleeping Siokness. II. Chemotherapy of Experimental Trypanosoma Gambiense and Trypanosoma Rhodesiense Infections in Mice (Mus Musculus) with a New Antibiotic, Amphomycin. Antibiot. Chemother. 1956, 6, 684–691. [Google Scholar]
- Ishiyama, A.; Otoguro, K.; Iwatsuki, M.; Namatame, M.; Nishihara, A.; Nonaka, K.; Kinoshita, Y.; Takahashi, Y.; Masuma, R.; Shiomi, K.; et al. In Vitro and in Vivo Antitrypanosomal Activities of Three Peptide Antibiotics: Leucinostatin A and B, Alamethicin I and Tsushimycin. J. Antibiot. 2009, 62, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Nollmann, F.I.; Dowling, A.; Kaiser, M.; Deckmann, K.; Grösch, S.; Ffrench-Constant, R.; Bode, H.B. Synthesis of Szentiamide, a Depsipeptide from Entomopathogenic Xenorhabdus Szentirmaii with Activity against Plasmodium Falciparum. Beilstein J. Org. Chem. 2012, 8, 528–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-García, M.; Bart, J.-M.; Campos-Salinas, J.; Valdivia, E.; Martínez-Bueno, M.; González-Rey, E.; Navarro, M.; Maqueda, M.; Cebrián, R.; Pérez-Victoria, J.M. Autophagic-Related Cell Death of Trypanosoma Brucei Induced by Bacteriocin AS-48. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 203–212. [Google Scholar] [CrossRef]
- Menon, A.K.; Mayor, S.; Schwarz, R.T. Biosynthesis of Glycosyl-Phosphatidylinositol Lipids in Trypanosoma Brucei: Involvement of Mannosyl-Phosphoryldolichol as the Mannose Donor. EMBO J. 1990, 9, 4249–4258. [Google Scholar] [CrossRef]
- Pinger, J.; Chowdhury, S.; Papavasiliou, F.N. Variant Surface Glycoprotein Density Defines an Immune Evasion Threshold for African Trypanosomes Undergoing Antigenic Variation. Nat. Commun. 2017, 8, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, M.; Wang, L.; Agnello, S.; Gazzola, S.; Gall, F.M.; Raguž, L.; Kaiser, M.; Schmidt, R.S.; Ritschl, A.; Jelk, J.; et al. Antiprotozoal Structure-Activity Relationships of Synthetic Leucinostatin Derivatives and Elucidation of Their Mode of Action. Angew. Chem. Int. Ed. Engl. 2021, 60, 15613–15621. [Google Scholar] [CrossRef] [PubMed]
- Csermely, P.; Radics, L.; Rossi, C.; Szamel, M.; Ricci, M.; Mihály, K.; Somogyi, J. The Nonapeptide Leucinostatin A Acts as a Weak Ionophore and as an Immunosuppressant on T Lymphocytes. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 1994, 1221, 125–132. [Google Scholar] [CrossRef]
- Dathe, M.; Kaduk, C.; Tachikawa, E.; Melzig, M.F.; Wenschuh, H.; Bienert, M. Proline at Position 14 of Alamethicin Is Essential for Hemolytic Activity, Catecholamine Secretion from Chromaffin Cells and Enhanced Metabolic Activity in Endothelial Cells. Biochim. Biophys. Acta (BBA)—Biomembr. 1998, 1370, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Docampo, R.; Huang, G. Calcium Signaling in Trypanosomatid Parasites. Cell Calcium 2015, 57, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Ruben, L.; Akins, C.D.; Haghighat, N.G.; Xue, L. Calcium Influx in Trypanosoma Brucei Can Be Induced by Amphiphilic Peptides and Amines. Mol. Biochem. Parasitol. 1996, 81, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Catisti, R.; Uyemura, S.A.; Docampo, R.; Vercesi, A.E. Calcium Mobilization by Arachidonic Acid in Trypanosomatids. Mol. Biochem. Parasitol. 2000, 105, 261–271. [Google Scholar] [CrossRef]
- Memariani, H.; Memariani, M. Melittin as a Promising Anti-Protozoan Peptide: Current Knowledge and Future Prospects. AMB Express 2021, 11, 69. [Google Scholar] [CrossRef]
- Gupta, S.; Raychaudhury, B.; Banerjee, S.; Das, B.; Datta, S.C. An Intracellular Calcium Store Is Present in Leishmania Donovani Glycosomes. Exp. Parasitol. 2006, 113, 161–167. [Google Scholar] [CrossRef]
- Arrighi, R.B.G.; Ebikeme, C.; Jiang, Y.; Ranford-Cartwright, L.; Barrett, M.P.; Langel, U.; Faye, I. Cell-Penetrating Peptide TP10 Shows Broad-Spectrum Activity against Both Plasmodium Falciparum and Trypanosoma Brucei Brucei. Antimicrob. Agents Chemother. 2008, 52, 3414–3417. [Google Scholar] [CrossRef] [Green Version]
- Harrington, J.M.; Widener, J.; Stephens, N.; Johnson, T.; Francia, M.; Capewell, P.; Macleod, A.; Hajduk, S.L. The Plasma Membrane of Bloodstream-Form African Trypanosomes Confers Susceptibility and Specificity to Killing by Hydrophobic Peptides. J. Biol. Chem. 2010, 285, 28659–28666. [Google Scholar] [CrossRef] [Green Version]
- Harrington, J.M.; Scelsi, C.; Hartel, A.; Jones, N.G.; Engstler, M.; Capewell, P.; MacLeod, A.; Hajduk, S. Novel African Trypanocidal Agents: Membrane Rigidifying Peptides. PLoS ONE 2012, 7, e44384. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A. Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Barr, S.C.; Rose, D.; Jaynes, J.M. Activity of Lytic Peptides against Intracellular Trypanosoma Cruzi Amastigotes in Vitro and Parasitemias in Mice. J. Parasitol. 1995, 81, 974–978. [Google Scholar] [CrossRef]
- Löfgren, S.E.; Miletti, L.C.; Steindel, M.; Bachère, E.; Barracco, M.A. Trypanocidal and Leishmanicidal Activities of Different Antimicrobial Peptides (AMPs) Isolated from Aquatic Animals. Exp. Parasitol. 2008, 118, 197–202. [Google Scholar] [CrossRef]
- Fieck, A.; Hurwitz, I.; Kang, A.S.; Durvasula, R. Trypanosoma Cruzi: Synergistic Cytotoxicity of Multiple Amphipathic Anti-Microbial Peptides to T. Cruzi and Potential Bacterial Hosts. Exp. Parasitol. 2010, 125, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Buarque, D.S.; Gomes, C.M.; Araújo, R.N.; Pereira, M.H.; Ferreira, R.C.; Guarneri, A.A.; Tanaka, A.S. A New Antimicrobial Protein from the Anterior Midgut of Triatoma Infestans Mediates Trypanosoma Cruzi Establishment by Controlling the Microbiota. Biochimie 2016, 123, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, B.; Rico, T.; Sosa, S.; Oaxaca, E.; Vizcaino-Castillo, A.; Caballero, M.L.; Martínez, I. Mexican Trypanosoma Cruzi T. Cruzi I Strains with Different Degrees of Virulence Induce Diverse Humoral and Cellular Immune Responses in a Murine Experimental Infection Model. J. Biomed. Biotechnol. 2010, 2010, 890672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulido, X.C.; Pérez, G.; Vallejo, G.A. Preliminary Characterization of a Rhodnius Prolixus Hemolymph Trypanolytic Protein, This Being a Determinant of Trypanosoma Rangeli KP1(+) and KP1(-) Subpopulations’ Vectorial Ability. Mem. Inst. Oswaldo Cruz 2008, 103, 172–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durvasula, R.V.; Gumbs, A.; Panackal, A.; Kruglov, O.; Aksoy, S.; Merrifield, R.B.; Richards, F.F.; Beard, C.B. Prevention of Insect-Borne Disease: An Approach Using Transgenic Symbiotic Bacteria. Proc. Natl. Acad. Sci. USA 1997, 94, 3274–3278. [Google Scholar] [CrossRef] [Green Version]
- Beard, C.B.; Dotson, E.M.; Pennington, P.M.; Eichler, S.; Cordon-Rosales, C.; Durvasula, R.V. Bacterial Symbiosis and Paratransgenic Control of Vector-Borne Chagas Disease. Int. J. Parasitol. 2001, 31, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurwitz, I.; Fieck, A.; Klein, N.; Jose, C.; Kang, A.; Durvasula, R. A Paratransgenic Strategy for the Control of Chagas Disease. Psyche J. Entomol. 2012, 2012, e178930. [Google Scholar] [CrossRef] [Green Version]
- Mougabure-Cueto, G.; Picollo, M.I. Insecticide Resistance in Vector Chagas Disease: Evolution, Mechanisms and Management. Acta Trop. 2015, 149, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, T.; Bruhn, H.; Gaworski, I.; Fleischer, B.; Leippe, M. NK-Lysin and Its Shortened Analog NK-2 Exhibit Potent Activities against Trypanosoma Cruzi. Antimicrob. Agents Chemother. 2003, 47, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Madison, M.N.; Kleshchenko, Y.Y.; Nde, P.N.; Simmons, K.J.; Lima, M.F.; Villalta, F. Human Defensin Alpha-1 Causes Trypanosoma Cruzi Membrane Pore Formation and Induces DNA Fragmentation, Which Leads to Trypanosome Destruction. Infect. Immun. 2007, 75, 4780–4791. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.A.; Rachakonda, G.; Kleshchenko, Y.Y.; Nde, P.N.; Madison, M.N.; Pratap, S.; Cardenas, T.C.; Taylor, C.; Lima, M.F.; Villalta, F. Cellular Response to Trypanosoma Cruzi Infection Induces Secretion of Defensin α-1, Which Damages the Flagellum, Neutralizes Trypanosome Motility, and Inhibits Infection. Infect. Immun. 2013, 81, 4139–4148. [Google Scholar] [CrossRef] [Green Version]
- Madison, M.N.; Kleshchenko, Y.; Nde, P.; Simmons, K.; Lima, M.F.; Villalta, F. Defensin α-1 Is up-Regulated in Human Cells in Response to Early Trypanosoma Cruzi Infection as an Apoptotic Trypanocidal Mechanism. FASEB J. 2007, 21, A133. [Google Scholar] [CrossRef]
- Gonzalez-Rey, E.; Delgado, M. Role of Vasoactive Intestinal Peptide in Inflammation and Autoimmunity. Curr. Opin. Investig. Drugs 2005, 6, 1116–1123. [Google Scholar]
- Corrêa, M.V.; da Costa Rocha, M.O.; de Sousa, G.R.; do Carmo Pereira Nunes, M.; Gollob, K.J.; Dutra, W.O.; da Silva Menezes, C.A. Low Levels of Vasoactive Intestinal Peptide Are Associated with Chagas Disease Cardiomyopathy. Hum. Immunol. 2013, 74, 1375–1381. [Google Scholar] [CrossRef] [Green Version]
- Duthie, M.S.; Kahn, M.; Zakayan, A.; White, M.; Kahn, S.J. Parasite-Induced Chronic Inflammation Is Not Exacerbated by Immunotherapy before or during Trypanosoma Cruzi Infection. Clin. Vaccine Immunol. 2007, 14, 1005–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, K.A.; Torres, M.D.T.; Lima, D.B.; Monteiro, M.L.; Bezerra de Menezes, R.R.P.P.; Martins, A.M.C.; Oliveira Jr, V.X. Wasp Venom Peptide as a New Antichagasic Agent. Toxicon 2020, 181, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Adade, C.M.; Oliveira, I.R.S.; Pais, J.A.R.; Souto-Padrón, T. Melittin Peptide Kills Trypanosoma Cruzi Parasites by Inducing Different Cell Death Pathways. Toxicon 2013, 69, 227–239. [Google Scholar] [CrossRef]
- Mello, C.P.; Lima, D.B.; de Menezes, R.R.P.P.B.; Bandeira, I.C.J.; Tessarolo, L.D.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M.C. Evaluation of the Antichagasic Activity of Batroxicidin, a Cathelicidin-Related Antimicrobial Peptide Found in Bothrops Atrox Venom Gland. Toxicon 2017, 130, 56–62. [Google Scholar] [CrossRef]
- Bandeira, I.C.J.; Bandeira-Lima, D.; Mello, C.P.; Pereira, T.P.; De Menezes, R.R.P.P.B.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M.C. Antichagasic Effect of Crotalicidin, a Cathelicidin-like Vipericidin, Found in Crotalus Durissus Terrificus Rattlesnake’s Venom Gland. Parasitology 2018, 145, 1059–1064. [Google Scholar] [CrossRef]
- Raghuraman, H.; Chattopadhyay, A. Melittin: A Membrane-Active Peptide with Diverse Functions. Biosci. Rep. 2007, 27, 189–223. [Google Scholar] [CrossRef] [PubMed]
- Yanamadala, V.; Negoro, H.; Denker, B.M. Heterotrimeric G Proteins and Apoptosis: Intersecting Signaling Pathways Leading to Context Dependent Phenotypes. Curr. Mol. Med. 2009, 9, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wauson, E.M.; Dbouk, H.A.; Ghosh, A.B.; Cobb, M.H. G Protein-Coupled Receptors and the Regulation of Autophagy. Trends Endocrinol. Metab. 2014, 25, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Vinhote, J.F.C.; Lima, D.B.; de Menezes, R.R.P.P.B.; Mello, C.P.; de Souza, B.M.; Havt, A.; Palma, M.S.; Santos, R.P.d.; Albuquerque, E.L.d.; Freire, V.N.; et al. Trypanocidal Activity of Mastoparan from Polybia Paulista Wasp Venom by Interaction with TcGAPDH. Toxicon 2017, 137, 168–172. [Google Scholar] [CrossRef]
- Schenkman, S.; Robbins, E.S.; Nussenzweig, V. Attachment of Trypanosoma Cruzi to Mammalian Cells Requires Parasite Energy, and Invasion Can Be Independent of the Target Cell Cytoskeleton. Infect. Immun. 1991, 59, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Shah-Simpson, S.; Lentini, G.; Dumoulin, P.C.; Burleigh, B.A. Modulation of Host Central Carbon Metabolism and in Situ Glucose Uptake by Intracellular Trypanosoma Cruzi Amastigotes. PLoS Pathog. 2017, 13, e1006747. [Google Scholar] [CrossRef] [Green Version]
- Santana, C.J.; Magalhães, A.C.; dos Santos Júnior, A.C.; Ricart, C.A.; Lima, B.D.; Álvares, A.D.; Freitas, S.M.; Pires, O.R., Jr.; Fontes, W.; Castro, M.S. Figainin 1, a Novel Amphibian Skin Peptide with Antimicrobial and Antiproliferative Properties. Antibiotics 2020, 9, E625. [Google Scholar] [CrossRef] [PubMed]
- Santana, C.J.C.; Magalhães, A.C.M.; Prías-Márquez, C.A.; Falico, D.A.; dos Santos Júnior, A.C.M.; Lima, B.D.; Ricart, C.A.O.; de Pilger, D.R.B.; Bonotto, R.M.; Moraes, C.B.; et al. Biological Properties of a Novel Multifunctional Host Defense Peptide from the Skin Secretion of the Chaco Tree Frog, Boana Raniceps. Biomolecules 2020, 10, 790. [Google Scholar] [CrossRef]
- Ladram, A.; Nicolas, P. Antimicrobial Peptides from Frog Skin: Biodiversity and Therapeutic Promises. Front. Biosci. (Landmark Ed.) 2016, 21, 1341–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirakura, Y.; Kobayashi, S.; Matsuzaki, K. Specific Interactions of the Antimicrobial Peptide Cyclic Beta-Sheet Tachyplesin I with Lipopolysaccharides. Biochim. Biophys. Acta 2002, 1562, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunne, H.; Hellers, M.; Steiner, H. Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus. Eur. J. Biochem. 1990, 187, 699–703. [Google Scholar] [CrossRef]
- UniProt. Available online: http://www.uniprot.org (accessed on 18 February 2023).
- Ouellette, A.J.; Selsted, M.E. Paneth cell defensins: Endogenous peptide components of intestinal host defense. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1996, 10, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Hunter, H.N.; Tanabe, H.; Ouellette, A.J.; Vogel, H.J. Solution structure of cryptdin-4, a mouse Paneth cell α-defensin. Biochemistry 2004, 43, 15759–15766. [Google Scholar] [CrossRef]
- Álvarez, H.; Velázquez, M.M.; de Oca, E.P.M. Human β-defensin 1 update: Potential clinical applications of the restless warrior. Int. J. Biochem. Cell Biol. 2018, 104, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Schröder, J.-M.; Harder, J. Human beta-defensin-2. Int. J. Biochem. Cell Biol. 1999, 31, 645–651. [Google Scholar] [CrossRef]
- Daher, K.A.; Lehrer, R.I.; Ganz, T.; Kronenberg, M. Isolation and characterization of human defensin cDNA clones. Proc. Natl. Acad. Sci. USA 1988, 85, 7327–7331. [Google Scholar] [CrossRef] [Green Version]
- Jenssen, H. Therapeutic approaches using host defence peptides to tackle herpes virus infections. Viruses 2009, 1, 939–964. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, D.; Landuyt, B.; Luyten, W.; Schoofs, L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012, 280, 22–35. [Google Scholar] [CrossRef]
- Oren, Z.; Lerman, J.C.; Gudmundsson, G.H.; Agerberth, B.; Shai, Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: Relevance to the molecular basis for its non-cell-selective activity. Biochem. J. 1999, 341, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Haverkamp, R.G.; Yu, P.-L. Investigation of morphological changes to Staphylococcus aureus induced by ovine-derived antimicrobial peptides using TEM and AFM. FEMS Microbiol. Lett. 2004, 240, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skerlavaj, B.; Benincasa, M.; Risso, A.; Zanetti, M.; Gennaro, R. SMAP-29: A potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett. 1999, 463, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Lee, C.W.; Kim, H.J.; Jung, H.-H.; Kim, J.I.; Shin, S.Y.; Shin, S.-H. Structural analysis and mode of action of BMAP-27, a cathelicidin-derived antimicrobial peptide. Peptides 2019, 118, 170106. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.H.; Orozco, R.Q.; Rezende, S.B.; Rodrigues, G.; Oshiro, K.G.N.; Cândido, E.S.; Franco, O.L. Computer-aided design of antimicrobial peptides: Are we generating effective drug candidates? Front. Microbiol. 2020, 10, 3097. [Google Scholar] [CrossRef] [Green Version]
- Raj, P.A.; Karunakaran, T.; Sukumaran, D.K. Synthesis, microbicidal activity, and solution structure of the dodecapeptide from bovine neutrophils. Biopolymers 2000, 53, 281–292. [Google Scholar] [CrossRef]
- Iwasaki, M.; Akiba, Y.; Kaunitz, J.D. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: Focus on the gastrointestinal system. F1000Research 2019, 8, 1629. [Google Scholar] [CrossRef] [Green Version]
- Bodanszky, M.; Sigler, G.F.; Bodanszky, A. Structure of the peptide antibiotic amphomycin. J. Am. Chem. Soc. 1973, 95, 2352–2357. [Google Scholar] [CrossRef]
- Schneider, T.; Müller, A.; Miess, H.; Gross, H. Cyclic lipopeptides as antibacterial agents—Potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbiol. 2013, 304, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Cerrini, S.; Lamba, D.; Scatturin, A.; Rossi, C.; Ughetto, G. The crystal and molecular structure of the α-helical nonapeptide antibiotic leucinostatin A. Biopolymers 1989, 28, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Mishima, D.; Javkhlantugs, N.; Wang, J.; Ishioka, D.; Yokota, K.; Norisada, K.; Kawamura, I.; Ueda, K.; Naito, A. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2015, 1848, 2789–2798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, C.; Langdon, G.M.; Bruix, M.; Gálvez, A.; Valdivia, E.; Maqueda, M.; Rico, M. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proc. Natl. Acad. Sci. USA 2000, 97, 11221–11226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, L.S.; Pande, J.; Shekhtman, A. Helical structure of recombinant melittin. J. Phys. Chem. B 2018, 123, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Doherty, T.; Li, J.; Lu, W.; Barinka, C.; Lubkowski, J.; Hong, M. Resonance assignment and three-dimensional structure determination of a human α-defensin, HNP-1, by solid-state NMR. J. Mol. Biol. 2010, 397, 408–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, M.D.T.; Pedron, C.N.; Higashikuni, Y.; Kramer, R.M.; Cardoso, M.H.; Oshiro, K.G.N.; Franco, O.L.; Junior, P.I.S.; Silva, F.D.; Junior, V.X.O.; et al. Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Commun. Biol. 2018, 1, 221. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Pirela, M.; Kemmerling, U.; Quiñones, W.; Michels, P.A.M.; Rojas, V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules 2023, 13, 599. https://doi.org/10.3390/biom13040599
Rojas-Pirela M, Kemmerling U, Quiñones W, Michels PAM, Rojas V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules. 2023; 13(4):599. https://doi.org/10.3390/biom13040599
Chicago/Turabian StyleRojas-Pirela, Maura, Ulrike Kemmerling, Wilfredo Quiñones, Paul A. M. Michels, and Verónica Rojas. 2023. "Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases?" Biomolecules 13, no. 4: 599. https://doi.org/10.3390/biom13040599