Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. ISL1 Promoter Sequence Analysis
2.3. Plasmid Constructs, Cell Culture, and Transfection
2.4. Functional Analysis with Dual-Luciferase Reporter Assay
2.5. Nuclear Protein Extraction and Electrophoretic Mobility Shift Assay
2.6. Transcription Factor Binding Sites Prediction
2.7. Statistical Analysis
3. Results
3.1. The Variants Identified in TOF Patients and Healthy Controls
3.2. Functional Analysis of the Variants via Dual-Luciferase Reporter Assay
3.3. The Binding for Transcription Factors Affected by the Variants
3.4. Variant-Affected Putative Binding Sites for Transcription Factor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marelli, A.J.; Mackie, A.S.; Ionescu-Ittu, R.; Rahme, E.; Pilote, L. Congenital heart disease in the general population: Changing prevalence and age distribution. Circulation 2007, 115, 163–172. [Google Scholar] [CrossRef]
- Ferencz, C.; Rubin, J.D.; McCarter, R.J.; Brenner, J.I.; Neill, C.A.; Perry, L.W.; Hepner, S.I.; Downing, J.W. Congenital heart disease: Prevalence at livebirth. The Baltimore-Washington Infant Study. Am. J. Epidemiol. 1985, 121, 31–36. [Google Scholar] [CrossRef]
- Starr, J.P. Tetralogy of fallot: Yesterday and today. World J. Surg. 2010, 34, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Villafane, J.; Feinstein, J.A.; Jenkins, K.J.; Vincent, R.N.; Walsh, E.P.; Dubin, A.M.; Geva, T.; Towbin, J.A.; Cohen, M.S.; Fraser, C.; et al. Hot topics in tetralogy of Fallot. J. Am. Coll. Cardiol. 2013, 62, 2155–2166. [Google Scholar] [CrossRef]
- Chen, H.X.; Yang, Z.Y.; Hou, H.T.; Wang, J.; Wang, X.L.; Yang, Q.; Liu, L.; He, G.W. Novel mutations of TCTN3/LTBP2 with cellular function changes in congenital heart disease associated with polydactyly. J. Cell. Mol. Med. 2020, 24, 13751–13762. [Google Scholar] [CrossRef]
- Page, D.J.; Miossec, M.J.; Williams, S.G.; Monaghan, R.M.; Fotiou, E.; Cordell, H.J.; Sutcliffe, L.; Topf, A.; Bourgey, M.; Bourque, G.; et al. Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot. Circ. Res. 2019, 124, 553–563. [Google Scholar] [CrossRef]
- He, G.W.; Maslen, C.L.; Chen, H.X.; Hou, H.T.; Bai, X.Y.; Wang, X.L.; Liu, X.C.; Lu, W.L.; Chen, X.X.; Chen, W.D.; et al. Identification of Novel Rare Copy Number Variants Associated with Sporadic Tetralogy of Fallot and Clinical Implications. Clin. Genet. 2022, 102, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhang, Y.Y.; Meng, M.Y.; Hou, Z.L.; Meng, P.; Zhao, Y.Y.; Gao, H.; Tang, J.; Liu, Z.; Yang, L.L.; et al. Generation of human iPSC line from a patient with Tetralogy of Fallot, YAHKMUi001-A, carrying a mutation in TBX1 gene. Stem Cell Res. 2020, 42, 101687. [Google Scholar] [CrossRef]
- Goodship, J.A.; Hall, D.; Topf, A.; Mamasoula, C.; Griffin, H.; Rahman, T.J.; Glen, E.; Tan, H.; Palomino Doza, J.; Relton, C.L.; et al. A common variant in the PTPN11 gene contributes to the risk of tetralogy of Fallot. Circ. Cardiovasc. Genet. 2012, 5, 287–292. [Google Scholar] [CrossRef]
- Fan, S.H.; Shen, Z.Y.; Xiao, Y.M. Functional polymorphisms of the neuropilin 1 gene are associated with the risk of tetralogy of Fallot in a Chinese Han population. Gene 2018, 653, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.L.; Liang, X.Q.; Shi, Y.Q.; Chu, P.H.; Pfaff, S.L.; Chen, J.; Evans, S. ISL1 Identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 2003, 5, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Laugwitz, K.L.; Moretti, A.; Lam, J.; Gruber, P.; Chen, Y.; Woodard, S.; Lin, L.Z.; Cai, C.L.; Lu, M.M.; Reth, M.; et al. Postnatal ISL1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005, 433, 647–653. [Google Scholar] [CrossRef]
- Moretti, A.; Caron, L.; Nakano, A.; Lam, J.T.; Bernshausen, A.; Chen, Y.; Qyang, Y.; Bu, L.; Sasaki, M.; Martin-Puig, S.; et al. Multipotent embryonic ISL1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 2006, 127, 1151–1165. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Chen, H.X.; Liu, X.C.; Yang, Q.; He, G.W. Identification of variants of ISL1 gene promoter and cellular functions in isolated ventricular septal defects. Am. J. Physiol. Cell Physiol. 2021, 321, C443–C452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Song, H.M.; Wang, F.; Zhao, C.M.; Huang, R.T.; Xue, S.; Li, R.G.; Qiu, X.B.; Xu, Y.J.; Liu, X.Y.; et al. A new ISL1 loss-of-function mutation predisposes to congenital double outlet right ventricle. Int. Heart J. 2019, 60, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, J.; Li, L.; Qiao, Q.; Di, R.M.; Li, X.M.; Xu, Y.J.; Zhang, M.; Li, R.G.; Qiu, X.B.; et al. ISL1 loss-of-function mutation contributes to congenital heart defects. Heart Vessels 2019, 34, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.N.; Hakonarson, H.; Kim, C.E.; Doevendans, P.A.; Koeleman, B.P.; Mital, S.; Raue, J.; Glessner, J.T.; Coles, J.G.; Moreno, V.; et al. Common variation in ISL1 confers genetic susceptibility for human congenital heart disease. PLoS ONE 2010, 5, e10855. [Google Scholar] [CrossRef]
- Zeng, Z.H.; Chen, H.X.; Liu, X.C.; Yang, Q.; He, G.W. Functional significance of novel variants of the MEF2C gene promoter in congenital ventricular septal defects. Am. J. Med. Genet. A 2022, 188, 2397–2405. [Google Scholar] [CrossRef]
- de Vooght, K.M.; van Wijk, R.; van Solinge, W.W. Management of gene promoter mutations in molecular diagnostics. Clin. Chem. 2009, 55, 698–708. [Google Scholar] [CrossRef]
- Lee, S.; Fuchsberger, C.; Kim, S.; Scott, L. An efficient resampling method for calibrating single and gene-based rare variant association analysis in case-control studies. Biostatistics 2016, 17, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, O.; Thor, S.; Norberg, T.; Ohlsson, H.; Edlund, T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 1990, 344, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Hao, A.; Novotny-Diermayr, V.; Bian, W.; Lin, B.; Lim, C.P.; Jing, N.; Cao, X. The LIM/homeodomain protein Islet1 recruits Janus tyrosine kinases and signal transducer and activator of transcription 3 and stimulates their activities. Mol. Biol. Cell 2005, 16, 1569–1583. [Google Scholar] [CrossRef]
- Osoegawa, K.; Schultz, K.; Yun, K.; Mohammed, N.; Shaw, G.M.; Lammer, E.J. Haploinsufficiency of insulin gene enhancer protein 1 (ISL1) is associated with d-transposition of the great arteries. Mol. Genet. Genom. Med. 2014, 2, 341–351. [Google Scholar] [CrossRef]
- Wu, S.H.; Wang, X.H.; Xu, Y.J.; Gu, J.N.; Yang, C.X.; Qiao, Q.; Guo, X.J.; Guo, Y.H.; Qiu, X.B.; Jiang, W.F.; et al. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur. J. Med. Genet. 2020, 63, 104029. [Google Scholar] [CrossRef]
- Xu, Y.J.; Wang, Z.S.; Yang, C.X.; Di, R.M.; Qiao, Q.; Li, X.M.; Gu, J.N.; Guo, X.J.; Yang, Y.Q. Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. J. Cardiovasc. Transl. Res. 2019, 12, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Dorn, C.; Grunert, M.; Klaassen, S.; Hetzer, R.; Berger, F.; Sperling, S.R. Outlier-based identification of copy number variations using targeted resequencing in a small cohort of patients with Tetralogy of Fallot. PLoS ONE 2014, 9, e85375. [Google Scholar] [CrossRef]
- Wei, D.; Bao, H.; Liu, X.Y.; Zhou, N.; Wang, Q.; Li, R.G.; Xu, Y.J.; Yang, Y.Q. GATA5 loss-of-function mutations underlie tetralogy of fallot. Int. J. Med. Sci. 2013, 10, 34–42. [Google Scholar] [CrossRef]
- Dai, H.T.; Zhu, M.L.; Li, W.Y.; Si, G.H.; Xing, Y.M. Activation of PI3K/p110alpha in the Lung Mesenchyme Affects Branching Morphogenesis and Club Cell Differentiation. Front. Cell Dev. Biol. 2022, 10, 880206. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Gharibeh, L.; Li, R.G.; Xin, Y.F.; Wang, J.; Liu, Z.M.; Qiu, X.B.; Xu, Y.J.; Xu, L.; Qu, X.K.; et al. GATA4 loss-of-function mutations underlie familial tetralogy of fallot. Hum. Mutat. 2013, 34, 1662–1671. [Google Scholar] [CrossRef]
- Ma, J.; Chen, S.Y.; Hao, L.L.; Sheng, W.; Chen, W.C.; Ma, X.J.; Zhang, B.W.; Ma, D.; Huang, G.Y. Hypermethylation-mediated down-regulation of lncRNA TBX5-AS1:2 in Tetralogy of Fallot inhibits cell proliferation by reducing TBX5 expression. J. Cell Mol. Med. 2020, 24, 6472–6484. [Google Scholar] [CrossRef]
- Huang, R.T.; Wang, J.; Xue, S.; Qiu, X.B.; Shi, H.Y.; Li, R.G.; Qu, X.K.; Yang, X.X.; Liu, H.; Li, N.; et al. TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. Int. J. Med. Sci. 2017, 14, 323–332. [Google Scholar] [CrossRef]
- Gao, R.; Liang, X.Q.; Cheedipudi, S.; Cordero, J.; Jiang, X.; Zhang, Q.Q.; Caputo, L.; Günther, S.; Kuenne, C.; Ren, Y.G.; et al. Pioneering function of ISL1 in the epigenetic control of cardiomyocyte cell fate. Cell Res. 2019, 29, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Kappen, C.; Salbaum, J.M. Identification of regulatory elements in the ISL1 gene locus. Int. J. Dev. Biol. 2009, 53, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Waclaw, R.R.; Ehrman, L.A.; Merchan-Sala, P.; Kohli, V.; Nardini, D.; Campbell, K. Foxo1 is a downstream effector of ISL1 in direct pathway striatal projection neuron development within the embryonic mouse telencephalon. Mol. Cell. Neurosci. 2017, 80, 44–51. [Google Scholar] [CrossRef]
- Reuter, M.S.; Jobling, R.; Chaturvedi, R.R.; Manshaei, R.; Costain, G.; Heung, T.; Curtis, M.; Hosseini, S.M.; Liston, E.; Lowther, C.; et al. Haploinsufficiency of vascular endothelial growth factor related signaling genes is associated with tetralogy of Fallot. Genet. Med. 2019, 21, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Itou, J.; Kawakami, H.; Quach, T.; Osterwalder, M.; Evans, S.M.; Zeller, R.; Kawakami, Y. Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2-Shh morphoregulatory gene network in mouse embryos. Development 2012, 139, 1620–1629. [Google Scholar] [CrossRef]
- Lu, C.X.; Gong, H.R.; Liu, X.Y.; Wang, J.; Zhao, C.M.; Huang, R.T.; Xue, S.; Yang, Y.Q. A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot. Int. J. Mol. Med. 2016, 37, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Washington Smoak, I.; Byrd, N.A.; Abu-Issa, R.; Goddeeris, M.M.; Anderson, R.; Morris, J.; Yamamura, K.; Klingensmith, J.; Meyers, E.N. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev. Biol. 2005, 283, 357–372. [Google Scholar] [CrossRef] [Green Version]
Primers Name | DNA Sequences 5’-3’ | Location | Position |
---|---|---|---|
PCR and sequencing primers | |||
ISL1-F1 | 5’-CTGTCTTTGGGAGACCGTAACA-3’ | 4039 | −1286 |
ISL1-R1 | 5’-TGCCAATGCTGAAAGAGCCG-3’ | 5436 | +111 |
Primers containing restriction sites | |||
ISL1-KpnI ab | 5’-(KpnI)-CGGGGTACCCTGTCTTTGGGAGACCGTAACA-3’ | 4039 | −1286 |
ISL1-BglII ab | 5’-(BglII)-CAAGATCTTGCCAATGCTGAAAGAGCCGG-3’ | 5436 | +111 |
The double-stranded biotinylated oligonucleotides for the EMSA | |||
Sequence variants | Oligonucleotides sequences | ||
g.4581 A > G | 5’-CACCCAACGTTTTTAG(A/G)TATCTGAGGTTGGGG-3’ | ||
g.4630 G > A | 5’-TAGCAGTCAGGAAACA(G/A)TTCCTCTGGGTTTAATC-3’ | ||
g.5085 G > A | 5’-AACGGCCTGAGCCCC(G/A)AGCAAGTTGCCTCGGG-3’ | ||
g.5221 C > T | 5’-TGGGCGCGGCGCT(C/T)GCCTGACGTCCCCG-3’ |
Variants | TOF | Controls | Burden Test (p-Value) | Position a | Genotypes | Allele Frequency | ||
---|---|---|---|---|---|---|---|---|
Frequency in Control = 0 (Further Validation) | GnomAD | East Asian | ||||||
g.4581A > G(rs1747215641) | 1 | 0 | 0.04 | −744 | AG | G = 0.00007 | G = 0.00 * | G = 0.0000 # |
g.4630G > A(rs1264694566) | 2 | 0 | −695 | GA | A = 0.000014 | A = 0.00 * | A = 0.0003 # | |
g.5085G > A | 1 | 0 | −240 | GA | None | - | - | |
g.5221C > T(rs1484364688) | 1 | 0 | −104 | CT | None | T = 0.00 * | - | |
Frequency in Control ≠ 0 (No Further Validation) | GnomAD | |||||||
g.4213C > T(rs36216895) | 14 | 24 | 0.29 | −1112 | CT | None | ||
g.4457C > G(rs6899279) | 14 | 24 | −868 | CG | G = 0.174 | |||
g.4613G > A(rs142427249) | 4 | 1 | −712 | GA | A = 0.00013 | |||
g.5057A > G(rs3762977) | 14 | 24 | −268 | AG | G = 0.149 |
Variants | Binding Sites for Transcription Factors | Promoter Activity | |
---|---|---|---|
Create | Disrupt | ||
g.4581A > G | ZEB1, NKx3-1, TEAD3 | FOXL1, RHOXF1, GATA5 | ↓ |
g.4630G > A | SRY, En1, FOXO3, FOXG1, TEAD4, SOX5, SOX9, FOXD1, FOXJ2, FOXN3, SOX15, SOX8, HOXA4, GSX2, ETV2::DRGX | ELK4, FOXP1, ETV6, PRDM4 | ↓ |
g.5085G > A | EHF, TcfL5 | Ahr::Arnt, TFAP2E | ↓ |
g.5221C > T | - | TFAP2A, NFIX, HES1 | No change |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.-Y.; Chen, H.-X.; Chen, Z.; Yang, Q.; Han, J.; He, G.-W. Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules 2023, 13, 358. https://doi.org/10.3390/biom13020358
Yin X-Y, Chen H-X, Chen Z, Yang Q, Han J, He G-W. Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules. 2023; 13(2):358. https://doi.org/10.3390/biom13020358
Chicago/Turabian StyleYin, Xiu-Yun, Huan-Xin Chen, Zhuo Chen, Qin Yang, Jun Han, and Guo-Wei He. 2023. "Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis" Biomolecules 13, no. 2: 358. https://doi.org/10.3390/biom13020358
APA StyleYin, X.-Y., Chen, H.-X., Chen, Z., Yang, Q., Han, J., & He, G.-W. (2023). Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules, 13(2), 358. https://doi.org/10.3390/biom13020358