Proton Migration on Top of Charged Membranes
Abstract
:1. Introduction
2. Materials and Methods
Determination of Membrane Surface Potential
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prins, R. Hydrogen Spillover. Facts and Fiction. Chem. Rev. 2012, 112, 2714–2738. [Google Scholar] [CrossRef]
- Kreuer, K.D.; Paddison, S.J.; Spohr, E.; Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 2004, 104, 4637–4678. [Google Scholar] [CrossRef]
- Heberle, J.; Riesle, J.; Thiedemann, G.; Oesterhelt, D.; Dencher, N.A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 1994, 370, 379–382. [Google Scholar] [CrossRef]
- Alexiev, U.; Mollaaghababa, R.; Scherrer, P.; Khorana, H.G.; Heyn, M.P. Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc. Natl. Acad. Sci. USA 1995, 92, 372–376. [Google Scholar] [CrossRef]
- Serowy, S.; Saparov, S.M.; Antonenko, Y.N.; Kozlovsky, W.; Hagen, V.; Pohl, P. Structural proton diffusion along lipid bilayers. Biophys. J. 2003, 84, 1031–1037. [Google Scholar] [CrossRef]
- Springer, A.; Hagen, V.; Cherepanov, D.A.; Antonenko, Y.N.; Pohl, P. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. USA 2011, 108, 14461–14466. [Google Scholar] [CrossRef]
- Sjoholm, J.; Bergstrand, J.; Nilsson, T.; Sachl, R.; von Ballmoos, C.; Widengren, J.; Brzezinski, P. The lateral distance between a proton pump and ATP synthase determines the ATP-synthesis rate. Sci. Rep. 2017, 7, 2926. [Google Scholar] [CrossRef]
- Zhang, C.; Knyazev, D.G.; Vereshaga, Y.A.; Ippoliti, E.; Nguyen, T.H.; Carloni, P.; Pohl, P. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. USA 2012, 109, 9744–9749. [Google Scholar] [CrossRef]
- Shinobu, A.; Palm, G.J.; Schierbeek, A.J.; Agmon, N. Visualizing proton antenna in a high-resolution green fluorescent protein structure. J. Am. Chem. Soc. 2010, 132, 11093–11102. [Google Scholar] [CrossRef]
- Achtyl, J.L.; Unocic, R.R.; Xu, L.; Cai, Y.; Raju, M.; Zhang, W.; Sacci, R.L.; Vlassiouk, I.V.; Fulvio, P.F.; Ganesh, P.; et al. Aqueous proton transfer across single-layer graphene. Nat. Commun. 2015, 6, 6539. [Google Scholar] [CrossRef] [Green Version]
- Comtet, J.; Grosjean, B.; Glushkov, E.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Vuilleumier, R.; Bocquet, M.-L.; Radenovic, A. Direct observation of water-mediated single-proton transport between hBN surface defects. Nat. Nanotechnol. 2020, 15, 598–604. [Google Scholar] [CrossRef]
- Soroka, H.P.; Simkovitch, R.; Kosloff, A.; Shomer, S.; Pevzner, A.; Tzang, O.; Tirosh, R.; Patolsky, F.; Huppert, D. Excited-State Proton Transfer and Proton Diffusion near Hydrophilic Surfaces. J. Phys. Chem. C 2013, 117, 25786–25797. [Google Scholar] [CrossRef]
- Yang, J.; Lu, Y.; Jin, L.; Zhao, C.; Chen, Y.; Xu, Y.; Chen, F.; Feng, J. Dynamic Optical Visualization of Proton Transport Pathways at Water–Solid Interfaces. Angew. Chem. Int. Ed. 2022, 134, e202112150. [Google Scholar] [CrossRef]
- Agmon, N.; Bakker, H.J.; Campen, R.K.; Henchman, R.H.; Pohl, P.; Roke, S.; Thämer, M.; Hassanali, A. Protons and hydroxide ions in aqueous systems. Chem. Rev. 2016, 116, 7642–7672. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.V.; Brune, H.; Fischer, B.; Weckesser, J.; Kern, K. Dynamics of surface migration in the weak corrugation regime. Phys. Rev. Lett. 2000, 84, 1732. [Google Scholar] [CrossRef] [PubMed]
- Pfeffermann, J.; Goessweiner-Mohr, N.; Pohl, P. The energetic barrier to single-file water flow through narrow channels. Biophys. Rev. 2021, 13, 913–923. [Google Scholar] [CrossRef]
- Hannesschlaeger, C.; Horner, A.; Pohl, P. Intrinsic Membrane Permeability to Small Molecules. Chem. Rev. 2019, 119, 5922–5953. [Google Scholar] [CrossRef]
- Elamrani, K.; Blume, A. Effect of the lipid phase transition on the kinetics of H+/OH- diffusion across phosphatidic acid bilayers. Biochim. Biophys. Acta 1983, 727, 22–30. [Google Scholar] [CrossRef]
- Grzesiek, S.; Dencher, N.A. Dependency of delta pH-relaxation across vesicular membranes on the buffering power of bulk solutions and lipids. Biophys. J. 1986, 50, 265–276. [Google Scholar] [CrossRef]
- Seigneuret, M.; Rigaud, J.L. Analysis of passive and light-driven ion movements in large bacteriorhodopsin liposomes reconstituted by reverse-phase evaporation. 1. Factors governing the passive proton permeability of the membrane. Biochemistry 1986, 25, 6716–6722. [Google Scholar] [CrossRef]
- Weichselbaum, E.; Österbauer, M.; Knyazev, D.G.; Batishchev, O.V.; Akimov, S.A.; Nguyen, T.H.; Zhang, C.; Knör, G.; Agmon, N.; Carloni, P.; et al. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 2017, 7, 4553. [Google Scholar] [CrossRef]
- Agmon, N.; Gutman, M. Bioenergetics: Proton fronts on membranes. Nat. Chem. 2011, 3, 840–842. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, E.S.; Stuchebrukhov, A.A. Mechanism of long-range proton translocation along biological membranes. FEBS Lett. 2013, 587, 345–349. [Google Scholar] [CrossRef]
- Branden, M.; Sanden, T.; Brzezinski, P.; Widengren, J. Localized proton microcircuits at the biological membrane-water interface. Proc. Natl. Acad. Sci. USA 2006, 103, 19766–19770. [Google Scholar] [CrossRef] [PubMed]
- Comtet, J.; Rayabharam, A.; Glushkov, E.; Zhang, M.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Aluru, N.R.; Radenovic, A. Anomalous interfacial dynamics of single proton charges in binary aqueous solutions. Sci. Adv. 2021, 7, eabg8568. [Google Scholar] [CrossRef]
- Gutman, M.; Nachliel, E. The dynamic aspects of proton transfer processes. Biochim. Biophys. Acta 1990, 1015, 391–414. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Zhang, C.; Weichselbaum, E.; Knyazev, D.G.; Pohl, P.; Carloni, P. Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion. PLoS ONE 2018, 13, e0193454. [Google Scholar] [CrossRef] [PubMed]
- Pickar, A.D.; Benz, R. Transport of oppositely charged lipophylic probes in lipid bilayer membranes having various structures. J. Membr. Biol. 1978, 44, 353–376. [Google Scholar] [CrossRef]
- Gawrisch, K.; Ruston, D.; Zimmerberg, J.; Parsegian, V.A.; Rand, R.P.; Fuller, N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys. J. 1992, 61, 1213–1223. [Google Scholar] [CrossRef]
- Peterson, U.; Mannock, D.; Lewis, R.; Pohl, P.; McElhaney, R.; Pohl, E.E. Origin of membrane dipole potential: Contribution of the phospholipid fatty acid chains. Chem. Phys. Lipids 2002, 117, 19–27. [Google Scholar] [CrossRef]
- Polyansky, A.A.; Volynsky, P.E.; Nolde, D.E.; Arseniev, A.S.; Efremov, R.G. Role of lipid charge in organization of water/lipid bilayer interface: Insights via computer simulations. J. Phys. Chem. B 2005, 109, 15052–15059. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, G.; Cremer, P.S. Investigations of water structure at the solid/liquid interface in the presence of supported lipid bilayers by vibrational sum frequency spectroscopy. Langmuir 2001, 17, 7255–7260. [Google Scholar] [CrossRef]
- Scheu, R.; Chen, Y.; de Aguiar, H.B.; Rankin, B.M.; Ben-Amotz, D.; Roke, S. Specificion effects in amphiphile hydration and interface stabilization. J. Am. Chem. Soc. 2014, 136, 2040–2047. [Google Scholar] [CrossRef]
- Geissler, D.; Antonenko, Y.N.; Schmidt, R.; Keller, S.; Krylova, O.O.; Wiesner, B.; Bendig, J.; Pohl, P.; Hagen, V. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed. Engl. 2005, 44, 1195–1198. [Google Scholar] [CrossRef]
- Hannesschlaeger, C.; Barta, T.; Pechova, H.; Pohl, P. The Effect of Buffers on Weak Acid Uptake by Vesicles. Biomolecules 2019, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Pohl, E.E.; Peterson, U.; Sun, J.; Pohl, P. Changes of intrinsic membrane potentials induced by flip-flop of long-chain fatty acids. Biochemistry 2000, 39, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S. Electrostatic Potentials at Membrane-Solution Interfaces. In Current Topics in Membranes and Transport; Elsevier: Amsterdam, The Netherlands, 1977; Volume 9, pp. 71–144. [Google Scholar]
- Agmon, N. Hydrogen bonds, water rotation and proton mobility. J. Chim. Phys. Phys. Chim. Biol. 1996, 93, 1714–1736. [Google Scholar] [CrossRef]
- Amdursky, N.; Lin, Y.Y.; Aho, N.; Groenhof, G. Exploring fast proton transfer events associated with lateral proton diffusion on the surface of membranes. Proc. Natl. Acad. Sci. USA 2019, 116, 2443–2451. [Google Scholar] [CrossRef]
- Collins, K.D.; Neilson, G.W.; Enderby, J.E. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 2007, 128, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Scheu, R.; Rankin, B.M.; Chen, Y.; Jena, K.C.; Ben-Amotz, D.; Roke, S. Charge asymmetry at aqueous hydrophobic interfaces and hydration shells. Angew. Chem. Int. Ed. Engl. 2014, 53, 9560–9563. [Google Scholar] [CrossRef]
- Horner, A.; Siligan, C.; Cornean, A.; Pohl, P. Positively charged residues at the channel mouth boost single-file water flow. Faraday Discuss. 2018, 209, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.P. Proton circuits in biological energy interconversions. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 71–97. [Google Scholar] [CrossRef] [PubMed]
- Toth, A.; Meyrat, A.; Stoldt, S.; Santiago, R.; Wenzel, D.; Jakobs, S.; von Ballmoos, C.; Ott, M. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proc. Natl. Acad. Sci. USA 2020, 117, 2412–2421. [Google Scholar] [CrossRef]
- Guffanti, A.A.; Fuchs, R.T.; Schneier, M.; Chiu, E.; Krulwich, T.A. A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB. J. Biol. Chem. 1984, 259, 2971–2975. [Google Scholar] [CrossRef] [PubMed]
- Krulwich, T.A.; Ito, M.; Gilmour, R.; Sturr, M.G.; Guffanti, A.A.; Hicks, D.B. Energetic problems of extremely alkaliphilic aerobes. Biochim. Biophys. Acta 1996, 1275, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, D.G.; Kuttner, R.; Zimmermann, M.; Sobakinskaya, E.; Pohl, P. Driving Forces of Translocation Through Bacterial Translocon SecYEG. J. Membr. Biol. 2018, 251, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Schiebel, E.; Driessen, A.J.; Hartl, F.U.; Wickner, W. ΔµH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 1991, 64, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Ojemyr, L.N.; Lee, H.J.; Gennis, R.B.; Brzezinski, P. Functional interactions between membrane-bound transporters and membranes. Proc. Natl. Acad. Sci. USA 2010, 107, 15763–15767. [Google Scholar] [CrossRef] [PubMed]
- Boytsov, D.; Brescia, S.; Chaves, G.; Koefler, S.; Hannesschlaeger, C.; Siligan, C.; Gössweiner-Mohr, N.; Musset, B.; Pohl, P. Trapped pore waters in the open proton channel HV1. Small, 2023, in press. [CrossRef]
- Yamashita, T.; Voth, G.A. Properties of hydrated excess protons near phospholipid bilayers. J. Phys. Chem. B 2010, 114, 592–603. [Google Scholar] [CrossRef]
- Wolf, M.G.; Grubmuller, H.; Groenhof, G. Anomalous surface diffusion of protons on lipid membranes. Biophys. J. 2014, 107, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Klotzsch, E.; Smorodchenko, A.; Lofler, L.; Moldzio, R.; Parkinson, E.; Schutz, G.J.; Pohl, E.E. Superresolution microscopy reveals spatial separation of UCP4 and F0F1-ATP synthase in neuronal mitochondria. Proc. Natl. Acad. Sci. USA 2015, 112, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ζ (mV) | E (kBT) | ||
---|---|---|---|
DOPG | −88.3 ± 2.4 | −110.2 ± 4.3 | 4.3 ± 0.2 |
DOPC | −2.4 ± 0.6 | −2.7 ± 0.7 | 0.11 ± 0.02 |
DOTAP | 74.6 ± 4.1 | 90.5 ± 5.8 | −3.5 ± 0.2 |
T, C | 9 | 14 | 19 | 24 | (kBT) | (kBT) | (kBT) | (kBT) |
---|---|---|---|---|---|---|---|---|
DOPC [21] | ||||||||
D (μm2/s) | 4584 | 4943 | 5126 | 6115 | 5.9 ± 1.1 | |||
koff (1/s) | 1.9 | 2.1 | 2.3 | 2.7 | 5.7 ± 1.1 | 5.7 ± 1.1 | 26.1 | |
DOPG | ||||||||
D (μm2/s) | 3591 | 3558 | 4059 | 4496 | 4.5 ± 1.2 | |||
koff (1/s) | 0.52 | 0.75 | 0.98 | 1.04 | 13 ± 3 | 8.8 ± 3.2 | 20 ± 3.0 | |
DOTAP + DOPC | ||||||||
D (μm2/s) | 3911 | 4753 | 5178 | 5616 | 6.6 ± 0.9 | |||
koff (1/s) | 1 | 0 ± 3 | 3.5 ± 3.2 | 30 ± 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weichselbaum, E.; Galimzyanov, T.; Batishchev, O.V.; Akimov, S.A.; Pohl, P. Proton Migration on Top of Charged Membranes. Biomolecules 2023, 13, 352. https://doi.org/10.3390/biom13020352
Weichselbaum E, Galimzyanov T, Batishchev OV, Akimov SA, Pohl P. Proton Migration on Top of Charged Membranes. Biomolecules. 2023; 13(2):352. https://doi.org/10.3390/biom13020352
Chicago/Turabian StyleWeichselbaum, Ewald, Timur Galimzyanov, Oleg V. Batishchev, Sergey A. Akimov, and Peter Pohl. 2023. "Proton Migration on Top of Charged Membranes" Biomolecules 13, no. 2: 352. https://doi.org/10.3390/biom13020352
APA StyleWeichselbaum, E., Galimzyanov, T., Batishchev, O. V., Akimov, S. A., & Pohl, P. (2023). Proton Migration on Top of Charged Membranes. Biomolecules, 13(2), 352. https://doi.org/10.3390/biom13020352