The Role of the Hydrogen Bond Network in Maintaining Heme Pocket Stability and Protein Function Specificity of C. diphtheriae Coproheme Decarboxylase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation, Expression and Purification of CdChdC and Variants
2.2. Sample Preparation
2.3. Electronic Absorption Measurements
2.4. Resonance Raman Measurements
3. Results
3.1. Coproheme Complexes
3.2. Titration of the Coproheme Complexes with Hydrogen Peroxide
3.3. Propionate H-bond Strengths
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dailey, H.A.; Gerdes, S. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria. Arch. Biochem. Biophys. 2015, 574, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Lobo, S.A.; Scott, A.; Videira, M.A.; Winpenny, D.; Gardner, M.; Palmer, M.J.; Schroeder, S.; Lawrence, A.D.; Parkinson, T.; Warren, M.J.; et al. Staphylococcus aureus haem biosynthesis: Characterisation of the enzymes involved in final steps of the pathway. Mol. Microbiol. 2015, 97, 472–487. [Google Scholar] [CrossRef] [PubMed]
- Dailey, H.A.; Dailey, T.A.; Gerdes, S.; Jahn, D.; Jahn, M.; O′Brian, M.R.; Warren, M.J. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol. Mol. Biol. Rev. 2017, 81. [Google Scholar] [CrossRef] [Green Version]
- Dailey, H.A.; Gerdes, S.; Dailey, T.A.; Burch, J.S.; Phillips, J.D. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl. Acad. Sci. USA 2015, 112, 2210–2215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, C.; Dailey, H.A.; Shepherd, M. The HemQ coprohaem decarboxylase generates reactive oxygen species: Implications for the evolution of classical haem biosynthesis. Biochem. J. 2016, 473, 3997–4009. [Google Scholar] [CrossRef]
- Celis, A.I.; Streit, B.R.; Moraski, G.C.; Kant, R.; Lash, T.D.; Lukat-Rodgers, G.S.; Rodgers, K.R.; DuBois, J.L. Unusual Peroxide-Dependent, Heme-Transforming Reaction Catalyzed by HemQ. Biochemistry 2015, 54, 4022–4032. [Google Scholar] [CrossRef] [Green Version]
- Celis, A.I.; Gauss, G.H.; Streit, B.R.; Shisler, K.; Moraski, G.C.; Rodgers, K.R.; Lukat-Rodgers, G.S.; Peters, J.W.; DuBois, J.L. Structure-Based Mechanism for Oxidative Decarboxylation Reactions Mediated by Amino Acids and Heme Propionates in Coproheme Decarboxylase (HemQ). J. Am. Chem. Soc. 2017, 139, 1900–1911. [Google Scholar] [CrossRef] [Green Version]
- Pfanzagl, V.; Holcik, L.; Maresch, D.; Gorgone, G.; Michlits, H.; Furtmüller, P.G.; Hofbauer, S. Coproheme decarboxylases—Phylogenetic prediction versus biochemical experiments. Arch. Biochem. Biophys. 2018, 640, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Milazzo, L.; Gabler, T.; Pühringer, D.; Jandova, Z.; Maresch, D.; Michlits, H.; Pfanzagl, V.; Djinović-Carugo, K.; Oostenbrink, C.; Furtmüller, P.G.; et al. Redox Cofactor Rotates during Its Stepwise Decarboxylation: Molecular Mechanism of Conversion of Coproheme to Heme. ACS Catal. 2019, 9, 6766–6782. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, F.; Risorti, R.; Niccoli, C.; Michlits, H.; Becucci, M.; Hofbauer, S.; Smulevich, G. An active site at work—The role of key residues in C. diphteriae coproheme decarboxylase. J. Inorg. Biochem. 2022, 229, 111718. [Google Scholar] [CrossRef]
- Sebastiani, F.; Michlits, H.; Lier, B.; Becucci, M.; Furtmüller, P.G.; Oostenbrink, C.; Obinger, C.; Hofbauer, S.; Smulevich, G. Reaction intermediate rotation during the decarboxylation of coproheme to heme b in C. diphtheriae. Biophys. J. 2021, 120, 3600–3614. [Google Scholar] [CrossRef]
- Liu, W.; Pang, Y.; Song, Y.; Li, X.; Tan, H.; Chen, G. Reorienting Mechanism of Harderoheme in Coproheme Decarboxylase—A Computational Study. Int. J. Mol. Sci. 2022, 23, 2564. [Google Scholar] [CrossRef]
- Michlits, H.; Lier, B.; Pfanzagl, V.; Djinović-Carugo, K.; Furtmüller, P.G.; Oostenbrink, C.; Obinger, C.; Hofbauer, S. Actinobacterial coproheme decarboxylases use histidine as distal base to promote Compound I formation. ACS Catal. 2020, 10, 5405–5413. [Google Scholar] [CrossRef]
- Fujii, H.; Zhang, X.; Yoshida, T. Essential Amino Acid Residues Controlling the Unique Regioselectivity of Heme Oxygenase in Pseudomonas aeruginosa. J. Am. Chem. Soc. 2004, 126, 4466–4467. [Google Scholar] [CrossRef] [PubMed]
- Guallar, V.; Olsen, B. The role of the heme propionates in heme biochemistry. J. Inorg. Biochem. 2006, 100, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C.L.; Lloyd, E.; Eltis, L.D.; Rafferty, S.P.; Lee, H.; Smith, M.; Mauk, A.G. Role of the heme propionates in the interaction of heme with apomyoglobin and apocytochrome b5. Biochemistry 1997, 36, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Weaver, M.L.; Hoke, K.R.; Pletneva, E.V. A Heme Propionate Staples the Structure of Cytochrome c for Methionine Ligation to the Heme Iron. Inorg. Chem. 2019, 58, 14085–14106. [Google Scholar] [CrossRef]
- Hayashi, T.; Harada, K.; Sakurai, K.; Shimada, H.; Hirota, S. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site. J. Am. Chem. Soc. 2009, 131, 1398–1400. [Google Scholar] [CrossRef] [PubMed]
- Branden, G.; Branden, M.; Schmidt, B.; Mills, D.A.; Ferguson-Miller, S.; Brzezinski, P. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase. Biochemistry 2005, 44, 10466–10474. [Google Scholar] [CrossRef]
- Gumiero, A.; Murphy, E.J.; Metcalfe, C.L.; Moody, P.C.; Raven, E.L. An analysis of substrate binding interactions in the heme peroxidase enzymes: A structural perspective. Arch. Biochem. Biophys. 2010, 500, 13–20. [Google Scholar] [CrossRef]
- Michlits, H.; Valente, N.; Mlynek, G.; Hofbauer, S. Initial Steps to Engineer Coproheme Decarboxylase to Obtain Stereospecific Monovinyl, Monopropionyl Deuterohemes. Front. Bioeng. Biotechnol. 2021, 9, 807678. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, F.; Niccoli, C.; Michlits, H.; Risorti, R.; Becucci, M.; Hofbauer, S.; Smulevich, G. Spectroscopic evidence of the effect of hydrogen peroxide excess on the coproheme decarboxylase from actinobacterial Corynebacterium diphtheriae. J. Raman Spectrosc. 2022, 53, 890–901. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.; Highet, R.J.; Woods, A.; Cotter, R.J.; Osawa, Y. Hydrogen peroxide-mediated alteration of the heme prosthetic group of metmyoglobin to an iron chlorin product: Evidence for a novel oxidative pathway. Proc. Natl. Acad. Sci. USA 1997, 94, 796–801. [Google Scholar] [CrossRef] [Green Version]
- Obinger, C.; Maj, M.; Nicholls, P.; Loewen, P. Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Arch. Biochem. Biophys. 1997, 342, 58–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Stuehr, D.J.; Yeh, S.R.; Rousseau, D.L. Heme distortion modulated by ligand-protein interactions in inducible nitric-oxide synthase. J. Biol. Chem. 2004, 279, 26489–26499. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, H.; Yoshioka, S.; Kobayashi, K.; Ohta, T.; Uchida, T.; Kubo, M.; Kitagawa, T.; Aono, S. Specific hydrogen-bonding networks responsible for selective O2 sensing of the oxygen sensor protein HemAT from Bacillus subtilis. Biochemistry 2006, 45, 8301–8307. [Google Scholar] [CrossRef]
- Jennings, G.K.; Hsu, M.H.; Shock, L.S.; Johnson, E.F.; Hackett, J.C. Noncovalent interactions dominate dynamic heme distortion in cytochrome P450 4B1. J. Biol. Chem. 2018, 293, 11433–11446. [Google Scholar] [CrossRef] [Green Version]
- Dali, A.; Gabler, T.; Sebastiani, F.; Destinger, A.; Furtmuller, P.G.; Pfanzagl, V.; Becucci, M.; Smulevich, G.; Hofbauer, S. Active site architecture of coproporphyrin ferrochelatase with its physiological substrate coproporphyrin III: Propionate interactions and porphyrin core deformation. Protein Sci. 2023, 32, e4534. [Google Scholar] [CrossRef]
- Gottfried, D.S.; Peterson, E.S.; Sheikh, A.G.; Wang, J.Q.; Yang, M.; Friedman, J.M. Evidence for damped hemoglobin dynamics in a room temperature trehalose glass. J. Phys. Chem. 1996, 100, 12034–12042. [Google Scholar] [CrossRef]
- Peterson, E.S.; Friedman, J.M.; Chien, E.Y.; Sligar, S.G. Functional implications of the proximal hydrogen-bonding network in myoglobin: A resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants. Biochemistry 1998, 37, 12301–12319. [Google Scholar] [CrossRef]
- Gabler, T.; Sebastiani, F.; Helm, J.; Dali, A.; Obinger, C.; Furtmüller, P.G.; Smulevich, G.; Hofbauer, S. Substrate specificity and complex stability of coproporphyrin ferrochelatase is governed by hydrogen-bonding interactions of the four propionate groups. FEBS J. 2022, 289, 1680–1699. [Google Scholar] [CrossRef]
- Smulevich, G.; Hu, S.; Rodgers, K.; Goodin, D.; Smith, K.; Spiro, T. Heme-protein interactions in cytochrome c peroxidase revealed by site-directed mutagenesis and resonance Raman spectra of isotopically labeled hemes. Biospectroscopy 1996, 2, 365–376. [Google Scholar] [CrossRef]
- Brogioni, S.; Feis, A.; Marzocchi, M.P.; Zederbauer, M.; Furtmüller, P.G.; Obinger, C.; Smulevich, G. Resonance Raman assignment of myeloperoxidase and the selected mutants Asp94Val and Met243Thr. Effect of the heme distortion. J. Raman Spectrosc. 2006, 37, 263–276. [Google Scholar] [CrossRef]
- Hu, S.Z.; Smith, K.M.; Spiro, T.G. Assignment of protoheme Resonance Raman spectrum by heme labeling in myoglobin. J. Am. Chem. Soc. 1996, 118, 12638–12646. [Google Scholar] [CrossRef]
- Milazzo, L.; Gabler, T.; Pfanzagl, V.; Michlits, H.; Furtmüller, P.G.; Obinger, C.; Hofbauer, S.; Smulevich, G. The hydrogen bonding network of coproheme in coproheme decarboxylase from Listeria monocytogenes: Effect on structure and catalysis. J. Inorg. Biochem. 2019, 195, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, S.; Pfanzagl, V.; Michlits, H.; Schmidt, D.; Obinger, C.; Furtmüller, P.G. Understanding molecular enzymology of porphyrin-binding alpha + beta barrel proteins—One fold, multiple functions. Biochim. Biophys. Acta Proteins Proteom. 2021, 1869, 140536. [Google Scholar] [CrossRef] [PubMed]
- Donegan, R.K.; Fu, Y.; Copeland, J.; Idga, S.; Brown, G.; Hale, O.F.; Mitra, A.; Yang, H.; Dailey, H.A.; Niederweis, M.; et al. Exogenously Scavenged and Endogenously Synthesized Heme Are Differentially Utilized by Mycobacterium tuberculosis. Microbiol. Spectr. 2022, 10, e0360422. [Google Scholar] [CrossRef] [PubMed]
- Choby, J.E.; Skaar, E.P. Heme Synthesis and Acquisition in Bacterial Pathogens. J. Mol. Biol. 2016, 428, 3408–3428. [Google Scholar] [CrossRef] [PubMed]
Chain A | Chain B | Chain C | Chain D | Chain E | |
---|---|---|---|---|---|
R208 | 3.0-p2 | 3.2-p2 | 3.0-p2 | 3.0-p2 | 3.1-p2 |
T205 | 2.6-H2O-2.5-p2 | 2.7-H2O-2.8-p2 | 2.7-H2O-2.7-p2 | 2.8-H2O-2.6-p2 | 2.7-H2O-2.6-p2 |
R139 | 2.9-H2O-2.5-p2 | 2.8-H2O-2.5-p2 | 3.0-H2O-2.6-p2 | 2.9-H2O-2.7-p2 | 3.1-H2O-2.5-p2 |
R139 | 2.7-p4 | 2.8-p4 | 2.7-p4 | 2.6-p4 | 2.7-p4 |
W143 | 2.8-p4 | 2.8-p4 | 2.7-p4 | 2.7-p4 | 2.7-p4 |
E113 | 2.7-H2O-2.5-p4 | 3.2-H2O-2.4-p4 | 2.9-H2O-2.5-p4 | 2.9-H2O-2.7-p4 | 3.6-H2O-3.8-p4 |
N115 | 3.2-p6 | 3.2-p6 | 3.1-p6 | 3.2-p6 | 3.5-p6 |
H118 | 2.8-p7 | 3.0-p7 | 2.6-p7 | 2.9-p7 | 3.2-p7 |
T172 | 2.7-H118-2.8-p7 | 2.7-H118-3.0-p7 | 2.7-H118-2.6-p7 | 2.8-H118-2.9-p7 | 3.1-H118-3.2-p7 |
p7 | p2 | p6 | p4 | |
---|---|---|---|---|
coproheme | ||||
WT | -- (365) | 372 (372) | ---- (376) | 384 (386) |
H118F (p7) | 365 (363) | 372 (372) | ---- (376) | 386 (386) |
H118A (p7) | 371 | 387 | ||
W143F (p4) | 372 | 391 | ||
E113A (p4) | 372 | 391 | ||
R139L (p4/p2) | 374 | 391 | ||
R208L (p2) | 380 | 372 | 391 | |
+H2O2 | ||||
WT (heme b) | 373 (374) | 384 (386) | ||
H118F (MMD) | 365 (363) | 373 (372) | ---- (376) | 386 (386) |
H118A (heme b) | 374 | 387 | ||
W143F (heme b) | 375 | weak | ||
E113A (heme b) | 375 | weak |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastiani, F.; Baroni, C.; Patil, G.; Dali, A.; Becucci, M.; Hofbauer, S.; Smulevich, G. The Role of the Hydrogen Bond Network in Maintaining Heme Pocket Stability and Protein Function Specificity of C. diphtheriae Coproheme Decarboxylase. Biomolecules 2023, 13, 235. https://doi.org/10.3390/biom13020235
Sebastiani F, Baroni C, Patil G, Dali A, Becucci M, Hofbauer S, Smulevich G. The Role of the Hydrogen Bond Network in Maintaining Heme Pocket Stability and Protein Function Specificity of C. diphtheriae Coproheme Decarboxylase. Biomolecules. 2023; 13(2):235. https://doi.org/10.3390/biom13020235
Chicago/Turabian StyleSebastiani, Federico, Chiara Baroni, Gaurav Patil, Andrea Dali, Maurizio Becucci, Stefan Hofbauer, and Giulietta Smulevich. 2023. "The Role of the Hydrogen Bond Network in Maintaining Heme Pocket Stability and Protein Function Specificity of C. diphtheriae Coproheme Decarboxylase" Biomolecules 13, no. 2: 235. https://doi.org/10.3390/biom13020235