Purines and Adenosine Receptors in Osteoarthritis
Abstract
:1. Osteoarthritis
2. Purine Metabolism, Receptors, and OA
3. The Mechanisms by Which Adenosine Mitigates OA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duruoz, M.T. Exploring osteoarthritis: Unraveling challenges, innovations, and hope for a better future. Best. Pract. Res. Clin. Rheumatol. 2023, 101872. [Google Scholar] [CrossRef]
- Cope, P.J.; Ourradi, K.; Li, Y.; Sharif, M. Models of osteoarthritis: The good, the bad and the promising. Osteoarthr. Cartil. 2019, 27, 230–239. [Google Scholar] [CrossRef]
- Corciulo, C.; Castro, C.M.; Coughlin, T.; Jacob, S.; Li, Z.; Fenyo, D.; Rifkin, D.B.; Kennedy, O.D.; Cronstein, B.N. Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Sci. Rep. 2020, 10, 13477. [Google Scholar] [CrossRef] [PubMed]
- Corciulo, C.; Lendhey, M.; Wilder, T.; Schoen, H.; Cornelissen, A.S.; Chang, G.; Kennedy, O.D.; Cronstein, B.N. Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nat. Commun. 2017, 8, 15019. [Google Scholar] [CrossRef] [PubMed]
- Mahjoub, M.; Berenbaum, F.; Houard, X. Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis. Osteoporos. Int. 2012, 23 (Suppl. S8), S841–S846. [Google Scholar] [CrossRef]
- Tesch, A.M.; MacDonald, M.H.; Kollias-Baker, C.; Benton, H.P. Endogenously produced adenosine regulates articular cartilage matrix homeostasis: Enzymatic depletion of adenosine stimulates matrix degradation. Osteoarthr. Cartil. 2004, 12, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Tesch, A.M.; MacDonald, M.H.; Kollias-Baker, C.; Benton, H.P. Chondrocytes respond to adenosine via A(2)receptors and activity is potentiated by an adenosine deaminase inhibitor and a phosphodiesterase inhibitor. Osteoarthr. Cartil. 2002, 10, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.J.; Oosterhof, A.; Veerkamp, J.H. Purine metabolism in splenocytes and thymocytes of various mammalian species. Adv. Exp. Med. Biol. 1984, 165 Pt B, 107–110. [Google Scholar] [CrossRef]
- Peters, G.J.; Oosterhof, A.; Veerkamp, J.H. Metabolism of purine nucleosides and phosphoribosylpyrophosphate in thymocytes and splenocytes of various mammalian species. Comp. Biochem. Physiol. B 1982, 73, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.J.; Oosterhof, A.; Veerkamp, J.H. Adenosine and deoxyadenosine metabolism in mammalian lymphocytes. Int. J. Biochem. 1981, 13, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Leo, M.; Kolb, E.; Siebert, P.; Dittrich, H. Adenosine deaminase activity in blood and tissues of horses of the Rassen Haflinger and Thuringer Kaltblut breeds. Dtsch. Tierarztl. Wochenschr. 1995, 102, 405–407. [Google Scholar]
- Ichikawa, N.; Taniguchi, A.; Kaneko, H.; Kawamoto, M.; Sekita, C.; Nakajima, A.; Yamanaka, H. Arterial Calcification Due to Deficiency of CD73 (ACDC) As One of Rheumatic Diseases Associated with Periarticular Calcification. J. Clin. Rheumatol. 2015, 21, 216–220. [Google Scholar] [CrossRef]
- St Hilaire, C.; Ziegler, S.G.; Markello, T.C.; Brusco, A.; Groden, C.; Gill, F.; Carlson-Donohoe, H.; Lederman, R.J.; Chen, M.Y.; Yang, D.; et al. NT5E mutations and arterial calcifications. N. Engl. J. Med. 2011, 364, 432–442. [Google Scholar] [CrossRef]
- Shkhyan, R.; Lee, S.; Gullo, F.; Li, L.; Peleli, M.; Carlstrom, M.; Chagin, A.S.; Banks, N.W.; Limfat, S.; Liu, N.Q.; et al. Genetic ablation of adenosine receptor A3 results in articular cartilage degeneration. J. Mol. Med. 2018, 96, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Bai, H.; Jiao, G.; Wang, X.; Zhang, Z.; Song, X.; Ma, T.; Li, T.; Gao, L. CF101 alleviates OA progression and inhibits the inflammatory process via the AMP/ATP/AMPK/mTOR axis. Bone 2022, 155, 116264. [Google Scholar] [CrossRef] [PubMed]
- Bar-Yehuda, S.; Rath-Wolfson, L.; Del Valle, L.; Ochaion, A.; Cohen, S.; Patoka, R.; Zozulya, G.; Barer, F.; Atar, E.; Pina-Oviedo, S.; et al. Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. Arthritis Rheum. 2009, 60, 3061–3071. [Google Scholar] [CrossRef]
- Friedman, B.; Corciulo, C.; Castro-Rivera, C.; Cronstein, B. Adenosine A2A Receptor Signaling Activates FoxO1 and FoxO3 and Promotes Cartilage Autophagy [abstract]. Arthritis Rheumatol. 2019, 71. Available online: https://acrabstracts.org/abstract/adenosine-a2a-receptor-signaling-activates-foxo1-and-foxo3-and-promotes-cartilage-autophagy/ (accessed on 15 October 2023).
- Castro, C.M.; Corciulo, C.; Solesio, M.E.; Liang, F.; Pavlov, E.V.; Cronstein, B.N. Adenosine A2A receptor (A2AR) stimulation enhances mitochondrial metabolism and mitigates reactive oxygen species-mediated mitochondrial injury. FASEB J. 2020, 34, 5027–5045. [Google Scholar] [CrossRef]
- Liu, X.; Corciulo, C.; Arabagian, S.; Ulman, A.; Cronstein, B.N. Adenosine-Functionalized Biodegradable PLA-b-PEG Nanoparticles Ameliorate Osteoarthritis in Rats. Sci. Rep. 2019, 9, 7430. [Google Scholar] [CrossRef]
- Li, D.; Cronstein, B.N.; Cook, J.; Bozynski, C.; Angle, S. Intra-articular injections of two liposomal adenosine formulations provide significant pain relief and gain in function, improve comfortable range of motion and slowed radiologic progression in a preclinical canine model of osteoarthritis. Ann. Rheum. Dis. 2023, 82, 133. [Google Scholar]
- Castro, C.M.; Corciulo, C.; Friedman, B.; Li, Z.; Jacob, S.; Fenyo, D.; Cronstein, B.N. Adenosine A2A receptor null chondrocyte transcriptome resembles that of human osteoarthritic chondrocytes. Purinergic Signal. 2021, 17, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.; Corciulo, C.; Castro, C.M.; Cronstein, B.N. Adenosine A2A receptor signaling promotes FoxO associated autophagy in chondrocytes. Sci. Rep. 2021, 11, 968. [Google Scholar] [CrossRef]
- Friedman, B.; Larranaga-Vera, A.; Castro, C.M.; Corciulo, C.; Rabbani, P.; Cronstein, B.N. Adenosine A2A receptor activation reduces chondrocyte senescence. FASEB J. 2023, 37, e22838. [Google Scholar] [CrossRef] [PubMed]
- Mistry, D.; Chambers, M.G.; Mason, R.M. The role of adenosine in chondrocyte death in murine osteoarthritis and in a murine chondrocyte cell line. Osteoarthr. Cartil. 2006, 14, 486–495. [Google Scholar] [CrossRef]
- Liao, C.D.; Huang, Y.Y.; Chen, H.C.; Liou, T.H.; Lin, C.L.; Huang, S.W. Relative Effect of Extracorporeal Shockwave Therapy Alone or in Combination with Noninjective Treatments on Pain and Physical Function in Knee Osteoarthritis: A Network Meta-Analysis of Randomized Controlled Trials. Biomedicines 2022, 10, 306. [Google Scholar] [CrossRef] [PubMed]
- Ratech, H.; Greco, M.A.; Gallo, G.; Rimoin, D.L.; Kamino, H.; Hirschhorn, R. Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations. Am. J. Pathol. 1985, 120, 157–169. [Google Scholar] [PubMed]
- Baker, M.C.; Weng, Y.; Robinson, W.H.; Ahuja, N.; Rohatgi, N. Reduction in Osteoarthritis Risk After Treatment With Ticagrelor Compared to Clopidogrel: A Propensity Score-Matching Analysis. Arthritis Rheumatol. 2020, 72, 1829–1835. [Google Scholar] [CrossRef]
- Guillan-Fresco, M.; Franco-Trepat, E.; Alonso-Perez, A.; Jorge-Mora, A.; Lopez-Fagundez, M.; Pazos-Perez, A.; Gualillo, O.; Gomez, R. Caffeine, a Risk Factor for Osteoarthritis and Longitudinal Bone Growth Inhibition. J. Clin. Med. 2020, 9, 1163. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cronstein, B.N.; Angle, S.R. Purines and Adenosine Receptors in Osteoarthritis. Biomolecules 2023, 13, 1760. https://doi.org/10.3390/biom13121760
Cronstein BN, Angle SR. Purines and Adenosine Receptors in Osteoarthritis. Biomolecules. 2023; 13(12):1760. https://doi.org/10.3390/biom13121760
Chicago/Turabian StyleCronstein, Bruce N., and Siddhesh R. Angle. 2023. "Purines and Adenosine Receptors in Osteoarthritis" Biomolecules 13, no. 12: 1760. https://doi.org/10.3390/biom13121760
APA StyleCronstein, B. N., & Angle, S. R. (2023). Purines and Adenosine Receptors in Osteoarthritis. Biomolecules, 13(12), 1760. https://doi.org/10.3390/biom13121760