Navigating the ERK1/2 MAPK Cascade
Abstract
:1. Introduction: MAPK Pathways
2. ERK Pathway Components
2.1. RAS
2.2. RAF
2.3. MEK
2.4. ERK
2.4.1. ERK Substrate Recognition
2.4.2. ERK Localization
2.4.3. ERK in Cancer
3. ERK Functions and Context Specificity
3.1. Cell Cycle, Growth, Migration, and Survival
3.2. Context Dependence of ERK Functions in Pancreatic Beta Cells
3.3. ERK in Stemness
3.4. ERK as an Allosteric Regulator
4. ERK Regulation
4.1. ERK Negative Feedback Loops
4.2. ERK Scaffolds
4.2.1. KSR1/2
4.2.2. IQGAP1/2 and 3
4.2.3. HPIP
Scaffold Name | RAS-ERK Pathway Interactors (Source: STRING and References) | Subcellular Localization (Source: GeneCards) | Tissue Expression (Source: GeneCards) | Mutations in Cancer (Source: Phospho-Site) | References |
---|---|---|---|---|---|
Archvillin/Supervillain Spliced isoform of SVIL | B-RAF, MEK, ERK | Cytosol, Cytoskeleton, PM, Nucleus | Ubiquitous | Stomach, bladder, endometrial, lung squamous, LUAD… | [426] |
β-Arrestin-1 ARRB1 | C-RAF, MEK, ERK | Nucleus, GA, Lysosome, Cytosol, PM | Ubiquitous | Lung squamous, Stomach, Endometrial, Bladder, CRC… | [427] |
β-Arrestin-2 ARRB2 | C-RAF, MEK, ERK | Cytosol, Nucleus, PM, Endosomes | Ubiquitous | Endometrial, LUAD, HNSCC, Stomach… | [427] |
CaM CALM1 Calmodulin | EGFR, RAS, RAF | Cytoskeleton, PM, Cytosol, Nucleus | Ubiquitous | LUAD, Endometrial, Bladder, Stomach, HNSCC. | [393] |
CNK1 CNKSR1 Connector Enhancer Of Kinase Suppressor Of Ras 1 | RAS, RAF | Cytosol, PM, Nucleus | Highest in Muscle | Stomach, Endometrial, Bladder, CRC, LUAD… | [428] |
CNK2/MAGUIN-1 CNKSR2 Connector Enhancer Of Kinase Suppressor Of Ras 1 | RAS, RAF | Cytosol, PM, Nucleus | Nervous system | Lung squamous, Endometrial, Stomach, CRC, LUAD… | [429] |
DYRK1A DYRK1A Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A | RAS, B-RAF, MEK1 | Nucleus, Cytosol, Cytoskeleton | Ubiquitous | Endometrial, Lung squamous, Stomach, CRC, HNSCC… | [430] |
β-Dystroglycan-1 DAG1 Dystrophin-Associated Glycoprotein 1 | MEK, ERK | PM, Nucleus, Extracellular, Cytosol, GA, ER, Cytoskeleton | Ubiquitous | Stomach, CRC, Endometrial, LUAD, Lung squamous… | [431] |
FHL1 FHL1 Four And A Half LIM Domains 1 | CRAF, MEK2, ERK2 | Cytosol, Nucleus, PM | Ubiquitous | Endometrial, Stomach, LUAD, Lung squamous, Breast… | [432] |
FLOT1 FLOT1 Flotillin 1 | RAF, MEK, ERK | Endosomes, PM, Lysosome, Extracellular, Cytosol, Cytoskeleton | Ubiquitous | Stomach, CRC, Lung squamous, Endometrial, HNSCC… | [433] |
GIT1 GIT1 G Protein-Coupled Receptor Kinase Interactor 1 | MEK1, ERK1/2 | Cytosol, Cytoskeleton, Mitochondria | Ubiquitous | Endometrial, bladder, Stomach, Lung squamous, kidney… | [434] |
GAB1 GAB1 Grb2 Associated Binding Protein 1 | Grb2, SOS1 | Cytosol | Ubiquitous | CRC, Endometrial, bladder, Lung squamous, Stomach… | [435] |
Galectin1 LGALS1 Putative MAPK-Activating Protein PM12 | HRAS, CRAF | Cytosol, ER, Nucleus | Ubiquitous | HNSCC, Breast Lung squamous, CRC, LUAD… | [436] |
Grb10 GRB10 Growth Factor Receptor-Bound Protein 10 | C-RAF, MEK | Cytosol, PM, Nucleus | Ubiquitous | Endometrial, LUAD, Stomach, Lung squamous, bladder… | [437] |
HPIP/PBXIP1 PBXIP1 Hematopoietic PBX (Pre-B cell leukemia homeobox)-interacting protein | EGFR, SHC, Grb2, SOS1, RAS, RAF, MEK, ERK | Cytosol, nucleus, Cytoskeleton | Ubiquitous | Stomach, Bladder, CRC, LUAD, Endometrial… | [419] |
IQGAP1 IQGAP1 IQ Motif Containing GTPase Activating Protein 1 | EGFR, K-RAS, B-RAF, MEK, ERK | Cytosol, Nucleus, Cytoskeleton, PM, Focal Adhesions | Ubiquitous | Stomach, CRC, Endometrial, Lung squamous, HNSCC… | [324] |
IQGAP2 IQGAP2 IQ Motif Containing GTPase Activating Protein 2 | RAS, B-RAF, MEK, ERK | Cytosol, Cytoskeleton, PM, Nucleus | Ubiquitous | Endometrial, CRC, LUAD, Lung squamous, Stomach | [413] |
IQGAP3 IQGAP3 IQ Motif Containing GTPase Activating Protein 3 | H-RAS, B-RAF, MEK, ERK | Cytosol, Nucleus, PM, cell-cell junctions | Liver, lung, pancreas | Lung squamous, CRC, Endometrial, Stomach, Bladder… | [413] |
KSR1 KSR1 Kinase Suppressor of Ras 1 | RAF, MEK, ERK | Cytosol, ER, PM | Ubiquitous | Endometrial, ovarian. | [333,334,335] |
KSR2 KSR2 Kinase Suppressor of Ras 2 | RAF, MEK, ERK | Cytosol, PM | Nervous system | Stomach, Endometrial, LUAD, HNSCC, Lung squamous… | [336] |
MERLIN NF2 Moesin-Ezrin-Radixin Like (MERLIN) Tumor Suppressor | RAS, RAF | Cytosol, Cytoskeleton, PM, Nucleus, Mitochondria | Ubiquitous | Endometrial, Bladder, HNSCC, CRC, Lung squamous… | [438] |
MORG1 WDR83 Mitogen-Activated Protein Kinase Organizer 1 | C-RAF, MEK, ERK | Endosomes, Nucleus | Kidney, Muscle, Nervous system | Endometrial, Bladder, Prostate, Lung squamous, CRC… | [328] |
MP1 LAMTOR3 MEK Partner 1 | MEK1, ERK1, ERK2 | Endosomes, Lysosome, PM, Extracellular | Ubiquitous | HNSCC, Glioblastoma. | [439,440] |
Nucleophosmin NPM1 | KRAS, RAF | Cytosol, Cytoskeleton, Nucleus, | Ubiquitous | Leukemia, LUAD, Endometrial, CRC, HNSCC… | [441] |
Paxillin PXN | MEK, ERK | Cytosol, Focal Adhesions, Cytoskeleton, PM, Nucleus | Ubiquitous | Endometrial, Stomach, Lung squamous, HNSCC, Glioblastoma… | [300] |
PEA15 PEA15 Phosphoprotein Enriched in Astrocytes, 15 KDa Proliferation And Apoptosis Adaptor Protein 15 | ERK, RSK | Cytosol, Cytoskeleton, Nucleus | Ubiquitous | Lung squamous, Endometrial, CRC, LUAD, HNSCC. | [148] |
RGS12 RGS12 Regulator Of G Protein Signaling 12 | RAS, RAF, MEK2 | Cytosol, Nucleus, PM | Nervous system, Lung, Kidney | Stomach, Lung squamous, bladder, Endometrial, CRC… | [442] |
RGS14 RGS14 Regulator Of G Protein Signaling 14 | RAS, RAF | Nucleus, Cytoskeleton, Cytosol, PM | Ubiquitous | Endometrial, bladder, Stomach, CRC, LUAD… | [443] |
SEF1 IL17RD Interleukin-17 Receptor D | MEK, ERK | GA, Nucleus, PM | Nervous system, heart, Kidney | Endometrial, CRC, Stomach, Leukemia, Breast… | [150] |
SHOC2/SUR8 SHOC2 Leucine Rich Repeat Scaffold Protein | RAS, RAF | Cytosol, Nucleus | Ubiquitous | Endometrial, Stomach, CRC, LUAD, HNSCC… | [444] |
5. Pathway Inhibitors
5.1. Classical Inhibitors
5.2. PROTAC Technology Applied to the ERK Pathway
Name | Target (Protein of Interest) | Leading Compound (“Warhead”) | Linker | E3 Ubiquitin Ligase Target | E3 Recruiter (“Anchor”) | Reference |
---|---|---|---|---|---|---|
XY-4-88 | KRASG12C | ARS-1620 | Cyclic tertiary amine-containing linker | CRBN | pomalidomide (thalidomide analog) | [526] |
LC-2 | KRASG12C | MRTX849 | Alkyl | VHL | VH032 | [527] |
III-2 | KRASG12C | AMG-510 | polyethylene glycol (PEG) | VHL | (S,R,S)-AHPC (VH032-NH2) hydrochloride | [539] |
P4B | BRAFV600E BRAFG466V | BI882370 | polyethylene glycol (PEG) | CRBN | pomalidomide (thalidomide analog) | [530] |
SJF-0628 | All mutant BRAF | vemurafenib | Rigid piperzine-based linker | VHL | VHL ligand (not specified) | [531] |
CRBN(BRAF)-24 | BRAFV600E | PLX8394 | Cyclic tertiary amine-containing linker | CRBN | pomalidomide (thalidomide analog) | [532] |
MS432 | MEK1/2 | PD0325901 | alkyl | VHL | (S,R,S)-AHPC-Me | [534] |
Several compounds | MEK1/2 | Allosteric MEKi | Alkyl | VHL | VHL ligand (not specified) | [535] |
MS928 | MEK1/2 | PD0325901 | Alkyl | VHL | VH032 | [536] |
MS910 | MEK1/2 | PD0325901 | polyethylene glycol (PEG) | CRBN | pomalidomide (thalidomide analog) | [536] |
MS934 | MEK1/2 CRAF | PD0325901 | Alkyl | VHL | VH032 | [536,537] |
P6b | MEK 1/2 | Substituted 3-benzylcoumarins allosteric MEKi | Alkyl | VHL | VHL ligand 22 | [539] |
5.3. Molecular Glues Targeting MEK
5.4. Optically Activated MEK Inhibitors
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooper, J.A.; Bowen-Pope, D.F.; Raines, E.; Ross, R.; Hunter, T. Similar Effects of Platelet-Derived Growth Factor and Epidermal Growth Factor on the Phosphorylation of Tyrosine in Cellular Proteins. Cell 1982, 31, 263–273. [Google Scholar] [CrossRef]
- Ray, L.B.; Sturgill, T.W. Characterization of Insulin-Stimulated Microtubule-Associated Protein Kinase. Rapid Isolation and Stabilization of a Novel Serine/Threonine Kinase from 3T3-L1 Cells. J. Biol. Chem. 1988, 263, 12721–12727. [Google Scholar] [CrossRef]
- Sturgill, T.W.; Ray, L.B.; Erikson, E.; Maller, J.L. Insulin-Stimulated MAP-2 Kinase Phosphorylates and Activates Ribosomal Protein S6 Kinase II. Nature 1988, 334, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Boulton, T.G.; Yancopoulos, G.D.; Gregory, J.S.; Slaughter, C.; Moomaw, C.; Hsu, J.; Cobb, M.H. An Insulin-Stimulated Protein Kinase Similar to Yeast Kinases Involved in Cell Cycle Control. Science 1990, 249, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Boulton, T.G.; Cobb, M.H. Identification of Multiple Extracellular Signal-Regulated Kinases (ERKs) with Antipeptide Antibodies. Mol. Biol. Cell 1991, 2, 357–371. [Google Scholar] [CrossRef]
- Boulton, T.G.; Gregory, J.S.; Cobb, M.H. Purification and Properties of Extracellular Signal-Regulated Kinase 1, an Insulin-Stimulated Microtubule-Associated Protein 2 Kinase. Biochemistry 1991, 30, 278–286. [Google Scholar] [CrossRef] [PubMed]
- English, J.; Pearson, G.; Wilsbacher, J.; Swantek, J.; Karandikar, M.; Xu, S.; Cobb, M.H. New Insights into the Control of MAP Kinase Pathways. Exp. Cell Res. 1999, 253, 255–270. [Google Scholar] [CrossRef]
- Coulombe, P.; Meloche, S. Atypical Mitogen-Activated Protein Kinases: Structure, Regulation and Functions. Biochim. Biophys. Acta-Mol. Cell Res. 2007, 1773, 1376–1387. [Google Scholar] [CrossRef]
- Cargnello, M.; Roux, P.P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef]
- Chartier, M.; Chénard, T.; Barker, J.; Najmanovich, R. Kinome Render: A Stand-Alone and Web-Accessible Tool to Annotate the Human Protein Kinome Tree. PeerJ 2013, 1, e126. [Google Scholar] [CrossRef] [PubMed]
- Robbins, D.J.; Zhen, E.; Cheng, M.; Xu, S.; Vanderbilt, C.A.; Ebert, D.; Garcia, C.; Dang, A.; Cobb, M.H. Regulation and Properties of Extracellular Signal-Regulated Protein Kinases 1, 2, and 3. J. Am. Soc. Nephrol. 1993, 4, 1104–1110. [Google Scholar] [CrossRef]
- Pearson, G.; Robinson, F.; Gibson, T.B.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocr. Rev. 2001, 22, 153–183. [Google Scholar] [CrossRef]
- Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the Undruggable RAS: Mission Possible? Nat. Rev. Drug Discov. 2014, 13, 828–851. [Google Scholar] [CrossRef]
- Arozarena, I.; Calvo, F.; Crespo, P. Ras, an Actor on Many Stages: Posttranslational Modifications, Localization, and Site-Specified Events. Genes Cancer 2011, 2, 182–194. [Google Scholar] [CrossRef]
- Prior, A.I.; Hancock, J.F. Ras Trafficking, Localization and Compartmentalized Signalling. Semin. Cell Dev. Biol. 2012, 32, 145–153. [Google Scholar] [CrossRef]
- Casar, B.; Pinto, A.; Crespo, P. ERK Dimers and Scaffold Proteins: Unexpected Partners for a Forgotten (Cytoplasmic) Task. Cell Cycle 2009, 8, 1007–1013. [Google Scholar] [CrossRef]
- Hall, B.E.; Bar-Sagi, D.; Nassar, N. The Structural Basis for the Transition from Ras-GTP to Ras-GDP. Proc. Natl. Acad. Sci. USA 2002, 99, 12138–12142. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.E.; Giddings, B.W.; Brooks, M.W.; Buday, L.; Sizeland, A.M.; Weinberg, R.A. Association of Sos Ras Exchange Protein with Grb2 Is Implicated in Tyrosine Kinase Signal Transduction and Transformation. Nature 1993, 363, 45–51. [Google Scholar] [CrossRef]
- Kiel, C.; Matallanas, D.; Kolch, W. The Ins and Outs of Ras Effector Complexes. Biomolecules 2021, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Kolch, W.; Berta, D.; Rosta, E. Dynamic Regulation of RAS and RAS Signaling. Biochem. J. 2023, 480, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Barbacid, M. ras Genes. Annu. Rev. Biochem. 1987, 56, 779–827. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Kato, K.; Takahashi, A.; Ueoka, Y.; Kamikihara, T.; Arima, T.; Matsuda, T.; Kato, H.; Nishida, J.I.; Wake, N. K-Ras and H-Ras Activation Promote Distinct Consequences on Endometrial Cell Survival. Cancer Res. 2004, 64, 2759–2765. [Google Scholar] [CrossRef] [PubMed]
- Voice, J.K.; Klemke, R.L.; Le, A.; Jackson, J.H. Four Human Ras Homologs Differ in Their Abilities to Activate Raf-1, Induce Transformation, and Stimulate Cell Motility. J. Biol. Chem. 1999, 274, 17164–17170. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Greenbaum, D.; Cichowski, K.; Mercer, K.; Murphy, E.; Schmitt, E.; Bronson, R.T.; Umanoff, H.; Edelmann, W.; Kucherlapati, R.; et al. K-Ras Is an Essential Gene in the Mouse with Partial Functional Overlap with N-Ras. Genes Dev. 1997, 11, 2468–2481. [Google Scholar] [CrossRef]
- Koera, K.; Nakamura, K.; Nakao, K.; Miyoshi, J.; Toyoshima, K.; Hatta, T.; Otani, H.; Aiba, A.; Katsuki, M. K-Ras Is Essential for the Development of the Mouse Embryo. Oncogene 1997, 15, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Esteban, L.M.; Vicario-Abejón, C.; Fernández-Salguero, P.; Fernández-Medarde, A.; Swaminathan, N.; Yienger, K.; Lopez, E.; Malumbres, M.; McKay, R.; Ward, J.M.; et al. Targeted Genomic Disruption of H-Ras and N-Ras, Individually or in Combination, Reveals the Dispensability of Both Loci for Mouse Growth and Development. Mol. Cell. Biol. 2001, 21, 1444–1452. [Google Scholar] [CrossRef]
- Potenza, N.; Vecchione, C.; Notte, A.; De Rienzo, A.; Rosica, A.; Bauer, L.; Affuso, A.; De Felice, M.; Russo, T.; Poulet, R.; et al. Replacement of K-Ras with H-Ras Supports Normal Embryonic Development despite Inducing Cardiovascular Pathology in Adult Mice. EMBO Rep. 2005, 6, 432–437. [Google Scholar] [CrossRef]
- Drosten, M.; Simon-Carrasco, L.; Hernandez-Porras, I.; Lechuga, C.G.; Blasco, M.T.; Jacob, H.K.C.; Fabbiano, S.; Potenza, N.; Bustelo, X.R.; Guerra, C.; et al. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences. Cancer Res. 2017, 77, 707–718. [Google Scholar] [CrossRef]
- Prior, I.A.; Lewis, P.D.; Mattos, C. A Comprehensive Survey of Ras Mutations in Cancer. Cancer Res. 2012, 72, 2457–2467. [Google Scholar] [CrossRef]
- Liu, C.; Ye, D.; Yang, H.; Chen, X.; Su, Z.; Li, X.; Ding, M.; Liu, Y. RAS-targeted Cancer Therapy: Advances in Drugging Specific Mutations. MedComm 2023, 4, e285. [Google Scholar] [CrossRef]
- Lampson, B.L.; Pershing, N.L.K.; Prinz, J.A.; Lacsina, J.R.; Marzluff, W.F.; Nicchitta, C.V.; MacAlpine, D.M.; Counter, C.M. Rare Codons Regulate KRas Oncogenesis. Curr. Biol. 2013, 23, 70–75. [Google Scholar] [CrossRef]
- Pershing, N.L.K.; Lampson, B.L.; Belsky, J.A.; Kaltenbrun, E.; MacAlpine, D.M.; Counter, C.M. Rare Codons Capacitate Kras-Driven de Novo Tumorigenesis. J. Clin. Investig. 2015, 125, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Dang, Y.; Counter, C.; Liu, Y. Codon Usage Regulates Human KRAS Expression at Both Transcriptional and Translational Levels. J. Biol. Chem. 2018, 293, 17929–17940. [Google Scholar] [CrossRef]
- Benisty, H.; Weber, M.; Hernandez-Alias, X.; Schaefer, M.H.; Serrano, L. Mutation Bias within Oncogene Families Is Related to Proliferation-Specific Codon Usage. Proc. Natl. Acad. Sci. USA 2020, 117, 30848–30856. [Google Scholar] [CrossRef]
- Moore, A.R.; Rosenberg, S.C.; McCormick, F.; Malek, S. RAS-Targeted Therapies: Is the Undruggable Drugged? Nat. Rev. Drug Discov. 2020, 19, 533–552. [Google Scholar] [CrossRef]
- Li, S.; Balmain, A.; Counter, C.M. A Model for RAS Mutation Patterns in Cancers: Finding the Sweet Spot. Nat. Rev. Cancer 2018, 18, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; MacAlpine, D.M.; Counter, C.M. Capturing the Primordial Kras Mutation Initiating Urethane Carcinogenesis. Nat. Commun. 2020, 11, 1800. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Counter, C.M. Signaling Levels Mold the Ras Mutation Tropism of Urethane. eLife 2021, 10, e67172. [Google Scholar] [CrossRef]
- Rapp, U.R.; Goldsborough, M.D.; Mark, G.E.; Bonner, T.I.; Groffen, J.; Reynolds, F.H.; Stephenson, J.R. Structure and Biological Activity of V-Raf, a Unique Oncogene Transduced by a Retrovirus. Proc. Natl. Acad. Sci. USA 1983, 80, 4218–4222. [Google Scholar] [CrossRef]
- Surve, S.V.; Myers, P.J.; Clayton, S.A.; Watkins, S.C.; Lazzara, M.J.; Sorkina, A. Localization Dynamics of Endogenous Fluorescently Labeled RAF1 in EGF-Stimulated Cells. Mol. Biol. Cell 2019, 30, 506–523. [Google Scholar] [CrossRef]
- Hekman, M.; Hamm, H.; Villar, A.V.; Bader, B.; Kuhlmann, J.; Nickel, J.; Rapp, U.R. Associations of B- and C-Raf with Cholesterol, Phosphatidylserine, and Lipid Second Messengers: Preferential Binding of Raf to Artificial Lipid Rafts. J. Biol. Chem. 2002, 277, 24090–24102. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Rawson, S.; Schmoker, A.; Kim, B.-W.; Oh, S.; Song, K.; Jeon, H.; Eck, M.J. Cryo-EM Structure of a RAS/RAF Recruitment Complex. Nat. Commun. 2023, 14, 4580. [Google Scholar] [CrossRef]
- Terrell, E.M.; Morrison, D.K. Ras-Mediated Activation of the Raf Family Kinases. Cold Spring Harb. Perspect. Med. 2019, 9, a033746. [Google Scholar] [CrossRef]
- Lavoie, H.; Therrien, M. Regulation of RAF Protein Kinases in ERK Signalling. Nat. Rev. Mol. Cell Biol. 2015, 16, 281–298. [Google Scholar] [CrossRef]
- Matallanas, D.; Birtwistle, M.; Romano, D.; Zebisch, A.; Rauch, J.; von Kriegsheim, A.; Kolch, W. Raf Family Kinases: Old Dogs Have Learned New Tricks. Genes Cancer 2011, 2, 232. [Google Scholar] [CrossRef] [PubMed]
- Wellbrock, C.; Karasarides, M.; Marais, R. The RAF Proteins Take Centre Stage. Nat. Rev. Mol. Cell Biol. 2004, 5, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jang, H.; Zhang, J.; Nussinov, R. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 2018, 26, 513–525.e2. [Google Scholar] [CrossRef]
- Nguyen, K.; López, C.A.; Neale, C.; Van, Q.N.; Carpenter, T.S.; Di Natale, F.; Travers, T.; Tran, T.H.; Chan, A.H.; Bhatia, H.; et al. Exploring CRD Mobility during RAS/RAF Engagement at the Membrane. Biophys. J. 2022, 121, 3630–3650. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Lee, K.Y.; Huo, K.G.; Gasmi-Seabrook, G.; Zheng, L.; Moghal, N.; Tsao, M.S.; Ikura, M.; Marshall, C.B. Multivalent Assembly of KRAS with the RAS-Binding and Cysteine-Rich Domains of CRAF on the Membrane. Proc. Natl. Acad. Sci. USA 2020, 117, 12101–12108. [Google Scholar] [CrossRef]
- Tran, T.H.; Chan, A.H.; Young, L.C.; Bindu, L.; Neale, C.; Messing, S.; Dharmaiah, S.; Taylor, T.; Denson, J.P.; Esposito, D.; et al. KRAS Interaction with RAF1 RAS-Binding Domain and Cysteine-Rich Domain Provides Insights into RAS-Mediated RAF Activation. Nat. Commun. 2021, 12, 1176. [Google Scholar] [CrossRef]
- Prakash, P.; Hancock, J.F.; Gorfe, A.A. Three Distinct Regions of CRaf Kinase Domain Interact with Membrane. Sci. Rep. 2019, 9, 2057. [Google Scholar] [CrossRef]
- Martinez Fiesco, J.A.; Durrant, D.E.; Morrison, D.K.; Zhang, P. Structural Insights into the BRAF Monomer-to-Dimer Transition Mediated by RAS Binding. Nat. Commun. 2022, 13, 486. [Google Scholar] [CrossRef]
- Young, L.C.; Hartig, N.; Del Río, I.B.; Sari, S.; Ringham-Terry, B.; Wainwright, J.R.; Jones, G.G.; McCormick, F.; Rodriguez-Viciana, P. SHOC2-MRAS-PP1 Complex Positively Regulates RAF Activity and Contributes to Noonan Syndrome Pathogenesis. Proc. Natl. Acad. Sci. USA 2018, 115, E10576–E10585. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.J.; Hajian, B.; Bian, Y.; Young, L.C.; Amor, A.J.; Fuller, J.R.; Fraley, C.V.; Sykes, A.M.; So, J.; Pan, J.; et al. Structure-Function Analysis of the SHOC2-MRAS-PP1C Holophosphatase Complex. Nature 2022, 609, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Hauseman, Z.J.; Fodor, M.; Dhembi, A.; Viscomi, J.; Egli, D.; Bleu, M.; Katz, S.; Park, E.; Jang, D.M.; Porter, K.A.; et al. Structure of the MRAS–SHOC2–PP1C Phosphatase Complex. Nature 2022, 609, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Maloney, R.; Jang, H.; Nussinov, R. The Mechanism of Raf Activation through Dimerization. Chem. Sci. 2021, 12, 15609–15619. [Google Scholar] [CrossRef] [PubMed]
- Rajakulendran, T.; Sahmi, M.; Lefrançois, M.; Sicheri, F.; Therrien, M. A Dimerization-Dependent Mechanism Drives RAF Catalytic Activation. Nature 2009, 461, 542–545. [Google Scholar] [CrossRef]
- Lavoie, H.; Sahmi, M.; Maisonneuve, P.; Marullo, S.A.; Thevakumaran, N.; Jin, T.; Kurinov, I.; Sicheri, F.; Therrien, M. MEK Drives BRAF Activation through Allosteric Control of KSR Proteins. Nature 2018, 554, 549–553. [Google Scholar] [CrossRef]
- Holderfield, M.; Deuker, M.M.; McCormick, F.; McMahon, M. Targeting RAF Kinases for Cancer Therapy: BRAF-Mutated Melanoma and Beyond. Nat. Rev. Cancer 2014, 14, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Peng, J.; Xu, Z.; Liang, Q.; Cai, Y.; Peng, B.; He, Q.; Yan, Y. Spectrum of BRAF Aberrations and Its Potential Clinical Implications: Insights From Integrative Pan-Cancer Analysis. Front. Bioeng. Biotechnol. 2022, 10, 806851. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 5158. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Yin, Q.; Snell, A.H.; Wan, L. RAF-MEK-ERK Pathway in Cancer Evolution and Treatment. Semin. Cancer Biol. 2022, 85, 123–154. [Google Scholar] [CrossRef]
- Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Project, C.G.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; et al. Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell 2004, 116, 855–867. [Google Scholar] [CrossRef]
- Garnett, M.J.; Rana, S.; Paterson, H.; Barford, D.; Marais, R. Wild-Type and Mutant B-RAF Activate C-RAF through Distinct Mechanisms Involving Heterodimerization. Mol. Cell 2005, 20, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Owsley, J.; Stein, M.K.; Porter, J.; In, G.K.; Salem, M.; O’Day, S.; Elliott, A.; Poorman, K.; Gibney, G.; VanderWalde, A. Prevalence of Class I–III BRAF Mutations among 114,662 Cancer Patients in a Large Genomic Database. Exp. Biol. Med. 2021, 246, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Wang, K.; Chmielecki, J.; Gay, L.; Johnson, A.; Chudnovsky, J.; Yelensky, R.; Lipson, D.; Ali, S.M.; Elvin, J.A.; et al. The Distribution of BRAF Gene Fusions in Solid Tumors and Response to Targeted Therapy. Int. J. Cancer 2016, 138, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Seger, R.; Ahn, N.G.; Posada, J.; Munar, E.S.; Jensen, A.M.; Cooper, J.A.; Cobb, M.H.; Krebs, E.G. Purification and Characterization of Mitogen-Activated Protein Kinase Activator(s) from Epidermal Growth Factor-Stimulated A431 Cells. J. Biol. Chem. 1992, 267, 14373–14381. [Google Scholar] [CrossRef]
- Crews, C.M.; Alessandrini, A.; Erikson, R.L. The Primary Structure of MEK, a Protein Kinase That Phosphorylates the ERK Gene Product. Science 1992, 258, 478–480. [Google Scholar] [CrossRef]
- Kocieniewski, P.; Lipniacki, T. MEK1 and MEK2 Differentially Control the Duration and Amplitude of the ERK Cascade Response. Phys. Biol. 2013, 10, 035006. [Google Scholar] [CrossRef]
- Fukuda, M.; Gotoh, Y.; Nishida, E. Interaction of MAP Kinase with MAP Kinase Kinase: Its Possible Role in the Control of Nucleocytoplasmic Transport of MAP Kinase. EMBO J. 1997, 16, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Adachi, M.; Fukuda, M.; Nishida, E. Nuclear Export of MAP Kinase (ERK) Involves a MAP Kinase Kinase (MEK)-Dependent Active Transport Mechanism. J. Cell Biol. 2000, 148, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.F.; Guan, K.L. Activation of MEK Family Kinases Requires Phosphorylation of Two Conserved Ser/Thr Residues. EMBO J. 1994, 13, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Nebreda, A.R.; Hill, C.; Gomez, N.; Cohen, P.; Hunt, T. The Protein Kinase Mos Activates MAP Kinase Kinase in Vitro and Stimulates the MAP Kinase Pathway in Mammalian Somatic Cells in Vivo. FEBS Lett. 1993, 333, 183–187. [Google Scholar] [CrossRef]
- Xu, S.; Robbins, D.; Frost, J.; Dang, A.; Lange-Carter, C.; Cobb, M.H. MEKK1 Phosphorylates MEK1 and MEK2 but Does Not Cause Activation of Mitogen-Activated Protein Kinase. Proc. Natl. Acad. Sci. USA 1995, 92, 6808–6812. [Google Scholar] [CrossRef]
- Waterfield, M.R.; Zhang, M.; Norman, L.P.; Sun, S.C. NF-ΚB1/P105 Regulates Lipopolysaccharide-Stimulated MAP Kinase Signaling by Governing the Stability and Function of the Tpl2 Kinase. Mol. Cell 2003, 11, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Chun, J.; Pan, C.; Li, D.; Lin, R.; Alesi, G.N.; Wang, X.; Kang, H.B.; Song, L.; Wang, D.; et al. MAST1 Drives Cisplatin Resistance in Human Cancers by Rewiring CRaf-Independent MEK Activation. Cancer Cell 2018, 34, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.A.; Steen, H.; Shapiro, P.; Lewis, T.; Ahn, N.; Shaw, P.E.; Cobb, M.H. Cross-Cascade Activation of ERKs and Ternary Complex Factors by Rho Family Proteins. EMBO J. 1997, 16, 6426–6438. [Google Scholar] [CrossRef] [PubMed]
- Slack-Davis, J.K.; Eblen, S.T.; Zecevic, M.; Boerner, S.A.; Tarcsafalvi, A.; Diaz, H.B.; Marshall, M.S.; Weber, M.J.; Parsons, J.T.; Catling, A.D. PAK1 Phosphorylation of MEK1 Regulates Fibronectin-Stimulated MAPK Activation. J. Cell Biol. 2003, 162, 281–291. [Google Scholar] [CrossRef]
- Eblen, S.T.; Slack-Davis, J.K.; Tarcsafalvi, A.; Parsons, J.T.; Weber, M.J.; Catling, A.D. Mitogen-Activated Protein Kinase Feedback Phosphorylation Regulates MEK1 Complex Formation and Activation during Cellular Adhesion. Mol. Cell. Biol. 2004, 24, 2308–2317. [Google Scholar] [CrossRef]
- Wang, Z.; Pedersen, E.; Basse, A.; Lefever, T.; Peyrollier, K.; Kapoor, S.; Mei, Q.; Karlsson, R.; Chrostek-Grashoff, A.; Brakebusch, C. Rac1 Is Crucial for Ras-Dependent Skin Tumor Formation by Controlling Pak1-Mek-Erk Hyperactivation and Hyperproliferation in Vivo. Oncogene 2010, 29, 3362–3373. [Google Scholar] [CrossRef] [PubMed]
- Brunet, A.; Pagès, G.; Pouysségur, J. Growth Factor-Stimulated MAP Kinase Induces Rapid Retrophosphorylation and Inhibition of MAP Kinase Kinase (MEK1). FEBS Lett. 1994, 346, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Catalanotti, F.; Reyes, G.; Jesenberger, V.; Galabova-Kovacs, G.; De Matos Simoes, R.; Carugo, O.; Baccarini, M. A Mek1-Mek2 Heterodimer Determines the Strength and Duration of the Erk Signal. Nat. Struct. Mol. Biol. 2009, 16, 294–303. [Google Scholar] [CrossRef]
- Bélanger, L.-F.; Roy, S.; Tremblay, M.; Brott, B.; Steff, A.-M.; Mourad, W.; Hugo, P.; Erikson, R.; Charron, J. Mek2 Is Dispensable for Mouse Growth and Development. Mol. Cell. Biol. 2003, 23, 4778–4787. [Google Scholar] [CrossRef] [PubMed]
- Bissonauth, V.; Roy, S.; Gravel, M.; Guillemette, S.; Charron, J. Requirement for Map2k1 (Mek1) in Extra-Embryonic Ectoderm during Placentogenesis. Development 2006, 133, 3429–3440. [Google Scholar] [CrossRef]
- Aoidi, R.; Maltais, A.; Charron, J. Functional Redundancy of the Kinases MEK1 and MEK2: Rescue of the Mek1 Mutant Phenotype by Mek2 Knock-in Reveals a Protein Threshold Effect. Sci. Signal. 2016, 9, ra9. [Google Scholar] [CrossRef]
- Skarpen, E.; Flinder, L.I.; Rosseland, C.M.; Ørstavik, S.; Wierød, L.; Oksvold, M.P.; Skålhegg, B.S.; Huitfeldt, H.S. MEK1 and MEK2 Regulate Distinct Functions by Sorting ERK2 to Different Intracellular Compartments. FASEB J. 2008, 22, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Houde, N.; Beuret, L.; Bonaud, A.; Fortier-Beaulieu, S.P.; Truchon-Landry, K.; Aoidi, R.; Pic, É.; Alouche, N.; Rondeau, V.; Schlecht-Louf, G.; et al. Fine-Tuning of MEK Signaling Is Pivotal for Limiting B and T Cell Activation. Cell Rep. 2022, 38, 110223. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tan, X.; Kamohara, H.; Wang, W.; Wang, B.; Liu, J.; Egami, H.; Baba, H.; Dai, X. MEK1 and MEK2 Isoforms Regulate Distinct Functions in Pancreatic Cancer Cells. Oncol. Rep. 2010, 24, 251–255. [Google Scholar] [CrossRef]
- Jaaro, H.; Rubinfeld, H.; Hanoch, T.; Seger, R. Nuclear Translocation of Mitogen-Activated Protein Kinase Kinase (MEK1) in Response to Mitogenic Stimulation. Proc. Natl. Acad. Sci. USA 1997, 94, 3742–3747. [Google Scholar] [CrossRef]
- Kudo, N.; Wolff, B.; Sekimoto, T.; Schreiner, E.P.; Yoneda, Y.; Yanagida, M.; Horinouchi, S.; Yoshida, M. Leptomycin B Inhibition of Signal-Mediated Nuclear Export by Direct Binding to CRM1. Exp. Cell Res. 1998, 242, 540–547. [Google Scholar] [CrossRef]
- Gao, Y.; Chang, M.T.; McKay, D.; Na, N.; Zhou, B.; Yaeger, R.; Torres, N.M.; Muniz, K.; Drosten, M.; Barbacid, M.; et al. Allele-Specific Mechanisms of Activation of Mek1 Mutants Determine Their Properties. Cancer Discov. 2018, 8, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R. Invited Review ERK1/2 MAP Kinases: Structure, Function, and Regulation. Pharmacol. Res. 2012, 66, 105–143. [Google Scholar] [CrossRef]
- Eblen, S.T.; Catling, A.D.; Assanah, M.C.; Weber, M.J. Biochemical and Biological Functions of the N-Terminal, Noncatalytic Domain of Extracellular Signal-Regulated Kinase 2. Mol. Cell. Biol. 2001, 21, 249–259. [Google Scholar] [CrossRef]
- Robinson, F.L.; Whitehurst, A.W.; Raman, M.; Cobb, M.H. Identification of Novel Point Mutations in ERK2 That Selectively Disrupt Binding to MEK1. J. Biol. Chem. 2002, 277, 14844–14852. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.M.; Rossomando, A.J.; Martino, P.; Erickson, A.K.; Her, J.H.; Shabanowitz, J.; Hunt, D.F.; Weber, M.J.; Sturgill, T.W. Identification of the Regulatory Phosphorylation Sites in Pp42/Mitogen-Activated Protein Kinase (MAP Kinase). EMBO J. 1991, 10, 885. [Google Scholar] [CrossRef]
- Robbins, D.J.; Cobb, M.H. Extracellular Signal-Regulated Kinases 2 Autophosphorylates on a Subset of Peptides Phosphorylated in Intact Cells in Response to Insulin and Nerve Growth Factor: Analysis by Peptide Mapping. Mol. Biol. Cell 1992, 3, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Canagarajah, B.J.; Khokhlatchev, A.; Cobb, M.H.; Goldsmith, E.J. Activation Mechanism of the MAP Kinase ERK2 by Dual Phosphorylation. Cell 1997, 90, 859–869. [Google Scholar] [CrossRef]
- Prowse, C.N.; Lew, J. Mechanism of Activation of ERK2 by Dual Phosphorylation. J. Biol. Chem. 2001, 276, 99–103. [Google Scholar] [CrossRef]
- Frémin, C.; Saba-El-Leil, M.K.; Lévesque, K.; Ang, S.L.; Meloche, S. Functional Redundancy of ERK1 and ERK2 MAP Kinases during Development. Cell Rep. 2015, 12, 913–921. [Google Scholar] [CrossRef]
- Saba-El-Leil, M.K.; Frémin, C.; Meloche, S. Redundancy in the World of MAP Kinases: All for One. Front. Cell Dev. Biol. 2016, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- Buscà, R.; Christen, R.; Lovern, M.; Clifford, A.M.; Yue, J.X.; Goss, G.G.; Pouysségur, J.; Lenormand, P. ERK1 and ERK2 Present Functional Redundancy in Tetrapods despite Higher Evolution Rate of ERK1. BMC Evol. Biol. 2015, 15, 179. [Google Scholar] [CrossRef]
- Buscà, R.; Pouysségur, J.; Lenormand, P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front. Cell Dev. Biol. 2016, 4, 53. [Google Scholar] [CrossRef]
- Vithayathil, J.; Pucilowska, J.; Goodnough, L.H.; Atit, R.P.; Landreth, G.E. Dentate Gyrus Development Requires ERK Activity to Maintain Progenitor Population and MAPK Pathway Feedback Regulation. J. Neurosci. 2015, 35, 6836–6848. [Google Scholar] [CrossRef] [PubMed]
- Pagès, G.; Guérin, S.; Grall, D.; Bonino, F.; Smith, A.; Anjuere, F.; Auberger, P.; Pouysségur, J. Defective Thymocyte Maturation in P44 MAP Kinase (Erk 1) Knockout Mice. Science 1999, 286, 1374–1377. [Google Scholar] [CrossRef]
- Hatano, N.; Mori, Y.; Oh-hora, M.; Kosugi, A.; Fujikawa, T.; Nakai, N.; Niwa, H.; Miyazaki, J.I.; Hamaoka, T.; Ogata, M. Essential Role for ERK2 Mitogen-Activated Protein Kinase in Placental Development. Genes Cells 2003, 8, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Krens, S.F.G.; Corredor-Adámez, M.; He, S.; Snaar-Jagalska, B.E.; Spaink, H.P. ERK1 and ERK2 MAPK Are Key Regulators of Distinct Gene Sets in Zebrafish Embryogenesis. BMC Genom. 2008, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.N.; Raisley, B.; Hadwiger, J.A. MAP Kinases Have Different Functions in Dictyostelium G Protein-Mediated Signaling. Cell. Signal. 2010, 22, 836–847. [Google Scholar] [CrossRef]
- von Thun, A.; Birtwistle, M.; Kalna, G.; Grindlay, J.; Strachan, D.; Kolch, W.; von Kriegsheim, A.; Norman, J.C. ERK2 Drives Tumour Cell Migration in Threedimensional Microenvironments by Suppressing Expression of Rab17 and Liprin-Β2. J. Cell Sci. 2012, 125, 1465–1477. [Google Scholar] [CrossRef]
- Guégan, J.P.; Ezan, F.; Théret, N.; Langoüt, S.; Baffet, G. MAPK Signaling in Cisplatin-Induced Death: Predominant Role of ERK1 over ERK2 in Human Hepatocellular Carcinoma Cells. Carcinogenesis 2013, 34, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Bar-Gill, A.B.; Efergan, A.; Seger, R.; Fukuda, M.; Sagi-Eisenberg, R. The Extra-Cellular Signal Regulated Kinases ERK1 and ERK2 Segregate Displaying Distinct Spatiotemporal Characteristics in Activated Mast Cells. Biochim. Biophys. Acta-Mol. Cell Res. 2013, 1833, 2070–2082. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhang, M.; Huang, L.; Ma, Z.; Gong, X.; Liu, W.; Zhang, J.; Chen, L.; Yu, Z.; Zhao, W.; et al. ERK1 Indicates Good Prognosis and Inhibits Breast Cancer Progression by Suppressing YAP1 Signaling. Aging 2019, 11, 12295–12314. [Google Scholar] [CrossRef] [PubMed]
- Ashton-Beaucage, D.; Udell, C.M.; Gendron, P.; Sahmi, M.; Lefrançois, M. A Functional Screen Reveals an Extensive Layer of Transcriptional and Splicing Control Underlying RAS/MAPK Signaling in Drosophila. PLoS Biol. 2014, 12, 1001809. [Google Scholar] [CrossRef] [PubMed]
- Buscà, R.; Onesto, C.; Egensperger, M.; Pouysségur, J.; Pagès, G.; Lenormand, P. N-Terminal Alanine-Rich (NTAR) Sequences Drive Precise Start Codon Selection Resulting in Elevated Translation of Multiple Proteins Including ERK1/2. Nucleic Acids Res. 2023, 51, 7714–7735. [Google Scholar] [CrossRef]
- Zhou, T.; Sun, L.; Humphreys, J.; Goldsmith, E.J. Docking Interactions Induce Exposure of Activation Loop in the MAP Kinase ERK2. Structure 2006, 14, 1011–1019. [Google Scholar] [CrossRef]
- Sours, K.M.; Xiao, Y.; Ahn, N.G. Extracellular-Regulated Kinase 2 Is Activated by the Enhancement of Hinge Flexibility. J. Mol. Biol. 2014, 426, 1925–1935. [Google Scholar] [CrossRef]
- Lopez, E.D.; Burastero, O.; Arcon, J.P.; Defelipe, L.A.; Ahn, N.G.; Marti, M.A.; Turjanski, A.G. Kinase Activation by Small Conformational Changes. J. Chem. Inf. Model. 2020, 60, 821–832. [Google Scholar] [CrossRef]
- Iverson, D.B.; Xiao, Y.; Jones, D.N.; Eisenmesser, E.Z.; Ahn, N.G. Activation Loop Dynamics Are Coupled to Core Motions in Extracellular Signal-Regulated Kinase-2. Biochemistry 2020, 59, 2698–2706. [Google Scholar] [CrossRef]
- Ünal, E.B.; Uhlitz, F.; Blüthgen, N. A Compendium of ERK Targets. FEBS Lett. 2017, 591, 2607–2615. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, L.; Chng, W.J.; Ding, J.L. Comprehensive Analysis of ERK1/2 Substrates for Potential Combination Immunotherapies. Trends Pharmacol. Sci. 2019, 40, 897–910. [Google Scholar] [CrossRef]
- Johnson, J.L.; Yaron, T.M.; Huntsman, E.M.; Kerelsky, A.; Song, J.; Regev, A.; Lin, T.Y.; Liberatore, K.; Cizin, D.M.; Cohen, B.M.; et al. An Atlas of Substrate Specificities for the Human Serine/Threonine Kinome. Nature 2023, 613, 759–766. [Google Scholar] [CrossRef]
- Santini, C.C.; Longden, J.; Schoof, E.M.; Simpson, C.D.; Jeschke, G.R.; Creixell, P.; Kim, J.; Wu, X.; Turk, B.E.; Rosen, N.; et al. Global View of the RAF-MEK-ERK Module and Its Immediate Downstream Effectors. Sci. Rep. 2019, 9, 10865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Strand, A.; Robbins, D.; Cobb, M.H.; Goldsmith, E.J. Atomic Structure of the MAP Kinase ERK2 at 2.3 Å Resolution. Nature 1994, 367, 704–711. [Google Scholar] [CrossRef]
- Tanoue, T.; Maeda, R.; Adachi, M.; Nishida, E. Identification of a Docking Groove on ERK and P38 MAP Kinases That Regulates the Specificity of Docking Interactions. EMBO J. 2001, 20, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, T.; Adachi, M.; Moriguchi, T.; Nishida, E. A Conserved Docking Motif in MAP Kinases Common to Substrates, Activators and Regulators. Nat. Cell Biol. 2000, 2, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.; Glossip, D.; Xing, H.; Muslin, A.J.; Kornfeld, K. Multiple Docking Sites on Substrate Proteins Form a Modular System That Mediates Recognition by ERK MAP Kinase. Genes Dev. 1999, 13, 163–175. [Google Scholar] [CrossRef]
- Ahn, N.G. PORE-Ing over ERK Substrates. Nat. Struct. Mol. Biol. 2009, 16, 1004–1005. [Google Scholar] [CrossRef]
- Lee, T.; Hoofnagle, A.N.; Kabuyama, Y.; Stroud, J.; Min, X.; Goldsmith, E.J.; Chen, L.; Resing, K.A.; Ahn, N.G. Docking Motif Interactions in Map Kinases Revealed by Hydrogen Exchange Mass Spectrometry. Mol. Cell 2004, 14, 43–55. [Google Scholar] [CrossRef]
- Piserchio, A.; Ramakrishan, V.; Wang, H.; Kaoud, T.S.; Arshava, B.; Dutta, K.; Dalby, K.N.; Ghose, R. Structural and Dynamic Features of F-Recruitment Site Driven Substrate Phosphorylation by ERK2. Sci. Rep. 2015, 5, 11127. [Google Scholar] [CrossRef]
- Burkhard, K.A.; Chen, F.; Shapiro, P. Quantitative Analysis of ERK2 Interactions with Substrate Proteins: Roles for Kinase Docking Domains and Activity in Determining Binding Affinity. J. Biol. Chem. 2011, 286, 2477–2485. [Google Scholar] [CrossRef]
- Piserchio, A.; Warthaka, M.; Kaoud, T.S.; Callaway, K.; Dalby, K.N.; Ghose, R. Local Destabilization, Rigid Body, and Fuzzy Docking Facilitate the Phosphorylation of the Transcription Factor Ets-1 by the Mitogen-Activated Protein Kinase ERK2. Proc. Natl. Acad. Sci. USA 2017, 114, E6287–E6296. [Google Scholar] [CrossRef] [PubMed]
- MacE, P.D.; Wallez, Y.; Egger, M.F.; Dobaczewska, M.K.; Robinson, H.; Pasquale, E.B.; Riedl, S.J. Structure of ERK2 Bound to PEA-15 Reveals a Mechanism for Rapid Release of Activated MAPK. Nat. Commun. 2013, 4, 1681. [Google Scholar] [CrossRef]
- Fantz, D.A.; Jacobs, D.; Glossip, D.; Kornfeld, K. Docking Sites on Substrate Proteins Direct Extracellular Signal-Regulated Kinase to Phosphorylate Specific Residues. J. Biol. Chem. 2001, 276, 27256–27265. [Google Scholar] [CrossRef]
- Shi, G.; Song, C.; Robles, J.T.; Salichos, L.; Lou, H.J.; Lam, T.K.T.; Gerstein, M.; Turk, B.E. Proteome-Wide Screening for Mitogen-Activated Protein Kinase Docking Motifs and Interactors. Sci. Signal. 2023, 16, eabm5518. [Google Scholar] [CrossRef]
- Hancock, C.N.; Macias, A.; Lee, E.K.; Yu, S.Y.; MacKerell, A.D.; Shapiro, P. Identification of Novel Extracellular Signal-Regulated Kinase Docking Domain Inhibitors. J. Med. Chem. 2005, 48, 4586–4595. [Google Scholar] [CrossRef] [PubMed]
- Sammons, R.M.; Perry, N.A.; Li, Y.; Cho, E.J.; Piserchio, A.; Zamora-Olivares, D.P.; Ghose, R.; Kaoud, T.S.; Debevec, G.; Bartholomeusz, C.; et al. A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation. ACS Chem. Biol. 2019, 14, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Casar, B.; Crespo, P. ERK Signals: Scaffolding Scaffolds? Front. Cell Dev. Biol. 2016, 4, 49. [Google Scholar] [CrossRef]
- Matsubayashi, Y.; Fukuda, M.; Nishida, E. Evidence for Existence of a Nuclear Pore Complex-Mediated, Cytosol-Independent Pathway of Nuclear Translocation of ERK MAP Kinase in Permeabilized Cells. J. Biol. Chem. 2001, 276, 41755–41760. [Google Scholar] [CrossRef]
- Whitehurst, A.W.; Wilsbacher, J.L.; You, Y.; Luby-Phelps, K.; Moore, M.S.; Cobb, M.H. ERK2 Enters the Nucleus by a Carrier-Independent Mechanism. Proc. Natl. Acad. Sci. USA 2002, 99, 7496–7501. [Google Scholar] [CrossRef]
- Vomastek, T.; Iwanicki, M.P.; Burack, W.R.; Tiwari, D.; Kumar, D.; Parsons, J.T.; Weber, M.J.; Nandicoori, V.K. Extracellular Signal-Regulated Kinase 2 (ERK2) Phosphorylation Sites and Docking Domain on the Nuclear Pore Complex Protein Tpr Cooperatively Regulate ERK2-Tpr Interaction. Mol. Cell. Biol. 2008, 28, 6954–6966. [Google Scholar] [CrossRef]
- Kosako, H.; Yamaguchi, N.; Aranami, C.; Ushiyama, M.; Kose, S.; Imamoto, N.; Taniguchi, H.; Nishida, E.; Hattori, S. Phosphoproteomics Reveals New ERK MAP Kinase Targets and Links ERK to Nucleoporin-Mediated Nuclear Transport. Nat. Struct. Mol. Biol. 2009, 16, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Mandl, M.; Slack, D.N.; Keyse, S.M. Specific Inactivation and Nuclear Anchoring of Extracellular Signal-Regulated Kinase 2 by the Inducible Dual-Specificity Protein Phosphatase DUSP5. Mol. Cell. Biol. 2005, 25, 1830–1845. [Google Scholar] [CrossRef] [PubMed]
- Sur, R.; Ramos, J.W. Vanishin Is a Novel Ubiquitinylated Death-Effector Domain Protein That Blocks ERK Activation. Biochem. J. 2005, 387, 315–324. [Google Scholar] [CrossRef]
- Edmunds, J.W.; Mahadevan, L.C. MAP Kinases as Structural Adaptors and Enzymatic Activators in Transcription Complexes. J. Cell Sci. 2004, 117, 3715–3723. [Google Scholar] [CrossRef]
- Lawrence, M.C.; Shao, C.; McGlynn, K.; Naziruddin, B.; Levy, M.F.; Cobb, M.H. Multiple Chromatin-Bound Protein Kinases Assemble Factors That Regulate Insulin Gene Transcription. Proc. Natl. Acad. Sci. USA 2009, 106, 22181. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.M.; Zaganjor, E.; Cobb, M.H. Chromatin-Tethered MAPKs. Curr. Opin. Cell Biol. 2013, 25, 272–277. [Google Scholar] [CrossRef]
- Reszka, A.A.; Seger, R.; Diltz, C.D.; Krebs, E.G.; Fischer, E.H. Association of Mitogen-Activated Protein Kinase with the Microtubule Cytoskeleton. Proc. Natl. Acad. Sci. USA 1995, 92, 8881–8885. [Google Scholar] [CrossRef] [PubMed]
- Formstecher, E.; Ramos, J.W.; Fauquet, M.; Calderwood, D.A.; Hsieh, J.C.; Canton, B.; Nguyen, X.T.; Barnier, J.V.; Camonis, J.; Ginsberg, M.H.; et al. PEA-15 Mediates Cytoplasmic Sequestration of ERK MAP Kinase. Dev. Cell 2001, 1, 239–250. [Google Scholar] [CrossRef]
- Whitehurst, A.W.; Robinson, F.L.; Moore, M.S.; Cobb, M.H. The Death Effector Domain Protein PEA-15 Prevents Nuclear Entry of ERK2 by Inhibiting Required Interactions. J. Biol. Chem. 2004, 279, 12840–12847. [Google Scholar] [CrossRef]
- Torii, S.; Kusakabe, M.; Yamamoto, T.; Maekawa, M.; Nishida, E. Sef Is a Spatial Regulator for Ras/MAP Kinase Signaling. Dev. Cell 2004, 7, 33–44. [Google Scholar] [CrossRef]
- Atias, K.S.; Soudah, N.; Engelberg, D. Mutations That Confer Drug-Resistance, Oncogenicity and Intrinsic Activity on the ERK MAP Kinases—Current State of the Art. Cells 2020, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Emrick, M.A.; Hoofnagle, A.N.; Miller, A.S.; Ten Eyck, L.F.; Ahn, N.G. Constitutive Activation of Extracellular Signal-Regulated Kinase 2 by Synergistic Point Mutations. J. Biol. Chem. 2001, 276, 46469–46479. [Google Scholar] [CrossRef] [PubMed]
- Brenan, L.; Andreev, A.; Cohen, O.; Pantel, S.; Kamburov, A.; Cacchiarelli, D.; Persky, N.S.; Zhu, C.; Bagul, M.; Goetz, E.M.; et al. Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants. Cell Rep. 2016, 17, 1171–1183. [Google Scholar] [CrossRef]
- Levin-Salomon, V.; Kogan, K.; Ahn, N.G.; Livnah, O.; Engelberg, D. Isolation of Intrinsically Active (MEK-Independent) Variants of the ERK Family of Mitogen-Activated Protein (MAP) Kinases. J. Biol. Chem. 2008, 283, 34500–34510. [Google Scholar] [CrossRef] [PubMed]
- Smorodinsky-Atias, K.; Goshen-Lago, T.; Goldberg-Carp, A.; Melamed, D.; Shir, A.; Mooshayef, N.; Beenstock, J.; Karamansha, Y.; Darlyuk-Saadon, I.; Livnah, O.; et al. Intrinsically Active Variants of Erk Oncogenically Transform Cells and Disclose Unexpected Autophosphorylation Capability That Is Independent of TEY Phosphorylation. Mol. Biol. Cell 2015, 27, 1026–1039. [Google Scholar] [CrossRef]
- Kushnir, T.; Bar-Cohen, S.; Mooshayef, N.; Lange, R.; Bar-Sinai, A.; Rozen, H.; Salzberg, A.; Engelberg, D.; Paroush, Z. An Activating Mutation in ERK Causes Hyperplastic Tumors in a Scribble Mutant Tissue in Drosophila. Genetics 2020, 214, 109–120. [Google Scholar] [CrossRef]
- COSMIC: Catalog of Somatic Mutations in Cancer. Available online: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=MAPK3 (accessed on 29 September 2023).
- Goetz, E.M.; Ghandi, M.; Treacy, D.J.; Wagle, N.; Garraway, L.A. ERK Mutations Confer Resistance to Mitogen-Activated Protein Kinase Pathway Inhibitors. Cancer Res. 2014, 74, 7079. [Google Scholar] [CrossRef]
- COSMIC: Catalog of Somatic Mutations in Cancer. Available online: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=MAPK1_ENST00000398822 (accessed on 29 September 2023).
- Arvind, R.; Shimamoto, H.; Momose, F.; Amagasa, T.; Omura, K.; Tsuchida, N. A Mutation in the Common Docking Domain of ERK2 in a Human Cancer Cell Line, Which Was Associated with Its Constitutive Phosphorylation. Int. J. Oncol. 2005, 27, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Brunner, D.; Oellers, N.; Szabad, J.; Biggs, W.H.; Zipursky, S.L.; Hafen, E. A Gain-of-Function Mutation in Drosophila MAP Kinase Activates Multiple Receptor Tyrosine Kinase Signaling Pathways. Cell 1994, 76, 875–888. [Google Scholar] [CrossRef] [PubMed]
- Bott, C.M.; Thorneycroft, S.G.; Marshall, C.J. The Sevenmaker Gain-of-Function Mutation in P42 MAP Kinase Leads to Enhanced Signalling and Reduced Sensitivity to Dual Specificity Phosphatase Action. FEBS Lett. 1994, 352, 201–205. [Google Scholar] [CrossRef]
- Taylor, C.A.; Cormier, K.W.; Keenan, S.E.; Earnest, S.; Stippec, S.; Wichaidit, C.; Juang, Y.C.; Wang, J.; Shvartsman, S.Y.; Goldsmith, E.J.; et al. Functional Divergence Caused by Mutations in an Energetic Hotspot in ERK2. Proc. Natl. Acad. Sci. USA 2019, 116, 15514–15523. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Cormier, K.W.; Martin-Vega, A.; Earnest, S.; Stippec, S.; Wichaidit, C.; Cobb, M.H. ERK2 Mutations Affect Interactions, Localization, and Dimerization. Biochemistry 2023, 62, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK Signalling: A Master Regulator of Cell Behaviour, Life and Fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Fey, D.; Croucher, D.R.; Kolch, W.; Kholodenko, B.N. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades. Front. Physiol. 2012, 3, 355. [Google Scholar] [CrossRef]
- Saba-El-Leil, M.K.; Vella, F.D.J.; Vernay, B.; Voisin, L.; Chen, L.; Labrecque, N.; Ang, S.L.; Meloche, S. An Essential Function of the Mitogen-Activated Protein Kinase Erk2 in Mouse Trophoblast Development. EMBO Rep. 2003, 4, 964–968. [Google Scholar] [CrossRef]
- Pucilowska, J.; Puzerey, P.A.; Karlo, J.C.; Galán, R.F.; Landreth, G.E. Development/Plasticity/Repair Disrupted ERK Signaling during Cortical Development Leads to Abnormal Progenitor Proliferation, Neuronal and Network Excitability and Behavior, Modeling Human Neuro-Cardio-Facial-Cutaneous and Related Syndromes. J. Neurosci. 2012, 32, 8663–8677. [Google Scholar] [CrossRef]
- Seaberg, B.; Henslee, G.; Wang, S.; Paez-Colasante, X.; Landreth, G.E.; Rimer, M. Muscle-Derived Extracellular Signal-Regulated Kinases 1 and 2 Are Required for the Maintenance of Adult Myofibers and Their Neuromuscular Junctions. Mol. Cell. Biol. 2015, 35, 1238–1253. [Google Scholar] [CrossRef]
- Courcelles, M.; Frémin, C.; Voisin, L.; Lemieux, S.; Meloche, S.; Thibault, P. Phosphoproteome Dynamics Reveal Novel ERK1/2 MAP Kinase Substrates with Broad Spectrum of Functions. Mol. Syst. Biol. 2013, 9, 669. [Google Scholar] [CrossRef]
- Carlson, S.M.; Chouinard, C.R.; Labadorf, A.; Lam, C.J.; Schmelzle, K.; Fraenkel, E.; White, F.M. Large-Scale Discovery of ERK2 Substrates Identifies ERK-Mediated Transcriptional Regulation by ETV3. Sci. Signal. 2011, 4, rs11. [Google Scholar] [CrossRef]
- Zeke, A.; Bastys, T.; Alexa, A.; Garai, Á.; Mészáros, B.; Kirsch, K.; Dosztányi, Z.; Kalinina, O.V.; Reményi, A. Systematic Discovery of Linear Binding Motifs Targeting an Ancient Protein Interaction Surface on MAP Kinases. Mol. Syst. Biol. 2015, 11, 837. [Google Scholar] [CrossRef]
- Gógl, G.; Biri-Kovács, B.; Póti, Á.L.; Vadászi, H.; Szeder, B.; Bodor, A.; Schlosser, G.; Ács, A.; Turiák, L.; Buday, L.; et al. Dynamic Control of RSK Complexes by Phosphoswitch-Based Regulation. FEBS J. 2018, 285, 46–71. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.C.; McGlynn, K.; Park, B.H.; Cobb, M.H. ERK1/2-Dependent Activation of Transcription Factors Required for Acute and Chronic Effects of Glucose on the Insulin Gene Promoter. J. Biol. Chem. 2005, 280, 26751–26759. [Google Scholar] [CrossRef]
- Lawrence, M.; Shao, C.; Duan, L.; McGlynn, K.; Cobb, M.H. The Protein Kinases ERK1/2 and Their Roles in Pancreatic Beta Cells. Acta Physiol. 2008, 192, 11–17. [Google Scholar] [CrossRef]
- Chamberlain, C.E.; Scheel, D.W.; McGlynn, K.; Kim, H.; Miyatsuka, T.; Wang, J.; Nguyen, V.; Zhao, S.; Mavropoulos, A.; Abraham, A.G.; et al. Menin Determines K-RAS Proliferative Outputs in Endocrine Cells. J. Clin. Investig. 2014, 124, 4093–4101. [Google Scholar] [CrossRef] [PubMed]
- Konieczkowski, D.J.; Johannessen, C.M.; Abudayyeh, O.; Kim, J.W.; Cooper, Z.A.; Piris, A.; Frederick, D.T.; Barzily-Rokni, M.; Straussman, R.; Haq, R.; et al. A Melanoma Cell State Distinction Influences Sensitivity to MAPK Pathway Inhibitors. Cancer Discov. 2014, 4, 816–827. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Fu, Y.; Huang, X.; Wang, W.; Jiang, X.; Gritsenko, M.A.; Zhao, R.; Monore, M.E.; Pertz, O.C.; et al. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-Regulated Kinase Switch Governing Neurite Growth and Retraction. J. Biol. Chem. 2011, 286, 18190–18201. [Google Scholar] [CrossRef] [PubMed]
- Drosten, M.; Dhawahir, A.; Sum, E.Y.M.; Urosevic, J.; Lechuga, C.G.; Esteban, L.M.; Castellano, E.; Guerra, C.; Santos, E.; Barbacid, M. Genetic Analysis of Ras Signalling Pathways in Cell Proliferation, Migration and Survival. EMBO J. 2010, 29, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021, 10, 3327. [Google Scholar] [CrossRef] [PubMed]
- Ginzberg, M.B.; Kafri, R.; Kirschner, M. On Being the Right (Cell) Size. Science 2015, 348, 1245075. [Google Scholar] [CrossRef]
- Chambard, J.C.; Lefloch, R.; Pouysségur, J.; Lenormand, P. ERK Implication in Cell Cycle Regulation. Biochim. Biophys. Acta-Mol. Cell Res. 2007, 1773, 1299–1310. [Google Scholar] [CrossRef]
- Kotsis, D.H.; Masko, E.M.; Sigoillot, F.D.; Gregorio, R.D.; Guy-Evans, H.I.; Evans, D.R. Protein Kinase A Phosphorylation of the Multifunctional Protein CAD Antagonizes Activation by the MAP Kinase Cascade. Mol. Cell. Biochem. 2007, 301, 69–81. [Google Scholar] [CrossRef]
- Stefanovsky, V.; Langlois, F.; Gagnon-Kugler, T.; Rothblum, L.I.; Moss, T. Growth Factor Signaling Regulates Elongation of RNA Polymerase I Transcription in Mammals via UBF Phosphorylation and R-Chromatin Remodeling. Mol. Cell 2006, 21, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Felton-Edkins, Z.A.; Fairley, J.A.; Graham, E.L.; Johnston, I.M.; White, R.J.; Scott, P.H. The Mitogen-Activated Protein (MAP) Kinase ERK Induces TRNA Synthesis by Phosphorylating TFIIIB. EMBO J. 2003, 22, 2422–2432. [Google Scholar] [CrossRef] [PubMed]
- Scheper, G.C.; Morrice, N.A.; Kleijn, M.; Proud, C.G. The Mitogen-Activated Protein Kinase Signal-Integrating Kinase Mnk2 Is a Eukaryotic Initiation Factor 4E Kinase with High Levels of Basal Activity in Mammalian Cells. Mol. Cell. Biol. 2001, 21, 743–754. [Google Scholar] [CrossRef]
- Kalous, J.; Tetkova, A.; Kubelka, M.; Susor, A. Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis. Int. J. Mol. Sci. 2018, 19, 698. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.C.; Zhang, H.; Cao, L.R.; Dai, X.X.; Zhao, L.W.; Liu, H.B.; Fan, H.Y. Oocyte Meiosis-Coupled Poly(A) Polymerase α Phosphorylation and Activation Trigger Maternal MRNA Translation in Mice. Nucleic Acids Res. 2021, 49, 5867. [Google Scholar] [CrossRef]
- Xie, L.; Law, B.K.; Chytil, A.M.; Brown, K.A.; Aakre, M.E.; Moses, H.L. Activation of the Erk Pathway Is Required for TGF-Β1-Induced EMT in Vitro. Neoplasia 2004, 6, 603–610. [Google Scholar] [CrossRef]
- Weiss, M.B.; Abel, E.V.; Mayberry, M.M.; Basile, K.J.; Berger, A.C.; Aplin, A.E. TWIST1 Is an ERK1/2 Effector That Promotes Invasion and Regulates MMP-1 Expression in Human Melanoma Cells. Cancer Res. 2012, 72, 6382–6392. [Google Scholar] [CrossRef]
- Shin, S.; Dimitri, C.A.; Yoon, S.O.; Dowdle, W.; Blenis, J. ERK2 but Not ERK1 Induces Epithelial-to-Mesenchymal Transformation via DEF Motif-Dependent Signaling Events. Mol. Cell 2010, 38, 114–127. [Google Scholar] [CrossRef]
- Shin, S.; Buel, G.R.; Nagiec, M.J.; Han, M.J.; Roux, P.P.; Blenis, J.; Yoon, S.O. ERK2 Regulates Epithelial-to-Mesenchymal Plasticity through DOCK10-Dependent Rac1/FoxO1 Activation. Proc. Natl. Acad. Sci. USA 2019, 116, 2967–2976. [Google Scholar] [CrossRef]
- Tran, S.E.F.; Holmström, T.H.; Ahonen, M.; Kähäri, V.M.; Eriksson, J.E. MAPK/ERK Overrides the Apoptotic Signaling from Fas, TNF, and TRAIL Receptors. J. Biol. Chem. 2001, 276, 16484–16490. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Andersen, J.S.; Mann, M.; Terada, N.; Korsmeyer, S.J. P70S6 Kinase Signals Cell Survival as Well as Growth, Inactivating the pro-Apoptotic Molecule BAD. Proc. Natl. Acad. Sci. USA 2001, 98, 9666–9670. [Google Scholar] [CrossRef]
- Biswas, S.C.; Greene, L.A. Nerve Growth Factor (NGF) down-Regulates the Bcl-2 Homology 3 (BH3) Domain-Only Protein Bim and Suppresses Its Proapoptotic Activity by Phosphorylation. J. Biol. Chem. 2002, 277, 49511–49516. [Google Scholar] [CrossRef] [PubMed]
- Hübner, A.; Barrett, T.; Flavell, R.A.; Davis, R.J. Multisite Phosphorylation Regulates Bim Stability and Apoptotic Activity. Mol. Cell 2008, 30, 415–425. [Google Scholar] [CrossRef]
- Allan, L.A.; Morrice, N.; Brady, S.; Magee, G.; Pathak, S.; Clarke, P.R. Inhibition of Caspase-9 through Phosphorylation at Thr 125 by ERK MAPK. Nat. Cell Biol. 2003, 5, 647–654. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Wang, M.; Carr, B.I. Persistent ERK Phosphorylation Negatively Regulates CAMP Response Element-Binding Protein (CREB) Activity via Recruitment of CREB-Binding Protein to Pp90RSK. J. Biol. Chem. 2003, 278, 11138–11144. [Google Scholar] [CrossRef]
- Smirnova, I.S.; Chang, S.; Forsthuber, T.G. Prosurvival and Proapoptotic Functions of ERK1/2 Activation in Murine Thymocytes in Vitro. Cell. Immunol. 2010, 261, 29–36. [Google Scholar] [CrossRef]
- Zhuang, S.; Schnellmann, R.G. A Death-Promoting Role for Extracellular Signal-Regulated Kinase. J. Pharmacol. Exp. Ther. 2006, 319, 991–997. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, S. ERK1/2 MAP Kinases in Cell Survival and Apoptosis. IUBMB Life 2006, 58, 621–631. [Google Scholar] [CrossRef]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef] [PubMed]
- Khoo, S.; Griffen, S.C.; Xia, Y.; Baer, R.J.; German, M.S.; Cobb, M.H. Regulation of Insulin Gene Transcription by ERK1 and ERK2 in Pancreatic β Cells. J. Biol. Chem. 2003, 278, 32969–32977. [Google Scholar] [CrossRef] [PubMed]
- Arnette, D.; Gibson, T.B.; Lawrence, M.C.; January, B.; Khoo, S.; McGlynn, K.; Vanderbilt, C.A.; Cobb, M.H. Regulation of ERK1 and ERK2 by Glucose and Peptide Hormones in Pancreatic β Cells. J. Biol. Chem. 2003, 278, 32517–32525. [Google Scholar] [CrossRef]
- Ritt, D.A.; Monson, D.M.; Specht, S.I.; Morrison, D.K. Impact of Feedback Phosphorylation and Raf Heterodimerization on Normal and Mutant B-Raf Signaling. Mol. Cell. Biol. 2010, 30, 806–819. [Google Scholar] [CrossRef]
- Duan, L.; Cobb, M.H. Calcineurin Increases Glucose Activation of ERK1/2 by Reversing Negative Feedback. Proc. Natl. Acad. Sci. USA 2010, 107, 22314–22319. [Google Scholar] [CrossRef]
- Whitehurst, A.; Cobb, M.H.; White, M.A. Stimulus-Coupled Spatial Restriction of Extracellular Signal-Regulated Kinase 1/2 Activity Contributes to the Specificity of Signal-Response Pathways. Mol. Cell. Biol. 2004, 24, 10145–10150. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.C.; McGlynn, K.; Shao, C.; Duan, L.; Naziruddin, B.; Levy, M.F.; Cobb, M.H. Chromatin-Bound Mitogen-Activated Protein Kinases Transmit Dynamic Signals in Transcription Complexes in β-Cells. Proc. Natl. Acad. Sci. USA 2008, 105, 13315–13320. [Google Scholar] [CrossRef]
- Kidger, A.M.; Saville, M.K.; Rushworth, L.K.; Davidson, J.; Stellzig, J.; Ono, M.; Kuebelsbeck, L.A.; Janssen, K.P.; Holzmann, B.; Morton, J.P.; et al. Suppression of Mutant Kirsten-RAS (KRASG12D)-Driven Pancreatic Carcinogenesis by Dual-Specificity MAP Kinase Phosphatases 5 and 6. Oncogene 2022, 41, 2811–2823. [Google Scholar] [CrossRef]
- Guo, S.; Burnette, R.; Zhao, L.; Vanderford, N.L.; Poitout, V.; Hagman, D.K.; Henderson, E.; Özcan, S.; Wadzinski, B.E.; Stein, R. The Stability and Transactivation Potential of the Mammalian MafA Transcription Factor Are Regulated by Serine 65 Phosphorylation. J. Biol. Chem. 2009, 284, 759–765. [Google Scholar] [CrossRef]
- Seufert, J.; Weir, G.C.; Habener, J.F. Differential Expression of the Insulin Gene Transcriptional Repressor CCAAT/Enhancer-Binding Protein Beta and Transactivator Islet Duodenum Homeobox-1 in Rat Pancreatic Beta Cells during the Development of Diabetes Mellitus. J. Clin. Investig. 1998, 101, 2528–2539. [Google Scholar] [CrossRef]
- Caeser, R.; Hulton, C.; Costa, E.; Durani, V.; Little, M.; Chen, X.; Tischfield, S.E.; Asher, M.; Kombak, F.E.; Chavan, S.S.; et al. MAPK Pathway Activation Selectively Inhibits ASCL1-Driven Small Cell Lung Cancer. iScience 2021, 24, 103224. [Google Scholar] [CrossRef]
- Inoue, Y.; Nikolic, A.; Farnsworth, D.; Shi, R.; Johnson, F.D.; Liu, A.; Ladanyi, M.; Somwar, R.; Gallo, M.; Lockwood, W.W. Extracellular Signal-Regulated Kinase Mediates Chromatin Rewiring and Lineage Transformation in Lung Cancer. eLife 2021, 10, e66524. [Google Scholar] [CrossRef] [PubMed]
- Unni, A.M.; Harbourne, B.; Oh, M.H.; Wild, S.; Ferrarone, J.R.; Lockwood, W.W.; Varmus, H. Hyperactivation of ERK by Multiple Mechanisms Is Toxic to RTK-RAS Mutation-Driven Lung Adenocarcinoma Cells. eLife 2018, 7, e33718. [Google Scholar] [CrossRef]
- Martin-Vega, A.; Earnest, S.; Augustyn, A.; Wichaidit, C.; Gazdar, A.; Girard, L.; Peyton, M.; Kollipara, R.K.; Minna, J.D.; Johnson, J.E.; et al. ASCL1-ERK1/2 Axis: ASCL1 Restrains ERK1/2 via the Dual Specificity Phosphatase DUSP6 to Promote Survival of a Subset of Neuroendocrine Lung Cancers. bioRxiv 2023. [Google Scholar] [CrossRef]
- Nichols, J.; Smith, A. Naive and Primed Pluripotent States. Cell Stem Cell 2009, 4, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Osorno, R.; Tsakiridis, A.; Wilson, V. In Vivo Differentiation Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation. Cell Rep. 2012, 2, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.L.; Hilton, D.J.; Pease, S.; Willson, T.A.; Stewart, C.L.; Gearing, D.P.; Wagner, E.F.; Metcalf, D.; Nicola, N.A.; Gough, N.M. Myeloid Leukaemia Inhibitory Factor Maintains the Developmental Potential of Embryonic Stem Cells. Nature 1988, 336, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Ogawa, K.; Shimosato, D.; Adachi, K. A Parallel Circuit of LIF Signalling Pathways Maintains Pluripotency of Mouse ES Cells. Nature 2009, 460, 118–122. [Google Scholar] [CrossRef]
- Ying, Q.L.; Nichols, J.; Chambers, I.; Smith, A. BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3. Cell 2003, 115, 281–292. [Google Scholar] [CrossRef]
- Chazaud, C.; Yamanaka, Y.; Pawson, T.; Rossant, J. Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway. Dev. Cell 2006, 10, 615–624. [Google Scholar] [CrossRef]
- Qi, X.; Li, T.G.; Hao, J.; Hu, J.; Wang, J.; Simmons, H.; Miura, S.; Mishina, Y.; Zhao, G.Q. BMP4 Supports Self-Renewal of Embryonic Stem Cells by Inhibiting Mitogen-Activated Protein Kinase Pathways. Proc. Natl. Acad. Sci. USA 2004, 101, 6027–6032. [Google Scholar] [CrossRef]
- Li, Z.; Fei, T.; Zhang, J.; Zhu, G.; Wang, L.; Lu, D.; Chi, X.; Teng, Y.; Hou, N.; Yang, X.; et al. BMP4 Signaling Acts via Dual-Specificity Phosphatase 9 to Control ERK Activity in Mouse Embryonic Stem Cells. Cell Stem Cell 2012, 10, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Meijer, L.; Skaltsounis, L.; Greengard, P.; Brivanlou, A.H. Maintenance of Pluripotency in Human and Mouse Embryonic Stem Cells through Activation of Wnt Signaling by a Pharmacological GSK-3-Specific Inhibitor. Nat. Med. 2004, 10, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Bone, H.K.; Damiano, T.; Bartlett, S.; Perry, A.; Letchford, J.; Ripoll, Y.S.; Nelson, A.S.; Welham, M.J. Involvement of GSK-3 in Regulation of Murine Embryonic Stem Cell Self-Renewal Revealed by a Series of Bisindolylmaleimides. Chem. Biol. 2009, 16, 15–27. [Google Scholar] [CrossRef]
- Ying, Q.L.; Wray, J.; Nichols, J.; Batlle-Morera, L.; Doble, B.; Woodgett, J.; Cohen, P.; Smith, A. The Ground State of Embryonic Stem Cell Self-Renewal. Nature 2008, 453, 519–523. [Google Scholar] [CrossRef]
- Silva, J.; Barrandon, O.; Nichols, J.; Kawaguchi, J.; Theunissen, T.W.; Smith, A. Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biol. 2008, 6, 2237–2247. [Google Scholar] [CrossRef] [PubMed]
- Stavridis, M.P.; Simon Lunn, J.; Collins, B.J.; Storey, K.G. A Discrete Period of FGF-Induced Erk1/2 Signalling Is Required for Vertebrate Neural Specification. Development 2007, 134, 2889–2894. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.B.; Kaji, K.; Kunath, T. ERK2 Suppresses Self-Renewal Capacity of Embryonic Stem Cells, but Is Not Required for Multi-Lineage Commitment. PLoS ONE 2013, 8, e60907. [Google Scholar] [CrossRef]
- Chen, H.; Guo, R.; Zhang, Q.; Guo, H.; Yang, M.; Wu, Z.; Gao, S.; Liu, L.; Chen, L. Erk Signaling Is Indispensable for Genomic Stability and Self-Renewal of Mouse Embryonic Stem Cells. Proc. Natl. Acad. Sci. USA 2015, 112, E5936–E5943. [Google Scholar] [CrossRef]
- Martin, G.R. Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells. Proc. Natl. Acad. Sci. USA 1981, 78, 7634–7638. [Google Scholar] [CrossRef]
- Evans, M.J.; Kaufman, M.H. Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature 1981, 292, 154–156. [Google Scholar] [CrossRef]
- Brons, I.G.M.; Smithers, L.E.; Trotter, M.W.B.; Rugg-Gunn, P.; Sun, B.; Chuva De Sousa Lopes, S.M.; Howlett, S.K.; Clarkson, A.; Ahrlund-Richter, L.; Pedersen, R.A.; et al. Derivation of Pluripotent Epiblast Stem Cells from Mammalian Embryos. Nature 2007, 448, 191–195. [Google Scholar] [CrossRef]
- Vallier, L.; Touboul, T.; Chng, Z.; Brimpari, M.; Hannan, N.; Millan, E.; Smithers, L.E.; Trotter, M.; Rugg-Gunn, P.; Weber, A.; et al. Early Cell Fate Decisions of Human Embryonic Stem Cells and Mouse Epiblast Stem Cells Are Controlled by the Same Signalling Pathways. PLoS ONE 2009, 4, e6082. [Google Scholar] [CrossRef]
- Weinberger, L.; Ayyash, M.; Novershtern, N.; Hanna, J.H. Dynamic Stem Cell States: Naive to Primed Pluripotency in Rodents and Humans. Nat. Rev. Mol. Cell Biol. 2016, 17, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Tesar, P.J.; Chenoweth, J.G.; Brook, F.A.; Davies, T.J.; Evans, E.P.; Mack, D.L.; Gardner, R.L.; McKay, R.D.G. New Cell Lines from Mouse Epiblast Share Defining Features with Human Embryonic Stem Cells. Nature 2007, 448, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Vallier, L.; Alexander, M.; Pedersen, R.A. Activin/Nodal and FGF Pathways Cooperate to Maintain Pluripotency of Human Embryonic Stem Cells. J. Cell Sci. 2005, 118, 4495–4509. [Google Scholar] [CrossRef] [PubMed]
- James, D.; Levine, A.J.; Besser, D.; Hemmati-Brivanlou, A. TGFβ/Activin/Nodal Signaling Is Necessary for the Maintenance of Pluripotency in Human Embryonic Stem Cells. Development 2005, 132, 1273–1282. [Google Scholar] [CrossRef]
- Ding, V.M.Y.; Ling, L.; Natarajan, S.; Yap, M.G.S.; Cool, S.M.; Choo, A.B.H. FGF-2 Modulates Wnt Signaling in Undifferentiated HESC and IPS Cells through Activated PI3-K/GSK3β Signaling. J. Cell. Physiol. 2010, 225, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, P.; Dvorakova, D.; Koskova, S.; Vodinska, M.; Najvirtova, M.; Krekac, D.; Hampl, A. Expression and Potential Role of Fibroblast Growth Factor 2 and Its Receptors in Human Embryonic Stem Cells. Stem Cells 2005, 23, 1200–1211. [Google Scholar] [CrossRef]
- Levenstein, M.E.; Ludwig, T.E.; Xu, R.-H.; Llanas, R.A.; VanDenHeuvel-Kramer, K.; Manning, D.; Thomson, J.A. Basic Fibroblast Growth Factor Support of Human Embryonic Stem Cell Self-Renewal. Stem Cells 2006, 24, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Göke, J.; Chan, Y.S.; Yan, J.; Vingron, M.; Ng, H.H. Genome-Wide Kinase-Chromatin Interactions Reveal the Regulatory Network of ERK Signaling in Human Embryonic Stem Cells. Mol. Cell 2013, 50, 844–855. [Google Scholar] [CrossRef]
- Li, Z.; Theus, M.H.; Wei, L. Role of ERK 1/2 Signaling in Neuronal Differentiation of Cultured Embryonic Stem Cells. Dev. Growth Differ. 2006, 48, 513–523. [Google Scholar] [CrossRef]
- Hu, S.; Xie, Z.; Onishi, A.; Yu, X.; Jiang, L.; Lin, J.; Rho, H.S.; Woodard, C.; Wang, H.; Jeong, J.S.; et al. Profiling the Human Protein-DNA Interactome Reveals ERK2 as a Transcriptional Repressor of Interferon Signaling. Cell 2009, 139, 610–622. [Google Scholar] [CrossRef]
- Tripathi, P.; Sahoo, N.; Ullah, U.; Kallionpää, H.; Suneja, A.; Lahesmaa, R.; Rao, K.V.S. A Novel Mechanism for ERK-Dependent Regulation of IL4 Transcription during Human Th2-Cell Differentiation. Immunol. Cell Biol. 2012, 90, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Agudo-Ibáñez, L.; Morante, M.; García-Gutiérrez, L.; Quintanilla, A.; Rodríguez, J.; Muñoz, A.; León, J.; Crespo, P. ERK2 Stimulates MYC Transcription by Anchoring CDK9 to the MYC Promoter in a Kinase Activity-Independent Manner. Sci. Signal. 2023, 16, eadg4193. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Calvo, F.; González, J.M.; Casar, B.; Andrés, V.; Crespo, P. ERK1/2 MAP Kinases Promote Cell Cycle Entry by Rapid, Kinase-Independent Disruption of Retinoblastoma–Lamin A Complexes. J. Cell Biol. 2010, 191, 967. [Google Scholar] [CrossRef] [PubMed]
- Fjeld, C.C.; Rice, A.E.; Kim, Y.; Gee, K.R.; Denu, J.M. Mechanistic Basis for Catalytic Activation of Mitogen-Activated Protein Kinase Phosphatase 3 by Extracellular Signal-Regulated Kinase. J. Biol. Chem. 2000, 275, 6749–6757. [Google Scholar] [CrossRef]
- Camps, M.; Nichols, A.; Gillieron, C.; Antonsson, B.; Muda, M.; Chabert, C.; Boschert, U.; Arkinstall, S. Catalytic Activation of the Phosphatase MKP-3 by ERK2 Mitogen-Activated Protein Kinase. Science 1998, 280, 1262–1265. [Google Scholar] [CrossRef]
- Shapiro, P.S.; Whalen, A.M.; Tolwinski, N.S.; Wilsbacher, J.; Froelich-Ammon, S.J.; Garcia, M.; Osheroff, N.; Ahn, N.G. Extracellular Signal-Regulated Kinase Activates Topoisomerase IIα through a Mechanism Independent of Phosphorylation. Mol. Cell. Biol. 1999, 19, 3551–3560. [Google Scholar] [CrossRef]
- Kim, D.; Naganuma, M.; Nakagawa, R.; Cong, A.; Ehara, H.; Vu, H.; Jeong, J.; Chang, J.H.; Schellenberg, M.J.; Sekine, S.-I.; et al. ERK2-Topoisomerase II Regulatory Axis Is Important for Gene Activation in Immediate Early Genes. bioRxiv 2022. [CrossRef]
- Cohen-Armon, M.; Visochek, L.; Rozensal, D.; Kalal, A.; Geistrikh, I.; Klein, R.; Bendetz-Nezer, S.; Yao, Z.; Seger, R. DNA-Independent PARP-1 Activation by Phosphorylated ERK2 Increases Elk1 Activity: A Link to Histone Acetylation. Mol. Cell 2007, 25, 297–308. [Google Scholar] [CrossRef]
- Kung, J.E.; Jura, N. Structural Basis for the Non-Catalytic Functions of Protein Kinases. Structure 2016, 24, 7–24. [Google Scholar] [CrossRef]
- Lake, D.; Corrêa, S.A.L.; Müller, J. Negative Feedback Regulation of the ERK1/2 MAPK Pathway. Cell. Mol. Life Sci. 2016, 73, 4397–4413. [Google Scholar] [CrossRef]
- Dougherty, M.K.; Müller, J.; Ritt, D.A.; Zhou, M.; Zhou, X.Z.; Copeland, T.D.; Conrads, T.P.; Veenstra, T.D.; Lu, K.P.; Morrison, D.K. Regulation of Raf-1 by Direct Feedback Phosphorylation. Mol. Cell 2005, 17, 215–224. [Google Scholar] [CrossRef]
- Hekman, M.; Fischer, A.; Wennogle, L.P.; Wang, Y.K.; Campbell, S.L.; Rapp, U.R. Novel C-Raf Phosphorylation Sites: Serine 296 and 301 Participate in Raf Regulation. FEBS Lett. 2005, 579, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Brummer, T.; Naegele, H.; Reth, M.; Misawa, Y. Identification of Novel ERK-Mediated Feedback Phosphorylation Sites at the C-Terminus of B-Raf. Oncogene 2003, 22, 8823–8834. [Google Scholar] [CrossRef] [PubMed]
- Rushworth, L.K.; Hindley, A.D.; O’Neill, E.; Kolch, W. Regulation and Role of Raf-1/B-Raf Heterodimerization. Mol. Cell. Biol. 2006, 26, 2262–2272. [Google Scholar] [CrossRef]
- Cacace, A.M.; Michaud, N.R.; Therrien, M.; Mathes, K.; Copeland, T.; Rubin, G.M.; Morrison, D.K. Identification of Constitutive and Ras-Inducible Phosphorylation Sites of KSR: Implications for 14-3-3 Binding, Mitogen-Activated Protein Kinase Binding, and KSR Overexpression. Mol. Cell. Biol. 1999, 19, 229–240. [Google Scholar] [CrossRef]
- Volle, D.J.; Fulton, J.A.; Chaika, O.V.; McDermott, K.; Huang, H.; Steinke, L.A.; Lewis, R.E. Phosphorylation of the Kinase Suppressor of Ras by Associated Kinases. Biochemistry 1999, 38, 5130–5137. [Google Scholar] [CrossRef] [PubMed]
- McKay, M.M.; Ritt, D.A.; Morrison, D.K. Signaling Dynamics of the KSR1 Scaffold Complex. Proc. Natl. Acad. Sci. USA 2009, 106, 11022–11027. [Google Scholar] [CrossRef]
- McKay, M.M.; Morrison, D.K. Caspase-Dependent Cleavage Disrupts the ERK Cascade Scaffolding Function of KSR1. J. Biol. Chem. 2007, 282, 26225–26234. [Google Scholar] [CrossRef]
- Chen, D.; Waters, S.B.; Holt, K.H.; Pessin, J.E. SOS Phosphorylation and Disassociation of the Grb2-SOS Complex by the ERK and JNK Signaling Pathways. J. Biol. Chem. 1996, 271, 6328–6332. [Google Scholar] [CrossRef]
- Corbalan-Garcia, S.; Yang, S.S.; Degenhardt, K.R.; Bar-Sagi, D. Identification of the Mitogen-Activated Protein Kinase Phosphorylation Sites on Human Sos1 That Regulate Interaction with Grb2. Mol. Cell. Biol. 1996, 16, 5674–5682. [Google Scholar] [CrossRef]
- Porfiri, E.; McCormick, F. Regulation of Epidermal Growth Factor Receptor Signaling by Phosphorylation of the Ras Exchange Factor HSOS1. J. Biol. Chem. 1996, 271, 5871–5877. [Google Scholar] [CrossRef]
- Shin, S.Y.; Rath, O.; Choo, S.M.; Fee, F.; McFerran, B.; Kolch, W.; Cho, K.H. Positive- and Negative-Feedback Regulations Coordinate the Dynamic Behavior of the Ras-Raf-MEK-ERK Signal Transduction Pathway. J. Cell Sci. 2009, 122, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Kamioka, Y.; Yasuda, S.; Fujita, Y.; Aoki, K.; Matsuda, M. Multiple Decisive Phosphorylation Sites for the Negative Feedback Regulation of SOS1 via ERK. J. Biol. Chem. 2010, 285, 33540–33548. [Google Scholar] [CrossRef] [PubMed]
- Douville, E.; Downward, J. EGF Induced SOS Phosphorylation in PC12 Cells Involves P90 RSK-2. Oncogene 1997, 15, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Carriere, A.; Cheerathodi, M.; Zhang, X.; Lavoie, G.; Rush, J.; Roux, P.P.; Ballif, B.A. RSK Phosphorylates SOS1 Creating 14-3-3-Docking Sites and Negatively Regulating MAPK Activation. Biochem. J. 2012, 447, 159–166. [Google Scholar] [CrossRef]
- Owens, D.M.; Keyse, S.M. Differential Regulation of MAP Kinase Signalling by Dual-Specificity Protein Phosphatases. Oncogene 2007, 26, 3203–3213. [Google Scholar] [CrossRef]
- Brondello, J.M.; Brunet, A.; Pouysségur, J.; McKenzie, F.R. The Dual Specificity Mitogen-Activated Protein Kinase Phosphatase-1 and -2 Are Induced by the P42/P44(MAPK) Cascade. J. Biol. Chem. 1997, 272, 1368–1376. [Google Scholar] [CrossRef]
- Brondello, J.M.; Pouysségur, J.; McKenzie, F.R. Reduced MAP Kinase Phosphatase-1 Degradation after P42/P44(MAPK)- Dependent Phosphorylation. Science 1999, 286, 2514–2517. [Google Scholar] [CrossRef]
- Ozaki, K.; Kadomoto, R.; Asato, K.; Tanimura, S.; Itoh, N.; Kohno, M. Erk Pathway Positively Regulates the Expression of Sprouty Genes. Biochem. Biophys. Res. Commun. 2001, 285, 1084–1088. [Google Scholar] [CrossRef]
- Hanafusa, H.; Torii, S.; Yasunaga, T.; Nishida, E. Sprouty1 and Sprouty2 Provide a Control Mechanism for the Ras/MAPK Signalling Pathway. Nat. Cell Biol. 2002, 4, 850–858. [Google Scholar] [CrossRef]
- Sasaki, A.; Taketomi, T.; Kato, R.; Saeki, K.; Nonami, A.; Sasaki, M.; Kuriyama, M.; Saito, N.; Shibuya, M.; Yoshimura, A. Mammalian Sprouty4 Suppresses Ras-Independent ERK Activation by Binding to Raf1. Nat. Cell Biol. 2003, 5, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, M.; Schlegl, J.; Hahne, H.; Gholami, A.M.; Lieberenz, M.; Savitski, M.M.; Ziegler, E.; Butzmann, L.; Gessulat, S.; Marx, H.; et al. Mass-Spectrometry-Based Draft of the Human Proteome. Nature 2014, 509, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, A.; Terai, K.; Itoh, R.E.; Aoki, K.; Nakamura, T.; Kuroda, S.; Nishida, E.; Matsuda, M. Dynamics of the Ras/ERK MAPK Cascade as Monitored by Fluorescent Probes. J. Biol. Chem. 2006, 281, 8917–8926. [Google Scholar] [CrossRef]
- Itzhak, D.N.; Tyanova, S.; Cox, J.; Borner, G.H.H. Global, Quantitative and Dynamic Mapping of Protein Subcellular Localization. eLife 2016, 5, e16950. [Google Scholar] [CrossRef]
- Rukhlenko, O.; Kholodenko, B.N.; Kolch, W. Systems Biology Approaches to Macromolecules: The Role of Dynamic Protein Assemblies in Information Processing. Curr. Opin. Struct. Biol. 2021, 67, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Iversen, L.; Tu, H.L.; Rhodes, C.; Christensen, S.M.; Iwig, J.S.; Hansen, S.D.; Huang, W.Y.C.; Groves, J.T. H-Ras Forms Dimers on Membrane Surfaces via a Protein—Protein Interface. Proc. Natl. Acad. Sci. USA 2014, 111, 2996–3001. [Google Scholar] [CrossRef]
- Muratcioglu, S.; Chavan, T.S.; Freed, B.C.; Jang, H.; Khavrutskii, L.; Natasha Freed, R.; Dyba, M.A.; Stefanisko, K.; Tarasov, S.G.; Gursoy, A.; et al. GTP-Dependent K-Ras Dimerization. Structure 2015, 23, 1325–1335. [Google Scholar] [CrossRef]
- Lee, K.Y.; Fang, Z.; Enomoto, M.; Gasmi-Seabrook, G.; Zheng, L.; Koide, S.; Ikura, M.; Marshall, C.B. Two Distinct Structures of Membrane-Associated Homodimers of GTP- and GDP-Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement. Angew. Chem. Int. Ed. 2020, 59, 11037–11045. [Google Scholar] [CrossRef]
- Yuan, J.; Ng, W.H.; Tian, Z.; Yap, J.; Baccarini, M.; Chen, Z.; Hu, J. Activating Mutations in MEK1 Enhance Homodimerization and Promote Tumorigenesis. Sci. Signal. 2018, 11, eaar6795. [Google Scholar] [CrossRef]
- Fischer, A.; Hekman, M.; Kuhlmann, J.; Rubio, I.; Wiese, S.; Rapp, U.R. B- and C-RAF Display Essential Differences in Their Binding to Ras: The Isotype-Specific N Terminus of B-RAF Facilitates Ras Binding. J. Biol. Chem. 2007, 282, 26503–26516. [Google Scholar] [CrossRef]
- Block, C.; Janknecht, R.; Herrmann, C.; Nassar, N.; Wittinghofer, A. Quantitative Structure-Activity Analysis Correlating Ras/Raf Interaction in Vitro to Raf Activation in Vivo. Nat. Struct. Biol. 1996, 3, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Haling, J.R.; Sudhamsu, J.; Yen, I.; Sideris, S.; Sandoval, W.; Phung, W.; Bravo, B.J.; Giannetti, A.M.; Peck, A.; Masselot, A.; et al. Structure of the BRAF-MEK Complex Reveals a Kinase Activity Independent Role for BRAF in MAPK Signaling. Cancer Cell 2014, 26, 402–413. [Google Scholar] [CrossRef]
- Lito, P.; Saborowski, A.; Yue, J.; Solomon, M.; Joseph, E.; Gadal, S.; Saborowski, M.; Kastenhuber, E.; Fellmann, C.; Ohara, K.; et al. Disruption of CRAF-Mediated MEK Activation Is Required for Effective Mek Inhibition in KRAS Mutant Tumors. Cancer Cell 2014, 25, 697–710. [Google Scholar] [CrossRef]
- Dhawan, N.S.; Scopton, A.P.; Dar, A.C. Small Molecule Stabilization of the KSR Inactive State Antagonizes Oncogenic Ras Signalling. Nature 2016, 537, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Barbero, N.; Napione, L.; Visentin, S.; Alvaro, M.; Veglio, A.; Bussolino, F.; Viscardi, G. A Transient Kinetic Study between Signaling Proteins: The Case of the MEK-ERK Interaction. Chem. Sci. 2011, 2, 1804–1809. [Google Scholar] [CrossRef]
- Mansour, S.J.; Candia, J.M.; Matsuura, J.E.; Manning, M.C.; Ahn, N.G. Interdependent Domains Controlling the Enzymatic Activity of Mitogen Activated Protein Kinase Kinase 1. Biochemistry 1996, 35, 15529–15536. [Google Scholar] [CrossRef] [PubMed]
- Khokhlatchev, A.V.; Canagarajah, B.; Wilsbacher, J.; Robinson, M.; Atkinson, M.; Goldsmith, E.; Cobb, M.H. Phosphorylation of the MAP Kinase ERK2 Promotes Its Homodimerization and Nuclear Translocation. Cell 1998, 93, 605–615. [Google Scholar] [CrossRef]
- Burack, W.R.; Shaw, A.S. Signal Transduction: Hanging on a Scaffold. Curr. Opin. Cell Biol. 2000, 12, 211–216. [Google Scholar] [CrossRef]
- Good, M.C.; Zalatan, J.G.; Lim, W.A. Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information. Science 2011, 332, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Satterberg, B.; Lyons, D.M.; Elion, E.A. Ste5 Tethers Multiple Protein Kinases in the MAP Kinase Cascade Required for Mating in S. Cerevisiae. Cell 1994, 78, 499–512. [Google Scholar] [CrossRef]
- Yablonski, D.; Marbach, I.; Levitzki, A. Dimerization of Ste5, a Mitogen-Activated Protein Kinase Cascade Scaffold Protein, Is Required for Signal Transduction. Proc. Natl. Acad. Sci. USA 1996, 93, 13864–13869. [Google Scholar] [CrossRef]
- Kolch, W. Coordinating ERK/MAPK Signalling through Scaffolds and Inhibitors. Nat. Rev. Mol. Cell Biol. 2005, 6, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, D.N.; Kashef, K.; Lee, C.M.; Xu, H.; Reddy, E.P. Scaffold Proteins of MAP-Kinase Modules. Oncogene 2007, 26, 3185–3202. [Google Scholar] [CrossRef] [PubMed]
- Briggs, M.W.; Sacks, D.B. IQGAP Proteins Are Integral Components of Cytoskeletal Regulation. EMBO Rep. 2003, 4, 571–574. [Google Scholar] [CrossRef]
- Mataraza, J.M.; Briggs, M.W.; Li, Z.; Entwistle, A.; Ridley, A.J.; Sacks, D.B. IQGAP1 Promotes Cell Motility and Invasion. J. Biol. Chem. 2003, 278, 41237–41245. [Google Scholar] [CrossRef]
- Ishibe, S.; Joly, D.; Liu, Z.X.; Cantley, L.G. Paxillin Serves as an ERK-Regulated Scaffold for Coordinating FAK and Rac Activation in Epithelial Morphogenesis. Mol. Cell 2004, 16, 257–267. [Google Scholar] [CrossRef]
- Yin, G.; Zheng, Q.; Yan, C.; Berk, B.C. GIT1 Is a Scaffold for ERK1/2 Activation in Focal Adhesions. J. Biol. Chem. 2005, 280, 27705–27712. [Google Scholar] [CrossRef]
- Tanimura, S.; Takeda, K. ERK Signalling as a Regulator of Cell Motility. J. Biochem. 2017, 162, 145–154. [Google Scholar] [CrossRef]
- Witzel, F.; Maddison, L.; Blüthgen, N. How Scaffolds Shape MAPK Signaling: What We Know and Opportunities for Systems Approaches. Front. Physiol. 2012, 3, 475. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Haystead, C.M.; Haystead, T.A. Purification of a 12,020-Dalton Protein That Enhances the Activation of Mitogen-Activated Protein (MAP) Kinase by MAP Kinase Kinase. J. Biol. Chem. 1995, 270, 24540–24547. [Google Scholar] [CrossRef]
- Levchenko, A.; Bruck, J.; Sternberg, P.W. Scaffold Proteins May Biphasically Affect the Levels of Mitogen-Activated Protein Kinase Signaling and Reduce Its Threshold Properties. Proc. Natl. Acad. Sci. USA 2000, 97, 5818–5823. [Google Scholar] [CrossRef] [PubMed]
- Brennan, D.F.; Dar, A.C.; Hertz, N.T.; Chao, W.C.H.; Burlingame, A.L.; Shokat, K.M.; Barford, D. A Raf-Induced Allosteric Transition of KSR Stimulates Phosphorylation of MEK. Nature 2011, 472, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Locasale, J.W.; Shaw, A.S.; Chakraborty, A.K. Scaffold Proteins Confer Diverse Regulatory Properties to Protein Kinase Cascades. Proc. Natl. Acad. Sci. USA 2007, 104, 13307–13312. [Google Scholar] [CrossRef]
- Shaw, A.S.; Filbert, E.L. Scaffold Proteins and Immune-Cell Signalling. Nat. Rev. Immunol. 2009, 9, 47–56. [Google Scholar] [CrossRef]
- McClean, M.N.; Mody, A.; Broach, J.R.; Ramanathan, S. Cross-Talk and Decision Making in MAP Kinase Pathways. Nat. Genet. 2007, 39, 409–414. [Google Scholar] [CrossRef]
- Patterson, J.C.; Klimenko, E.S.; Thorner, J. Single-Cell Analysis Reveals That Insulation Maintains Signaling Specificity between Two Yeast MAPK Pathways with Common Components. Sci. Signal. 2010, 3, ra75. [Google Scholar] [CrossRef]
- Calvo, F.; Agudo-Ibáñez, L.; Crespo, P. The Ras-ERK Pathway: Understanding Site-Specific Signaling Provides Hope of New Anti-Tumor Therapies. BioEssays 2010, 32, 412–421. [Google Scholar] [CrossRef]
- Abel, A.M.; Schuldt, K.M.; Rajasekaran, K.; Hwang, D.; Riese, M.J.; Rao, S.; Thakar, M.S.; Malarkannan, S. IQGAP1: Insights into the Function of a Molecular Puppeteer. Mol. Immunol. 2015, 65, 336–349. [Google Scholar] [CrossRef]
- Casar, B.; Arozarena, I.; Sanz-Moreno, V.; Pinto, A.; Agudo-Ibáñez, L.; Marais, R.; Lewis, R.E.; Berciano, M.T.; Crespo, P. Ras Subcellular Localization Defines Extracellular Signal-Regulated Kinase 1 and 2 Substrate Specificity through Distinct Utilization of Scaffold Proteins. Mol. Cell. Biol. 2009, 29, 1338–1353. [Google Scholar] [CrossRef] [PubMed]
- Casar, B.; Pinto, A.; Crespo, P. Essential Role of ERK Dimers in the Activation of Cytoplasmic but Not Nuclear Substrates by ERK-Scaffold Complexes. Mol. Cell 2008, 31, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.H.; Kim, S.Y.; Ferrell, J.E. The Prozone Effect Accounts for the Paradoxical Function of the Cdk-Binding Protein Suc1/Cks. Cell Rep. 2016, 14, 1408–1421. [Google Scholar] [CrossRef]
- Heinrich, R.; Neel, B.G.; Rapoport, T.A. Mathematical Models of Protein Kinase Signal Transduction. Mol. Cell 2002, 9, 957–970. [Google Scholar] [CrossRef]
- Chapman, S.A.; Asthagiri, A.R. Quantitative Effect of Scaffold Abundance on Signal Propagation. Mol. Syst. Biol. 2009, 5, 313. [Google Scholar] [CrossRef]
- Sugimoto, T.; Stewart, S.; Han, M.; Guan, K.L. The Kinase Suppressor of Ras (KSR) Modulates Growth Factor and Ras Signaling by Uncoupling Elk-1 Phosphorylation from MAP Kinase Activation. EMBO J. 1998, 17, 1717–1727. [Google Scholar] [CrossRef]
- DeFea, K.A.; Zalevsky, J.; Thoma, M.S.; Dery, O.; Mullins, R.D.; Bunnett, N.W. β-Arrestin-Dependent Endocytosis of Proteinase-Activated Receptor 2 Is Required for Intracellular Targeting of Activated ERK1/2. J. Cell Biol. 2000, 148, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Tohgo, A.; Pierce, K.L.; Choy, E.W.; Lefkowitz, R.J.; Luttrell, L.M. β-Arrestin Scaffolding of the ERK Cascade Enhances Cytosolic ERK Activity but Inhibits ERK-Mediated Transcription Following Angiotensin AT1a Receptor Stimulation. J. Biol. Chem. 2002, 277, 9429–9436. [Google Scholar] [CrossRef] [PubMed]
- Suderman, R.; Schauer, A.; Deeds, E.J. Understanding the Dynamics of Scaffold-Mediated Signaling. bioRxiv 2017, 1–36. [Google Scholar] [CrossRef]
- Nguyen, A.; Burack, W.R.; Stock, J.L.; Kortum, R.; Chaika, O.V.; Afkarian, M.; Muller, W.J.; Murphy, K.M.; Morrison, D.K.; Lewis, R.E.; et al. Kinase Suppressor of Ras (KSR) Is a Scaffold Which Facilitates Mitogen-Activated Protein Kinase Activation in Vivo. Mol. Cell. Biol. 2002, 22, 3035–3045. [Google Scholar] [CrossRef] [PubMed]
- Lozano, J.; Xing, R.; Cai, Z.; Jensen, H.L.; Trempus, C.; Mark, W.; Cannon, R.; Kolesnick, R. Deficiency of Kinase Suppressor of Ras1 Prevents Oncogenic Ras Signaling in Mice. Cancer Res. 2003, 63, 4232–4238. [Google Scholar]
- Roy, M.; Li, Z.; Sacks, D.B. IQGAP1 Binds ERK2 and Modulates Its Activity. J. Biol. Chem. 2004, 279, 17329–17337. [Google Scholar] [CrossRef] [PubMed]
- Jameson, K.L.; Mazur, P.K.; Zehnder, A.M.; Zhang, J.; Zarnegar, B.; Sage, J.; Khavari, P.A. IQGAP1 Scaffold-Kinase Interaction Blockade Selectively Targets RAS-MAP Kinase-Driven Tumors. Nat. Med. 2013, 19, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Vomastek, T.; Tarcsafalvi, A.; Catling, A.D.; Schaeffer, H.J.; Eblen, S.T.; Weber, M.J. MEK Partner 1 (MP1): Regulation of Oligomerization in MAP Kinase Signaling. J. Cell. Biochem. 2005, 94, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Teis, D.; Taub, N.; Kurzbauer, R.; Hilber, D.; De Araujo, M.E.; Erlacher, M.; Offterdinger, M.; Villunger, A.; Geley, S.; Bohn, G.; et al. P14-MP1-MEK1 Signaling Regulates Endosomal Traffic and Cellular Proliferation during Tissue Homeostasis. J. Cell Biol. 2006, 175, 861–868. [Google Scholar] [CrossRef]
- Vomastek, T.; Schaeffer, H.J.; Tarcsafalvi, A.; Smolkin, M.E.; Bissonette, E.A.; Weber, M.J. Modular Construction of a Signaling Scaffold: MORG1 Interacts with Components of the ERK Cascade and Links ERK Signaling to Specific Agonists. Proc. Natl. Acad. Sci. USA 2004, 101, 6981–6986. [Google Scholar] [CrossRef] [PubMed]
- Schiefermeier, N.; Scheffler, J.M.; de Araujo, M.E.G.; Stasyk, T.; Yordanov, T.; Ebner, H.L.; Offterdinger, M.; Munck, S.; Hess, M.W.; Wickström, S.A.; et al. The Late Endosomal P14-MP1 (LAMTOR2/3) Complex Regulates Focal Adhesion Dynamics during Cell Migration. J. Cell Biol. 2014, 205, 525–540. [Google Scholar] [CrossRef]
- Ren, Y.; Meng, S.; Mei, L.; Zhao, Z.J.; Jove, R.; Wu, J. Roles of Gab1 and SHP2 in Paxillin Tyrosine Dephosphorylation and Src Activation in Response to Epidermal Growth Factor. J. Biol. Chem. 2004, 279, 8497–8505. [Google Scholar] [CrossRef]
- Feigin, M.E.; Xue, B.; Hammell, M.C.; Muthuswamy, S.K. G-Protein-Coupled Receptor GPR161 Is Overexpressed in Breast Cancer and Is a Promoter of Cell Proliferation and Invasion. Proc. Natl. Acad. Sci. USA 2014, 111, 4191–4196. [Google Scholar] [CrossRef]
- Martín-Vega, A.; Ruiz-Peinado, L.; García-Gómez, R.; Herrero, A.; de la Fuente-Vivas, D.; Parvathaneni, S.; Caloto, R.; Morante, M.; von Kriegsheim, A.; Bustelo, X.R.; et al. Scaffold Coupling: ERK Activation by Trans-Phosphorylation across Different Scaffold Protein Species. Sci. Adv. 2023, 9, eadd7969. [Google Scholar] [CrossRef]
- Therrien, M.; Chang, H.C.; Solomon, N.M.; Karim, F.D.; Wassarman, D.A.; Rubin, G.M. KSR, a Novel Protein Kinase Required for RAS Signal Transduction. Cell 1995, 83, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Kornfeld, K.; Hom, D.B.; Horvitz, H.R. The Ksr-1 Gene Encodes a Novel Protein Kinase Involved in Ras-Mediated Signaling in C. Elegans. Cell 1995, 83, 903–913. [Google Scholar] [CrossRef]
- Sundaram, M.; Han, M. The C. Elegans Ksr-1 Gene Encodes a Novel Raf-Related Kinase Involved in Ras-Mediated Signal Transduction. Cell 1995, 83, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Channavajhala, P.L.; Wu, L.; Cuozzo, J.W.; Hall, J.P.; Liu, W.; Lin, L.L.; Zhang, Y. Identification of a Novel Human Kinase Supporter of Ras (HKSR-2) That Functions as a Negative Regulator of Cot (Tp12) Signaling. J. Biol. Chem. 2003, 278, 47089–47097. [Google Scholar] [CrossRef]
- Costanzo-Garvey, D.L.; Pfluger, P.T.; Dougherty, M.K.; Stock, J.L.; Boehm, M.; Chaika, O.; Fernandez, M.R.; Fisher, K.; Kortum, R.L.; Hong, E.G.; et al. KSR2 Is an Essential Regulator of AMP Kinase, Energy Expenditure, and Insulin Sensitivity. Cell Metab. 2009, 10, 366–378. [Google Scholar] [CrossRef]
- Pilbrow, A.P. Discovery of an Obesity Susceptibility Gene, KSR2, Provides New Insight into Energy Homeostasis Pathways. Circ. Cardiovasc. Genet. 2014, 7, 218–219. [Google Scholar] [CrossRef]
- Yin, X.; Zafrullah, M.; Lee, H.; Haimovitz-Friedman, A.; Fuks, Z.; Kolesnick, R. A Ceramide-Binding C1 Domain Mediates Kinase Suppressor of Ras Membrane Translocation. Cell. Physiol. Biochem. 2009, 24, 219–230. [Google Scholar] [CrossRef]
- Koveal, D.; Schuh-Nuhfer, N.; Ritt, D.; Page, R.; Morrison, D.K.; Peti, W. A CC-SAM, for Coiled Coil-Sterile α Motif, Domain Targets the Scaffold KSR-1 to Specific Sites in the Plasma Membrane. Sci. Signal. 2012, 5, ra94. [Google Scholar] [CrossRef] [PubMed]
- Driedger, P.E.; Blumberg, P.M. Specific Binding of Phorbol Ester Tumor Promoters. Proc. Natl. Acad. Sci. USA 1980, 77, 567–571. [Google Scholar] [CrossRef]
- Michaud, N.R.; Therrien, M.; Cacace, A.; Edsall, L.C.; Spiegel, S.; Rubin, G.M.; Morrison, D.K. KSR Stimulates Raf-1 Activity in a Kinase-Independent Manner. Proc. Natl. Acad. Sci. USA 1997, 94, 12792–12796. [Google Scholar] [CrossRef]
- Zhou, M.; Horita, D.A.; Waugh, D.S.; Byrd, R.A.; Morrison, D.K. Solution Structure and Functional Analysis of the Cysteine-Rich C1 Domain of Kinase Suppressor of Ras (KSR). J. Mol. Biol. 2002, 315, 435–446. [Google Scholar] [CrossRef]
- Clapéron, A.; Therrien, M. KSR and CNK: Two Scaffolds Regulating RAS-Mediated RAF Activation. Oncogene 2007, 26, 3143–3158. [Google Scholar] [CrossRef] [PubMed]
- Therrien, M.; Michaud, N.R.; Rubin, G.M.; Morrison, D.K. KSR Modulates Signal Propagation within the MAPK Cascade. Genes Dev. 1996, 10, 2684–2695. [Google Scholar] [CrossRef] [PubMed]
- Denouel-Galy, A.; Douville, E.M.; Warne, P.H.; Papin, C.; Laugier, D.; Calothy, G.; Downward, J.; Eychène, A. Murine Ksr Interacts with MEK and Inhibits Ras-Induced Transformation. Curr. Biol. 1998, 8, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Kornfeld, K.; Muslin, A.J. The Protein Kinase KSR Interacts with 14-3-3 Protein and Raf. Curr. Biol. 1997, 7, 294–300. [Google Scholar] [CrossRef]
- Weinmaster, G.; Zoller, M.J.; Pawson, T. A Lysine in the ATP-Binding Site of P130gag-Fps Is Essential for Protein-Tyrosine Kinase Activity. EMBO J. 1986, 5, 69–76. [Google Scholar] [CrossRef]
- Hanks, S.K.; Quinn, A.M.; Hunter, T. The Protein Kinase Family: Conserved Features and Deduced Phylogeny of the Catalytic Domains. Science 1988, 241, 42–52. [Google Scholar] [CrossRef]
- Boudeau, J.; Miranda-Saavedra, D.; Barton, G.J.; Alessi, D.R. Emerging Roles of Pseudokinases. Trends Cell Biol. 2006, 16, 443–452. [Google Scholar] [CrossRef]
- Hu, J.; Yu, H.; Kornev, A.P.; Zhao, J.; Filbert, E.L.; Taylor, S.S.; Shaw, A.S. Mutation That Blocks ATP Binding Creates a Pseudokinase Stabilizing the Scaffolding Function of Kinase Suppressor of Ras, CRAF and BRAF. Proc. Natl. Acad. Sci. USA 2011, 108, 6067–6072. [Google Scholar] [CrossRef]
- Eyers, P.A.; Murphy, J.M. Exploring Kinomes: Pseudokinases and beyond: Dawn of the Dead: Protein Pseudokinases Signal New Adventures in Cell Biology. Biochem. Soc. Trans. 2013, 41, 969–974. [Google Scholar] [CrossRef]
- Zhang, H.; Koo, C.Y.; Stebbing, J.; Giamas, G. The Dual Function of KSR1: A Pseudokinase and Beyond. Biochem. Soc. Trans. 2013, 41, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bei, Y.; Delikat, S.; Bayoumy, S.; Lin, X.H.; Basu, S.; McGinley, M.; Chan-Hui, P.-Y.; Lichenstein, H.; Kolesnick, R. Kinase Suppressor of Ras Is Ceramide-Activated Protein Kinase. Cell 1997, 89, 63–72. [Google Scholar] [CrossRef]
- Goettel, J.A.; Liang, D.; Hilliard, V.C.; Edelblum, K.L.; Broadus, M.R.; Gould, K.L.; Hanks, S.K.; Polk, D.B. KSR1 Is a Functional Protein Kinase Capable of Serine Autophosphorylation and Direct Phosphorylation of MEK1. Exp. Cell Res. 2011, 317, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.; Sundaram, M.; Zhang, Y.; Lee, J.; Han, M.; Guan, K.-L. Kinase Suppressor of Ras Forms a Multiprotein Signaling Complex and Modulates MEK Localization. Mol. Cell. Biol. 1999, 19, 5523–5534. [Google Scholar] [CrossRef] [PubMed]
- Roy, F.; Laberge, G.; Douziech, M.; Ferland-McCollough, D.; Therrien, M. KSR Is a Scaffold Required for Activation of the ERK/MAPK Module. Genes Dev. 2002, 16, 427–438. [Google Scholar] [CrossRef]
- Paniagua, G.; Jacob, H.K.C.; Brehey, O.; García-Alonso, S.; Lechuga, C.G.; Pons, T.; Musteanu, M.; Guerra, C.; Drosten, M.; Barbacid, M. KSR Induces RAS-Independent MAPK Pathway Activation and Modulates the Efficacy of KRAS Inhibitors. Mol. Oncol. 2022, 16, 3066–3081. [Google Scholar] [CrossRef]
- Yu, W.; Fantl, W.J.; Harrowe, G.; Williams, L.T. Regulation of the MAP Kinase Pathway by Mammalian Ksr through Direct Interaction with MEK and ERK. Curr. Biol. 1998, 8, 56–64. [Google Scholar] [CrossRef]
- Matheny, S.A.; Chen, C.; Kortum, R.L.; Razidlo, G.L.; Lewis, R.E.; White, M.A. Ras Regulates Assembly of Mitogenic Signalling Complexes through the Effector Protein IMP. Nature 2004, 427, 256–260. [Google Scholar] [CrossRef]
- Chen, C.; Lewis, R.E.; White, M.A. IMP Modulates KSR1-Dependent Multivalent Complex Formation to Specify ERK1/2 Pathway Activation and Response Thresholds. J. Biol. Chem. 2008, 283, 12789–12796. [Google Scholar] [CrossRef]
- Matheny, S.A.; White, M.A. Ras-Sensitive IMP Modulation of the Raf/MEK/ERK Cascade through KSR1. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2006; Volume 407, pp. 237–247. ISBN 9780121828127. [Google Scholar]
- Mckay, M.M.; Morrison, D.K. Integrating Signals from RTKs to ERK/MAPK. Oncogene 2007, 26, 3113–3121. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Ory, S.; Copeland, T.; Piwnica-Worms, H.; Morrison, D.K. C-TAK1 Regulates Ras Signaling by Phosphorylating the MAPK Scaffold, KSR1. Mol. Cell 2001, 8, 983–993. [Google Scholar] [CrossRef]
- Ory, S.; Zhou, M.; Conrads, T.P.; Veenstra, T.D.; Morrison, D.K. Protein Phosphatase 2A Positively Regulates Ras Signaling by Dephosphorylating KSR1 and Raf-1 on Critical 14-3-3 Binding Sites. Curr. Biol. 2003, 13, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Brennan, J.A.; Volle, D.J.; Chaika, O.V.; Lewis, R.E. Phosphorylation Regulates the Nucleocytoplasmic Distribution of Kinase Suppressor of Ras. J. Biol. Chem. 2002, 277, 5369–5377. [Google Scholar] [CrossRef] [PubMed]
- Verlande, A.; Krafčíková, M.; Potěšil, D.; Trantírek, L.; Zdráhal, Z.; Elkalaf, M.; Trnka, J.; Souček, K.; Rauch, N.; Rauch, J.; et al. Metabolic Stress Regulates ERK Activity by Controlling KSR-RAF Heterodimerization. EMBO Rep. 2018, 19, 320–336. [Google Scholar] [CrossRef] [PubMed]
- Weissbach, L.; Settleman, J.; Kalady, M.F.; Snijders, A.J.; Murthy, A.E.; Yan, Y.X.; Bernards, A. Identification of a Human RasGAP-Related Protein Containing Calmodulin-Binding Motifs. J. Biol. Chem. 1994, 269, 20517–20521. [Google Scholar] [CrossRef]
- Brill, S.; Li, S.; Lyman, C.W.; Church, D.M.; Wasmuth, J.J.; Weissbach, L.; Bernards, A.; Snijders, A.J. The Ras GTPase-Activating-Protein-Related Human Protein IQGAP2 Harbors a Potential Actin Binding Domain and Interacts with Calmodulin and Rho Family GTPases. Mol. Cell. Biol. 1996, 16, 4869–4878. [Google Scholar] [CrossRef] [PubMed]
- McCallum, S.J.; Wu, W.J.; Cerione, R.A. Identification of a Putative Effector for Cdc42Hs with High Sequence Similarity to the RasGAP-Related Protein IQGAP1 and a Cdc42Hs Binding Partner with Similarity to IQGAP2. J. Biol. Chem. 1996, 271, 21732–21737. [Google Scholar] [CrossRef]
- Wang, S.; Watanabe, T.; Noritake, J.; Fukuta, M.; Yoshimura, T.; Itoh, N.; Harada, T.; Nakagawa, M.; Matsuura, Y.; Arimura, N.; et al. IQGAP3, a Novel Effector of Rac1 and Cdc42, Regulates Neurite Outgrowth. J. Cell Sci. 2007, 120, 567–577. [Google Scholar] [CrossRef]
- Schmidt, V.A.; Scudder, L.; Devoe, C.E.; Bernards, A.; Cupit, L.D.; Bahou, W.F. IQGAP2 Functions as a GTP-Dependent Effector Protein in Thrombin-Induced Platelet Cytoskeletal Reorganization. Blood 2003, 101, 3021–3028. [Google Scholar] [CrossRef]
- Cupit, L.D.; Schmidt, V.A.; Miller, F.; Bahou, W.F. Distinct PAR/IQGAP Expression Patterns Durinq Murine Development: Implications for Thrombin-Associated Cytoskeletal Reorganization. Mamm. Genome 2004, 15, 618–629. [Google Scholar] [CrossRef]
- Nojima, H.; Adachi, M.; Matsui, T.; Okawa, K.; Tsukita, S.; Tsukita, S. IQGAP3 Regulates Cell Proliferation through the Ras/ERK Signalling Cascade. Nat. Cell Biol. 2008, 10, 971–978. [Google Scholar] [CrossRef]
- Li, Z.; Kim, S.H.; Higgins, J.M.G.; Brenner, M.B.; Sacks, D.B. IQGAP1 and Calmodulin Modulate E-Cadherin Function. J. Biol. Chem. 1999, 274, 37885–37892. [Google Scholar] [CrossRef]
- Zhou, R.; Guo, Z.; Watson, C.; Chen, E.; Kong, R.; Wang, W.; Yao, X. Polarized Distribution of IQGAP Proteins in Gastric Parietal Cells and Their Roles in Regulated Epithelial Cell Secretion. Mol. Biol. Cell 2003, 14, 1097–1108. [Google Scholar] [CrossRef]
- Chew, C.S.; Okamoto, C.T.; Chen, X.; Qin, H.Y. IQGAPs Are Differentially Expressed and Regulated in Polarized Gastric Epithelial Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2005, 288, G376–G387. [Google Scholar] [CrossRef]
- Kumar, D.; Hassan, M.K.; Pattnaik, N.; Mohapatra, N.; Dixit, M. Reduced Expression of IQGAP2 and Higher Expression of IQGAP3 Correlates with Poor Prognosis in Cancers. PLoS ONE 2017, 12, e0186977. [Google Scholar] [CrossRef]
- Hedman, A.C.; Smith, J.M.; Sacks, D.B. The Biology of IQGAP Proteins: Beyond the Cytoskeleton. EMBO Rep. 2015, 16, 427–446. [Google Scholar] [CrossRef]
- Mateer, S.C.; Morris, L.E.; Cromer, D.A.; Benseñor, L.B.; Bloom, G.S. Actin Filament Binding by a Monomeric IQGAP1 Fragment with a Single Calponin Homology Domain. Cell Motil. Cytoskelet. 2004, 58, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.D.; Joyal, J.L.; Li, Z.; Sacks, D.B. IQGAP1 Integrates Ca2+/Calmodulin and Cdc42 Signaling. J. Biol. Chem. 1999, 274, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sacks, D.B. Elucidation of the Interaction of Calmodulin with the IQ Motifs of IQGAP1. J. Biol. Chem. 2003, 278, 4347–4352. [Google Scholar] [CrossRef] [PubMed]
- McNulty, D.E.; Li, Z.; White, C.D.; Sacks, D.B.; Annan, R.S. MAPK Scaffold IQGAP1 Binds the EGF Receptor and Modulates Its Activation. J. Biol. Chem. 2011, 286, 15010–15021. [Google Scholar] [CrossRef]
- Roy, M.; Li, Z.; Sacks, D.B. IQGAP1 Is a Scaffold for Mitogen-Activated Protein Kinase Signaling. Mol. Cell. Biol. 2005, 25, 7940–7952. [Google Scholar] [CrossRef]
- Ren, J.G.; Li, Z.; Sacks, D.B. IQGAP1 Modulates Activation of B-Raf. Proc. Natl. Acad. Sci. USA 2007, 104, 10465–10469. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.W.; Li, Z.; Brown, M.D.; Sacks, D.B. IQGAP1 Binds Rap1 and Modulates Its Activity. J. Biol. Chem. 2007, 282, 20752–20762. [Google Scholar] [CrossRef]
- Ren, J.G.; Li, Z.; Crimmins, D.L.; Sacks, D.B. Self-Association of IQGAP1: Characterization and Functional Sequelae. J. Biol. Chem. 2005, 280, 34548–34557. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Thapa, N.; Hedman, A.C.; Li, Z.; Sacks, D.B.; Anderson, R.A. IQGAP1 Is a Novel Phosphatidylinositol 4,5 Bisphosphate Effector in Regulation of Directional Cell Migration. EMBO J. 2013, 32, 2617–2630. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.J.; Callow, M.G.; Souza, B.; Polakis, P. IQGAP1, a Calmodulin-Binding Protein with a RasGAP-Related Domain, Is a Potential Effector for Cdc42Hs. EMBO J. 1996, 15, 2997–3005. [Google Scholar] [CrossRef] [PubMed]
- Swart-Mataraza, J.M.; Li, Z.; Sacks, D.B. IQGAP1 Is a Component of Cdc42 Signaling to the Cytoskeleton. J. Biol. Chem. 2002, 277, 24753–24763. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, S.; Fukata, M.; Nakagawa, M.; Fujii, K.; Nakamura, T.; Ookubo, T.; Izawa, I.; Nagase, T.; Nomura, N.; Tani, H.; et al. Role of IQGAP1, a Target of the Small GTPases Cdc42 and Rac1, in Regulation of E-Cadherin- Mediated Cell-Cell Adhesion. Science 1998, 281, 832–835. [Google Scholar] [CrossRef]
- Fukata, M.; Kuroda, S.; Nakagawa, M.; Kawajiri, A.; Itoh, N.; Shoji, I.; Matsuura, Y.; Yonehara, S.; Fujisawa, H.; Kikuchi, A.; et al. Cdc42 and Rac1 Regulate the Interaction of IQGAP1 with β-Catenin. J. Biol. Chem. 1999, 274, 26044–26050. [Google Scholar] [CrossRef]
- Ren, J.G.; Li, Z.; Sacks, D.B. IQGAP1 Integrates Ca2+/Calmodulin and B-Raf Signaling. J. Biol. Chem. 2008, 283, 22972–22982. [Google Scholar] [CrossRef]
- Ussar, S.; Voss, T. MEK1 and MEK2, Different Regulators of the G1/S Transition. J. Biol. Chem. 2004, 279, 43861–43869. [Google Scholar] [CrossRef]
- Matsunaga, H.; Kubota, K.; Inoue, T.; Isono, F.; Ando, O. IQGAP1 Selectively Interacts with K-Ras but Not with H-Ras and Modulates K-Ras Function. Biochem. Biophys. Res. Commun. 2014, 444, 360–364. [Google Scholar] [CrossRef]
- Morgan, C.J.; Hedman, A.C.; Li, Z.; Sacks, D.B. Endogenous IQGAP1 and IQGAP3 Do Not Functionally Interact with Ras. Sci. Rep. 2019, 9, 11057. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, M.; Dragan, M.; Pape, C.; Siddiqui, I.; Sacks, D.B.; Di Guglielmo, G.M.; Babwah, A.V.; Bhattacharya, M. β-Arrestin2 Regulates Lysophosphatidic Acid-Induced Human Breast Tumor Cell Migration and Invasion via Rap1 and IQGAP1. PLoS ONE 2013, 8, e56174. [Google Scholar] [CrossRef]
- Noritake, J.; Watanabe, T.; Sato, K.; Wang, S.; Kaibuchi, K. IQGAP1: A Key Regulator of Adhesion and Migration. J. Cell Sci. 2005, 118, 2085–2092. [Google Scholar] [CrossRef]
- Le Clainche, C.; Schlaepfer, D.; Ferrari, A.; Klingauf, M.; Grohmanova, K.; Veligodskiy, A.; Didry, D.; Le, D.; Egile, C.; Carlier, M.F.; et al. IQGAP1 Stimulates Actin Assembly through the N-Wasp-Arp2/3 Pathway. J. Biol. Chem. 2007, 282, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Benseñor, L.B.; Kan, H.M.; Wang, N.; Wallrabe, H.; Davidson, L.A.; Cai, Y.; Schafer, D.A.; Bloom, G.S. IQGAP1 Regulates Cell Motility by Linking Growth Factor Signaling to Actin Assembly. J. Cell Sci. 2007, 120, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Kohno, T.; Urao, N.; Ashino, T.; Sudhahar, V.; Inomata, H.; Yamaoka-Tojo, M.; McKinney, R.D.; Fukai, T.; Ushio-Fukai, M. IQGAP1 Links PDGF Receptor-β Signal to Focal Adhesions Involved in Vascular Smooth Muscle Cell Migration: Role in Neointimal Formation after Vascular Injury. Am. J. Physiol.-Cell Physiol. 2013, 305, C591–C600. [Google Scholar] [CrossRef]
- Jacquemet, G.; Morgan, M.R.; Byron, A.; Humphries, J.D.; Choi, C.K.; Chen, C.S.; Caswell, P.T.; Humphries, M.J. Rac1 Is Deactivated at Integrin Activation Sites through an IQGAP1-Filamin-A-RacGAP1 Pathway. J. Cell Sci. 2013, 126, 4121–4135. [Google Scholar] [CrossRef]
- Watanabe, T.; Wang, S.; Noritake, J.; Sato, K.; Fukata, M.; Takefuji, M.; Nakagawa, M.; Izumi, N.; Akiyama, T.; Kaibuchi, K. Interaction with IQGAP1 Links APC to Rac1, Cdc42, and Actin Filaments during Cell Polarization and Migration. Dev. Cell 2004, 7, 871–883. [Google Scholar] [CrossRef]
- Fukata, M.; Kuroda, S.; Fujii, K.; Nakamura, T.; Shoji, I.; Matsuura, Y.; Okawa, K.; Iwamatsu, A.; Kikuchi, A.; Kaibuchi, K. Regulation of Cross-Linking of Actin Filament by IQGAP1, a Target for Cdc42. J. Biol. Chem. 1997, 272, 29579–29583. [Google Scholar] [CrossRef]
- Fukata, M.; Watanabe, T.; Noritake, J.; Nakagawa, M.; Yamaga, M.; Kuroda, S.; Matsuura, Y.; Iwamatsu, A.; Perez, F.; Kaibuchi, K. Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170. Cell 2002, 109, 873–885. [Google Scholar] [CrossRef] [PubMed]
- LeCour, L.; Boyapati, V.K.; Liu, J.; Li, Z.; Sacks, D.B.; Worthylake, D.K. The Structural Basis for Cdc42-Induced Dimerization of IQGAPs. Structure 2016, 24, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Quinn, N.P.; García-gutiérrez, L.; Doherty, C.; von Kriegsheim, A.; Fallahi, E.; Sacks, D.B.; Matallanas, D. Iqgap1 Is a Scaffold of the Core Proteins of the Hippo Pathway and Negatively Regulates the Pro-apoptotic Signal Mediated by This Pathway. Cells 2021, 10, 478. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Q.; Chakladar, A.; Bronson, R.T.; Bernards, A. Gastric Hyperplasia in Mice Lacking the Putative Cdc42 Effector IQGAP1. Mol. Cell. Biol. 2000, 20, 697–701. [Google Scholar] [CrossRef]
- Schmidt, V.A.; Chiariello, C.S.; Capilla, E.; Miller, F.; Bahou, W.F. Development of Hepatocellular Carcinoma in Iqgap2-Deficient Mice Is IQGAP1 Dependent. Mol. Cell. Biol. 2008, 28, 1489–1502. [Google Scholar] [CrossRef]
- Gnatenko, D.V.; Xu, X.; Zhu, W.; Schmidt, V.A. Transcript Profiling Identifies Iqgap2 2/2 Mouse as a Model for Advanced Human Hepatocellular Carcinoma. PLoS ONE 2013, 8, 71826. [Google Scholar] [CrossRef]
- White, C.D.; Khurana, H.; Gnatenko, D.V.; Li, Z.; Odze, R.D.; Sacks, D.B.; Schmidt, V.A. IQGAP1 and IQGAP2 Are Reciprocally Altered in Hepatocellular Carcinoma. BMC Gastroenterol. 2010, 10, 125. [Google Scholar] [CrossRef]
- Jinawath, N.; Shiao, M.S.; Chanpanitkitchote, P.; Svasti, J.; Furukawa, Y.; Nakamura, Y. Enhancement of Migration and Invasion of Gastric Cancer Cells by IQGAP3. Biomolecules 2020, 10, 1194. [Google Scholar] [CrossRef]
- White, C.D.; Brown, M.D.; Sacks, D.B. IQGAPs in Cancer: A Family of Scaffold Proteins Underlying Tumorigenesis. FEBS Lett. 2009, 583, 1817–1824. [Google Scholar] [CrossRef]
- Sugimoto, N.; Imoto, I.; Fukuda, Y.; Kurihara, N.; Kuroda, S.; Tanigami, A.; Kaibuchi, K.; Kamiyama, R.; Inazawa, J. IQGAP1, a Negative Regulator of Cell-Cell Adhesion, Is Upregulated by Gene Amplification at 15q26 in Gastric Cancer Cell Lines HSC39 and 40A. J. Hum. Genet. 2001, 46, 21–25. [Google Scholar] [CrossRef]
- Johnson, M.; Sharma, M.; Henderson, B.R. IQGAP1 Regulation and Roles in Cancer. Cell. Signal. 2009, 21, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Jadeski, L.; Mataraza, J.M.; Jeong, H.W.; Li, Z.; Sacks, D.B. IQGAP1 Stimulates Proliferation and Enhances Tumorigenesis of Human Breast Epithelial Cells. J. Biol. Chem. 2008, 283, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Abramovich, C.; Shen, W.F.; Pineault, N.; Imren, S.; Montpetit, B.; Largman, C.; Keith Humphries, R. Functional Cloning and Characterization of a Novel Nonhomeodomain Protein That Inhibits the Binding of PBX1-HOX Complexes to DNA. J. Biol. Chem. 2000, 275, 26172–26177. [Google Scholar] [CrossRef]
- Abramovich, C.; Chavez, E.A.; Lansdorp, P.M.; Humphries, R.K. Functional Characterization of Multiple Domains Involved in the Subcellular Localization of the Hematopoietic Pbx Interacting Protein (Hpip). Oncogene 2002, 21, 6766–6771. [Google Scholar] [CrossRef]
- Manavathi, B.; Acconcia, F.; Rayala, S.K.; Kumar, R. An Inherent Role of Microtubule Network in the Action of Nuclear Receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 15981–15986. [Google Scholar] [CrossRef]
- Khumukcham, S.S.; Manavathi, B. Two Decades of a Protooncogene HPIP/PBXIP1: Uncovering the Tale from Germ Cell to Cancer. Biochim. Biophys. Acta-Rev. Cancer 2021, 1876, 188576. [Google Scholar] [CrossRef]
- Ji, Q.; Xu, X.; Kang, L.; Xu, Y.; Xiao, J.; Goodman, S.B.; Zhu, X.; Li, W.; Liu, J.; Gao, X.; et al. Hematopoietic PBX-Interacting Protein Mediates Cartilage Degeneration during the Pathogenesis of Osteoarthritis. Nat. Commun. 2019, 10, 313. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, D.; Liu, J.; Liang, C.; Yang, R.; Zhang, C.; Wu, J.; Lin, J.; Ye, T.; Ding, L.; et al. HPIP Is an Essential Scaffolding Protein Running through the EGFR-RAS-ERK Pathway and Drives Tumorigenesis. Sci. Adv. 2023, 9, eade1155. [Google Scholar] [CrossRef]
- STRING. Available online: https://string-db.org/ (accessed on 3 July 2023).
- GeneCards: The Human Gene Database. Available online: https://www.genecards.org/ (accessed on 3 July 2023).
- PhosphoSitePlus®. Available online: https://www.phosphosite.org/homeAction.action (accessed on 3 July 2023).
- Gangopadhyay, S.S.; Kengni, E.; Appel, S.; Gallant, C.; Kim, H.R.; Leavis, P.; DeGnore, J.; Morgan, K.G. Smooth Muscle Archvillin Is an ERK Scaffolding Protein. J. Biol. Chem. 2009, 284, 17607–17615. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, R.J.; Shenoy, S.K. Transduction of Receptor Signals by SS-Arrestins. Science 2005, 308, 512–517. [Google Scholar] [CrossRef]
- Therrien, M.; Wong, A.M.; Rubin, G.M. CNK, a RAF-Binding Multidomain Protein Required for RAS Signaling. Cell 1998, 95, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, T.M.; Liu, A.; Huang, Y.Z.; Mei, L.; Margolis, B.; Guan, K.-L. Human Homologue of Drosophila CNK Interacts with Ras Effector Proteins Raf and Rlf1. FASEB J. 2003, 17, 2048–2060. [Google Scholar] [CrossRef]
- Kelly, P.A.; Rahmani, Z. DYRK1A Enhances the Mitogen-Activated Protein Kinase Cascade in PC12 Cells by Forming a Complex with Ras, B-Raf, and MEK1. Mol. Biol. Cell 2005, 16, 3562–3573. [Google Scholar] [CrossRef]
- Spence, H.J.; Dhillon, A.S.; James, M.; Winder, S.J. Dystroglycan, a Scaffold for the ERK-MAP Kinase Cascade. EMBO Rep. 2004, 5, 484–489. [Google Scholar] [CrossRef]
- Sheikh, F.; Raskin, A.; Chu, P.H.; Lange, S.; Domenighetti, A.A.; Zheng, M.; Liang, X.; Zhang, T.; Yajima, T.; Gu, Y.; et al. An FHL1-Containing Complex within the Cardiomyocyte Sarcomere Mediates Hypertrophic Biomechanical Stress Responses in Mice. J. Clin. Investig. 2008, 118, 3870–3880. [Google Scholar] [CrossRef] [PubMed]
- Amaddii, M.; Meister, M.; Banning, A.; Tomasovic, A.; Mooz, J.; Rajalingam, K.; Tikkanen, R. Flotillin-1/Reggie-2 Protein Plays Dual Role in Activation of Receptor-Tyrosine Kinase/Mitogen-Activated Protein Kinase Signaling. J. Biol. Chem. 2012, 287, 7265–7278. [Google Scholar] [CrossRef]
- Yin, G.; Haendeler, J.; Yan, C.; Berk, B.C. GIT1 Functions as a Scaffold for MEK1–Extracellular Signal-Regulated Kinase 1 and 2 Activation by Angiotensin II and Epidermal Growth Factor. Mol. Cell. Biol. 2004, 24, 875–885. [Google Scholar] [CrossRef]
- Kiyatkin, A.; Aksamitiene, E.; Markevich, N.I.; Borisov, N.M.; Hoek, J.B.; Kholodenko, B.N. Scaffolding Protein Grb2-Associated Binder 1 Sustains Epidermal Growth Factor-Induced Mitogenic and Survival Signaling by Multiple Positive Feedback Loops. J. Biol. Chem. 2006, 281, 19925–19938. [Google Scholar] [CrossRef] [PubMed]
- Belanis, L.; Plowman, S.J.; Rotblat, B.; Hancock, J.F.; Kloog, Y. Galectin-1 Is a Novel Structural Component and a Major Regulator of H-Ras Nanoclusters. Mol. Biol. Cell 2008, 19, 1404–1414. [Google Scholar] [CrossRef]
- Nantel, A.; Mohammad-Ali, K.; Sherk, J.; Posner, B.I.; Thomas, D.Y. Interaction of the Grb10 Adapter Protein with the Raf1 and MEK1 Kinases. J. Biol. Chem. 1998, 273, 10475–10484. [Google Scholar] [CrossRef]
- Morrison, H.; Sperka, T.; Manent, J.; Giovannini, M.; Ponta, H.; Herrlich, P. Merlin/Neurofibromatosis Type 2 Suppresses Growth by Inhibiting the Activation of Ras and Rac. Cancer Res. 2007, 67, 520–527. [Google Scholar] [CrossRef]
- Schaeffer, H.J.; Catling, A.D.; Eblen, S.T.; Collier, L.S.; Krauss, A.; Weber, M.J. MP1: A MEK Binding Partner That Enhances Enzymatic Activation of the MAP Kinase Cascade. Science 1998, 281, 1668–1671. [Google Scholar] [CrossRef]
- Wunderlich, W.; Fialka, I.; Teis, D.; Alpi, A.; Pfeifer, A.; Parton, R.G.; Lottspeich, F.; Huber, L.A. A Novel 14-Kilodalton Protein Interacts with the Mitogen-Activated Protein Kinase Scaffold MP1 on a Late Endosomal/Lysosomal Compartment. J. Cell Biol. 2001, 152, 765–776. [Google Scholar] [CrossRef]
- Inder, K.L.; Lau, C.; Loo, D.; Chaudhary, N.; Goodall, A.; Martin, S.; Jones, A.; Van der Hoeven, D.; Parton, R.G.; Hill, M.M.; et al. Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction. J. Biol. Chem. 2009, 284, 28410–28419. [Google Scholar] [CrossRef]
- Willard, M.D.; Willard, F.S.; Li, X.; Cappell, S.D.; Snider, W.D.; Siderovski, D.P. Selective Role for RGS12 as a Ras/Raf/MEK Scaffold in Nerve Growth Factor-Mediated Differentiation. EMBO J. 2007, 26, 2029–2040. [Google Scholar] [CrossRef]
- Shu, F.J.; Ramineni, S.; Hepler, J.R. RGS14 Is a Multifunctional Scaffold That Integrates G Protein and Ras/Raf MAPkinase Signalling Pathways. Cell. Signal. 2010, 22, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Han, M.; Guan, K.L. The Leucine-Rich Repeat Protein SUR-8 Enhances MAP Kinase Activation and Forms a Complex with Ras and Raf. Genes Dev. 2000, 14, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Wauson, E.M.; Guerra, M.L.; Barylko, B.; Albanesi, J.P.; Cobb, M.H. Off-Target Effects of MEK Inhibitors. Biochemistry 2013, 52, 5164–5166. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Sawada, T.; Decker, S.J.; Saltiel, A.R. Inhibition of MAP Kinase Kinase Blocks the Differentiation of PC-12 Cells Induced by Nerve Growth Factor. J. Biol. Chem. 1995, 270, 13585–13588. [Google Scholar] [CrossRef]
- Dudley, D.T.; Pang, L.; Decker, S.J.; Bridges, A.J.; Saltiel, A.R. A Synthetic Inhibitor of the Mitogen-Activated Protein Kinase Cascade. Proc. Natl. Acad. Sci. USA 1995, 92, 7686–7689. [Google Scholar] [CrossRef]
- DeSilva, D.R.; Jones, E.A.; Favata, M.F.; Jaffee, B.D.; Magolda, R.L.; Trzaskos, J.M.; Scherle, P.A. Inhibition of Mitogen-Activated Protein Kinase Kinase Blocks T Cell Proliferation But Does Not Induce or Prevent Anergy. J. Immunol. 1998, 160, 4175–4181. [Google Scholar] [CrossRef] [PubMed]
- Favata, M.F.; Horiuchi, K.Y.; Manos, E.J.; Daulerio, A.J.; Stradley, D.A.; Feeser, W.S.; Van Dyk, D.E.; Pitts, W.J.; Earl, R.A.; Hobbs, F.; et al. Identification of a Novel Inhibitor of Mitogen-Activated Protein Kinase Kinase. J. Biol. Chem. 1998, 273, 18623–18632. [Google Scholar] [CrossRef] [PubMed]
- Sebolt-Leopold, J.S.; Dudley, D.T.; Herrera, R.; Van Becelaere, K.; Wiland, A.; Gowan, R.C.; Tecle, H.; Barret, S.D.; Bridges, A.; Przybranowski, S.; et al. Blockade of the MAP Kinase Pathway Suppresses Growth of Colon Tumors in Vivo. Nat. Med. 1999, 5, 810–816. [Google Scholar] [CrossRef]
- Barrett, S.D.; Bridges, A.J.; Dudley, D.T.; Saltiel, A.R.; Fergus, J.H.; Flamme, C.M.; Delaney, A.M.; Kaufman, M.; LePage, S.; Leopold, W.R.; et al. The Discovery of the Benzhydroxamate MEK Inhibitors CI-1040 and PD 0325901. Bioorg. Med. Chem. Lett. 2008, 18, 6501–6504. [Google Scholar] [CrossRef] [PubMed]
- Sebolt-Leopold, J.S.; Merriman, R.; Omer, C.; Tecle, H.; Bridges, A.; Klohs, W.; Loi, C.M.; Valik, H.; Przybranowski, S.; Meyer, M.; et al. The Biological Profile of PD 0325901: A Second Generation Analog of CI-1040 with Improved Pharmaceutical Potential. Cancer Res. 2004, 64, 925. [Google Scholar]
- Klein, P.J.; Schmidt, C.M.; Wiesenauer, C.A.; Choi, J.N.; Gage, E.A.; Yip-Schneider, M.T.; Wiebke, E.A.; Wang, Y.; Omer, C.; Sebolt-Leopold, J.S. The Effects of a Novel MEK Inhibitor PD184161 on MEK-ERK Signaling and Growth in Human Liver Cancer. Neoplasia 2006, 8, 1–8. [Google Scholar] [CrossRef]
- Pheneger, J.; Wallace, E.; Marlow, A.; Hurley, B.; Lyssikatos, J.; Bendele, A.M.; Lee, P.A. Characterization of ARRY438162, a Potent MEK Inhibitor in Combination with Methotrexate or Ibuprofen in in Vivo Models of Arthritis. In Arthritis and Rheumatism; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; Volume 54, p. S354. [Google Scholar]
- Yeh, T.C.; Marsh, V.; Bernat, B.A.; Ballard, J.; Colwell, H.; Evans, R.J.; Parry, J.; Smith, D.; Brandhuber, B.J.; Gross, S.; et al. Biological Characterization of ARRY-142886 (AZD6244), a Potent, Highly Selective Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor. Clin. Cancer Res. 2007, 13, 1576–1583. [Google Scholar] [CrossRef]
- Iverson, C.; Larson, G.; Lai, C.; Yeh, L.-T.; Dadson, C.; Weingarten, P.; Appleby, T.; Vo, T.; Maderna, A.; Vernier, J.-M.; et al. RDEA119/BAY 869766: A Potent, Selective, Allosteric Inhibitor of MEK1/2 for the Treatment of Cancer. Cancer Res. 2009, 69, 6839–6847. [Google Scholar] [CrossRef]
- Lee, L.; Niu, H.; Rueger, R.; Igawa, Y.; Deutsch, J.; Ishii, N.; Mu, S.; Sakamoto, Y.; Busse-Reid, R.; Gimmi, C.; et al. The Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Single Oral Doses of CH4987655 in Healthy Volunteers: Target Suppression Using a Biomarker. Clin. Cancer Res. 2009, 15, 7368–7374. [Google Scholar] [CrossRef]
- Isshiki, Y.; Kohchi, Y.; Iikura, H.; Matsubara, Y.; Asoh, K.; Murata, T.; Kohchi, M.; Mizuguchi, E.; Tsujii, S.; Hattori, K.; et al. Design and Synthesis of Novel Allosteric MEK Inhibitor CH4987655 as an Orally Available Anticancer Agent. Bioorg. Med. Chem. Lett. 2011, 21, 1795–1801. [Google Scholar] [CrossRef]
- Wallace, E.M.; Lyssikatos, J.; Blake, J.F.; Marlow, A.; Greschuk, J.; Yeh, T.C.; Callejo, M.; Marsh, V.; Poch, G.; Otten, J.; et al. AZD8330 (ARRY-424704): Preclinical Evaluation of a Potent, Selective MEK 1/2 Inhibitor Currently in Phase I Trials. In Proceedings of the 100th AACR Annual Meeting, Denver, CO, USA, 18–22 April 2009. [Google Scholar]
- Goto, M.; Chow, J.; Muramoto, K.; Chiba, K.-I.; Yamamoto, S.; Fujita, M.; Obaishi, H.; Tai, K.; Mizui, Y.; Tanaka, I.; et al. E6201 [(3S,4R,5Z,8S,9S,11E)-14-(Ethylamino)-8, 9,16-trihydroxy-3,4-dimethyl-3,4,9,19-tetrahydro-1H-2-benzoxacyclotetradecine-1,7(8H)-dione], a Novel Kinase Inhibitor of Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase (MEK)-1 and MEK Kinase-1: In Vitro Characterization of Its Anti-Inflammatory and Antihyperproliferative Activities. J. Pharmacol. Exp. Ther. 2009, 331, 485–495. [Google Scholar] [CrossRef]
- Kim, K.; Kong, S.-Y.; Fulciniti, M.; Li, X.; Song, W.; Nahar, S.; Burger, P.; Rumizen, M.J.; Podar, K.; Chauhan, D.; et al. Blockade of the MEK/ERK Signaling Cascade by AS703026, a Novel Selective MEK1/2 Inhibitor, Induces Pleiotropic Anti-Myeloma Activity in Vitro and in Vivo. Br. J. Haematol. 2010, 149, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Mala, C.; Neville, N.G.; Haindl, E.; Buergle, M.; Schmalix, W.; Bevan, P. A Phase I, First-in-Human Single Ascending Dose Study of the MEK Inhibitor WX-554 given to Healthy Male Subjects. J. Clin. Oncol. 2010, 28, e13666. [Google Scholar] [CrossRef]
- Daouti, S.; Higgins, B.; Kolinsky, K.; Packman, K.; Wang, H.; Rizzo, C.; Moliterni, J.; Huby, N.; Fotouhi, N.; Liu, M.; et al. Preclinical in Vivo Evaluation of Efficacy, Pharmacokinetics, and Pharmacodynamics of a Novel MEK1/2 Kinase Inhibitor RO5068760 in Multiple Tumor Models. Mol. Cancer Ther. 2010, 9, 134–144. [Google Scholar] [CrossRef]
- Choo, E.F.; Belvin, M.; Chan, J.; Hoeflich, K.; Orr, C.; Robarge, K.; Yang, X.; Zak, M.; Boggs, J. Preclinical Disposition and Pharmacokinetics-Pharmacodynamic Modeling of Biomarker Response and Tumour Growth Inhibition in Xenograft Mouse Models of G-573, a MEK Inhibitor. Xenobiotica 2010, 40, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Dougan, D.R.; Gong, X.; Halkowycz, P.; Jin, B.; Kanouni, T.; O’Connell, S.M.; Scorah, N.; Shi, L.; Wallace, M.B.; et al. Discovery of TAK-733, a Potent and Selective MEK Allosteric Site Inhibitor for the Treatment of Cancer. Bioorg. Med. Chem. Lett. 2011, 21, 1315–1319. [Google Scholar] [CrossRef]
- Khire, U.R.; Bhargava, A.; Hart, B.; Chordia, M.D. Abstract 5470: Potent MEK Inhibitor CIP-137401: Preclinical Studies. Cancer Res. 2011, 71, 5470. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kakefuda, R.; Tajima, N.; Sowa, Y.; Sakai, T. Antitumor Activities of JTP-74057 (GSK1120212), a Novel MEK1/2 Inhibitor, on Colorectal Cancer Cell Lines in Vitro and in Vivo. Int. J. Oncol. 2011, 39, 23–31. [Google Scholar] [CrossRef]
- Abe, H.; Kikuchi, S.; Hayakawa, K.; Iida, T.; Nagahashi, N.; Maeda, K.; Sakamoto, J.; Matsumoto, N.; Miura, T.; Matsumura, K.; et al. Discovery of a Highly Potent and Selective MEK Inhibitor: GSK1120212 (JTP-74057 DMSO Solvate). ACS Med. Chem. Lett. 2011, 2, 320–324. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Banerji, U.; Albanell, J.; Bahleda, R.; Dolly, S.; Kraeber-Bodéré, F.; Rojo, F.; Routier, E.; Guarin, E.; Xu, Z.X.; et al. First-in-Human, Phase I Dose-Escalation Study of the Safety, Pharmacokinetics, and Pharmacodynamics of RO5126766, a First-in-Class Dual MEK/RAF Inhibitor in Patients with Solid Tumors. Clin. Cancer Res. 2012, 18, 4806–4819. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.; Vernillet, L.; Peterson, A.; Ware, J.A.; Lee, L.; Martini, J.-F.; Yu, P.; Li, C.; Del Rosario, G.; Choo, E.F.; et al. Bridging the Gap between Preclinical and Clinical Studies Using Pharmacokinetic–Pharmacodynamic Modeling: An Analysis of GDC-0973, a MEK Inhibitor. Clin. Cancer Res. 2012, 18, 3090–3099. [Google Scholar] [CrossRef] [PubMed]
- Heald, R.A.; Jackson, P.; Savy, P.; Jones, M.; Gancia, E.; Burton, B.; Newman, R.; Boggs, J.; Chan, E.; Chan, J.; et al. Discovery of Novel Allosteric Mitogen-Activated Protein Kinase Kinase (MEK) 1,2 Inhibitors Possessing Bidentate Ser212 Interactions. J. Med. Chem. 2012, 55, 4594–4604. [Google Scholar] [CrossRef] [PubMed]
- Hatzivassiliou, G.; Haling, J.R.; Chen, H.; Song, K.; Price, S.; Heald, R.; Hewitt, J.F.M.; Zak, M.; Peck, A.; Orr, C.; et al. Mechanism of MEK Inhibition Determines Efficacy in Mutant KRAS- versus BRAF-Driven Cancers. Nature 2013, 501, 232–236. [Google Scholar] [CrossRef]
- Cheng, Y.; Tian, H. Current Development Status of MEK Inhibitors. Molecules 2017, 22, 1551. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, T.; Wang, H.; Cui, C.; Zhong, W.; Fu, D.; Xi, W.; Si, L.; Guo, J.; Cheng, Y.; et al. Phase I Pharmacokinetic Study of an Oral, Small-Molecule MEK Inhibitor Tunlametinib in Patients with Advanced NRAS Mutant Melanoma. Front. Pharmacol. 2022, 13, 1039416. [Google Scholar] [CrossRef]
- Song, J.Y.; Kim, C.S.; Lee, J.H.; Jang, S.J.; Lee, S.W.; Hwang, J.J.; Lim, C.; Lee, G.; Seo, J.; Cho, S.Y.; et al. Dual Inhibition of MEK1/2 and EGFR Synergistically Induces Caspase-3-Dependent Apoptosis in EGFR Inhibitor-Resistant Lung Cancer Cells via BIM Upregulation. Investig. New Drugs 2013, 31, 1458–1465. [Google Scholar] [CrossRef]
- Phadke, M.S.; Sini, P.; Smalley, K.S.M. The Novel ATP-Competitive MEK/Aurora Kinase Inhibitor BI-847325 Overcomes Acquired BRAF Inhibitor Resistance through Suppression of Mcl-1 and MEK Expression. Mol. Cancer Ther. 2015, 14, 1354–1364. [Google Scholar] [CrossRef]
- Lu, B.; Huang, S.; Cao, J.; Hu, Q.; Shen, R.; Wan, H.; Wang, D.; Yuan, J.; Zhang, L.; Zhang, J.; et al. Discovery of EBI-1051: A Novel and Orally Efficacious MEK Inhibitor with Benzofuran Scaffold. Bioorg. Med. Chem. 2018, 26, 581–589. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Monlish, D.A.; Gupta, M.; Wright, T.D.; Hoang, V.T.; Fedak, M.; Chopra, I.; Flaherty, P.T.; Madura, J.; Mannepelli, S.; et al. Structure Activity Relationships of Anthranilic Acid-Based Compounds on Cellular and in Vivo Mitogen Activated Protein Kinase-5 Signaling Pathways. Bioorg. Med. Chem. Lett. 2018, 28, 2294–2301. [Google Scholar] [CrossRef]
- Goulielmaki, M.; Assimomytis, N.; Rozanc, J.; Taki, E.; Christodoulou, I.; Alexopoulos, L.G.; Zoumpourlis, V.; Pintzas, A.; Papahatjis, D. DPS-2: A Novel Dual MEK/ERK and PI3K/AKT Pathway Inhibitor with Powerful Ex Vivo and In Vivo Anticancer Properties. Transl. Oncol. 2019, 12, 932–950. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Xia, X.; Zhang, W.; Tian, H. A Benzoxazole Compound as a Novel MEK Inhibitor for the Treatment of RAS/RAF Mutant Cancer. Int. J. Cancer 2019, 145, 586–596. [Google Scholar] [CrossRef]
- Rowswell-Turner, R.B.; Rutishauser, J.A.; Kim, K.K.; Khazan, N.; Sivagnanalingam, U.; Jones, A.M.; Singh, R.K.; Moore, R.G. Novel Small Molecule MEK Inhibitor URML-3881 Enhances Cisplatin Sensitivity in Clear Cell Ovarian Cancer. Transl. Oncol. 2019, 12, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Guo, J.; Zhu, L.; Jiang, Y.; Yan, W.; Zhang, J.; Hui, A.M.; Yang, Y.; Diao, L.; Tan, Y.; et al. A First-in-Human, Phase 1a Dose-Escalation Study of the Selective MEK1/2 Inhibitor FCN-159 in Patients with Advanced NRAS-Mutant Melanoma. Eur. J. Cancer 2022, 175, 125–135. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, X.; Zhou, Z.; Tan, H.; Chen, L.; Tan, R.; Zhang, W.; Jiang, L.; Linghu, L.; Sun, J.; et al. Abstract 1951: FCN-159: A Novel, Potent and Selective Oral Inhibitor of MEK1/2 for the Treatment of Solid Tumors. Cancer Res. 2020, 80, 1951. [Google Scholar] [CrossRef]
- Poddutoori, R.; Aardalen, K.; Aithal, K.; Barahagar, S.S.; Belliappa, C.; Bock, M.; Chelur, S.; Gerken, A.; Gopinath, S.; Gruenenfelder, B.; et al. Discovery of MAP855, an Efficacious and Selective MEK1/2 Inhibitor with an ATP-Competitive Mode of Action. J. Med. Chem. 2022, 65, 4350–4366. [Google Scholar] [CrossRef]
- Chen, C.; Huang, C.; Xu, M.; Chen, Y.; Zhao, L.; Chen, Y.; Hu, Y. Abstract 475: Preclinical Development of ABM-168, a Novel MEK Inhibitor to Treat Cancer with Brain Tumors. Cancer Res. 2023, 83, 475. [Google Scholar] [CrossRef]
- Takano, K.; Munehira, Y.; Hatanaka, M.; Murakami, R.; Shibata, Y.; Shida, T.; Takeuchi, K.; Takechi, S.; Tabata, T.; Shimada, T.; et al. Discovery of a Novel ATP-Competitive MEK Inhibitor DS03090629 That Overcomes Resistance Conferred by BRAF Overexpression in BRAF-Mutated Melanoma. Mol. Cancer Ther. 2023, 22, 317–332. [Google Scholar] [CrossRef]
- Punekar, S.R.; Velcheti, V.; Neel, B.G.; Wong, K.K. The Current State of the Art and Future Trends in RAS-Targeted Cancer Therapies. Nat. Rev. Clin. Oncol. 2022, 19, 637–655. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Bi, Z.; Liu, Y.; Qin, F.; Wei, Y.; Wei, X. Targeting RAS–RAF–MEK–ERK Signaling Pathway in Human Cancer: Current Status in Clinical Trials. Genes Dis. 2023, 10, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Morante, M.; Pandiella, A.; Crespo, P.; Herrero, A. Immune Checkpoint Inhibitors and RAS–ERK Pathway-Targeted Drugs as Combined Therapy for the Treatment of Melanoma. Biomolecules 2022, 12, 1562. [Google Scholar] [CrossRef]
- Xiao, Y.; Lee, T.; Latham, M.P.; Warner, L.R.; Tanimoto, A.; Pardi, A.; Ahn, N.G. Phosphorylation Releases Constraints to Domain Motion in ERK2. Proc. Natl. Acad. Sci. USA 2014, 111, 2506–2511. [Google Scholar] [CrossRef]
- Anderson, J.W.; Vaisar, D.; Jones, D.N.; Pegram, L.M.; Chen, H.; Moffat, J.G.; Ahn, N.G. Conformation Selection by ATP-Competitive Inhibitors and Allosteric Communication in ERK2. bioRxiv 2023. [Google Scholar] [CrossRef]
- Pan, X.; Pei, J.; Wang, A.; Shuai, W.; Feng, L.; Bu, F.; Zhu, Y.; Zhang, L.; Wang, G.; Ouyang, L. Development of Small Molecule Extracellular Signal-Regulated Kinases (ERKs) Inhibitors for Cancer Therapy. Acta Pharm. Sin. B 2022, 12, 2171–2192. [Google Scholar] [CrossRef]
- Herrero, A.; Pinto, A.; Colón-Bolea, P.; Casar, B.; Jones, M.; Agudo-Ibáñez, L.; Vidal, R.; Tenbaum, S.P.; Nuciforo, P.; Valdizán, E.M.; et al. Small Molecule Inhibition of ERK Dimerization Prevents Tumorigenesis by RAS-ERK Pathway Oncogenes. Cancer Cell 2015, 28, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Zaballos, M.A.; Acuña-Ruiz, A.; Morante, M.; Riesco-Eizaguirre, G.; Crespo, P.; Santisteban, P. Inhibiting ERK Dimerization Ameliorates BRAF-Driven Anaplastic Thyroid Cancer. Cell. Mol. Life Sci. 2022, 79, 504. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.; Huang, W.; Samadani, R.; Mackowiak, B.; Centola, G.; Chen, L.; Conlon, I.L.; Hom, K.; Kane, M.A.; Fletcher, S.; et al. Mechanistic Analysis of an Extracellular Signal–Regulated Kinase 2–Interacting Compound That Inhibits Mutant BRAF-Expressing Melanoma Cells by Inducing Oxidative Stress. J. Pharmacol. Exp. Ther. 2021, 376, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Ohori, M.; Kinoshita, T.; Okubo, M.; Sato, K.; Yamazaki, A.; Arakawa, H.; Nishimura, S.; Inamura, N.; Nakajima, H.; Neya, M.; et al. Identification of a Selective ERK Inhibitor and Structural Determination of the Inhibitor-ERK2 Complex. Biochem. Biophys. Res. Commun. 2005, 336, 357–363. [Google Scholar] [CrossRef]
- Aronov, A.M.; Qing, T.; Martinez-Botella, G.; Bemis, G.W.; Cao, J.; Chen, G.; Ewing, N.P.; Ford, P.J.; Germann, U.A.; Green, J.; et al. Structure-Guided Design of Potent and Selective Pyrimidylpyrrole Inhibitors of Extracellular Signal-Regulated Kinase (ERK) Using Conformational Control. J. Med. Chem. 2009, 52, 6362–6368. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, M.; Seipelt, I.; Blumenstein, L.; Jung, K.; Schuster, T.; Mueller, G.; Guenther, E.; Engel, J.; Teifel, M. Dual PI3K/Erk Inhibitor AEZS-136, A Potent Anti-Tumor Compound Under Preclinical Development. In Proceedings of the 244th National Meeting of the American Chemistry Society, Philadelphia, PA, USA, 19–23 August 2012. [Google Scholar]
- Morris, E.J.; Jha, S.; Restaino, C.R.; Dayananth, P.; Zhu, H.; Cooper, A.; Carr, D.; Deng, Y.; Jin, W.; Black, S.; et al. Discovery of a Novel ERK Inhibitor with Activity in Models of Acquired Resistance to BRAF and MEK Inhibitors. Cancer Discov. 2013, 3, 742–750. [Google Scholar] [CrossRef]
- Robarge, K.; Schwarz, J.; Blake, J.; Burkard, M.; Chan, J.; Chen, H.; Chou, K.-J.; Diaz, D.; Gaudino, J.; Gould, S.; et al. Discovery of GDC-0994, a Potent and Selective ERK1/2 Inhibitor in Early Clinical Development. In Proceedings of the AACR Annual Meeting, San Diego, CA, USA, 5–9 April 2014. [Google Scholar]
- Germann, U.; Furey, B.; Roix, J.; Markland, W.; Hoover, R.; Aronov, A.; Hale, M.; Chen, G.; Martinez-Botella, G.; Alargova, R.; et al. The Selective ERK Inhibitor BVD-523 Is Active in Models of MAPK Pathway-Dependent Cancers, Including Those with Intrinsic and Acquired Drug Resistance. In Proceedings of the AACR Annual Meeting, Philadelphia, PA, USA, 18–22 April 2015. [Google Scholar]
- Ward, R.A.; Colclough, N.; Challinor, M.; Debreczeni, J.E.; Eckersley, K.; Fairley, G.; Feron, L.; Flemington, V.; Graham, M.A.; Greenwood, R.; et al. Structure-Guided Design of Highly Selective and Potent Covalent Inhibitors of ERK1/2. J. Med. Chem. 2015, 58, 4790–4801. [Google Scholar] [CrossRef]
- Bhagwat, S.V.; McMillen, W.T.; Cai, S.; Zhao, B.; Whitesell, M.; Kindler, L.; Flack, R.S.; Wu, W.; Huss, K.; Anderson, B.; et al. Discovery of LY3214996, a Selective and Novel ERK1/2 Inhibitor with Potent Antitumor Activities in Cancer Models with MAPK Pathway Alterations. In Proceedings of the AACR Annual Meeting, Washington, DC, USA, 1–5 April 2017. [Google Scholar]
- Bhagwat, S.V.; McMillen, W.T.; Cai, S.; Zhao, B.; Whitesell, M.; Shen, W.; Kindler, L.; Flack, R.S.; Wu, W.; Anderson, B.; et al. ERK Inhibitor LY3214996 Targets ERK Pathway–Driven Cancers: A Therapeutic Approach toward Precision Medicine. Mol. Cancer Ther. 2020, 19, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Burrows, F.; Kessler, L.; Chen, J.; Gao, X.; Hansen, R.; Li, S.; Thach, C.; Darjania, L.; Yao, Y.; Wang, Y.; et al. KO-947, a potent E. inhibitor with robust preclinical single agent activity in M. pathway dysregulated tumors KO-947, a Potent ERK Inhibitor with Robust Preclinical Single Agent Activity in MAPK Pathway Dysregulated Tumors. In Proceedings of the AACR Annual Meeting, Washington, DC, USA, 1–5 April 2017. [Google Scholar]
- Reddy, S.P.; Sivanandhan, D.; Dewang, P.; Rao, N.; Smith, R.A.; Thompson, S.K. ASN007, a Novel Oral ERK Inhibitor, Shows Robust Antitumor Activity in RAS Mutant Cancer Models. In Proceedings of the AACR Annual Meeting, Chicago, IL, USA, 14–18 April 2018. [Google Scholar]
- Boga, S.B.; Deng, Y.; Zhu, L.; Nan, Y.; Cooper, A.B.; Shipps, G.W.; Doll, R.; Shih, N.Y.; Zhu, H.; Sun, R.; et al. MK-8353: Discovery of an Orally Bioavailable Dual Mechanism ERK Inhibitor for Oncology. ACS Med. Chem. Lett. 2018, 9, 761–767. [Google Scholar] [CrossRef]
- Moschos, S.J.; Sullivan, R.J.; Hwu, W.J.; Ramanathan, R.K.; Adjei, A.A.; Fong, P.C.; Shapira-Frommer, R.; Tawbi, H.A.; Rubino, J.; Rush, T.S.; et al. Development of MK-8353, an Orally Administered ERK1/2 Inhibitor, in Patients with Advanced Solid Tumors. JCI Insight 2018, 3, e92352. [Google Scholar] [CrossRef]
- Aronchik, I.; Dai, Y.; Labenski, M.; Barnes, C.; Jones, T.; Qiao, L.; Beebe, L.; Malek, M.; Elis, W.; Shi, T.; et al. Efficacy of a Covalent ERK1/2 Inhibitor, CC-90003, in KRAS-Mutant Cancer Models Reveals Novel Mechanisms of Response and Resistance. Mol. Cancer Res. 2019, 17, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.A.; Anderton, M.J.; Bethel, P.; Breed, J.; Cook, C.; Davies, E.J.; Dobson, A.; Dong, Z.; Fairley, G.; Farrington, P.; et al. Discovery of a Potent and Selective Oral Inhibitor of ERK1/2 (AZD0364) That Is Efficacious in Both Monotherapy and Combination Therapy in Models of Nonsmall Cell Lung Cancer (NSCLC). J. Med. Chem. 2019, 62, 11004–11018. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, M.; Li, L.; Chen, Y.; Tang, S.; Su, Y.; Dong, R.; Ding, J.; Geng, M. HH2710, a Highly Potent and Selective Erk1/2 Inhibitor for the Treatment of Mapk Mutant Tumors. In Proceedings of the AACR Annual Meeting, Virtual meeting, 24–29 April 2020. [Google Scholar]
- Li, A.; Jian, S.; Yuan, X.; Song, F.; Yang, S.; Du, C.; Tao, Y.; Wang, L.; Pan, M.; Dong, P.; et al. The ERK1/2 Inhibitor, JSI-1187, Demonstrates Preclinical Efficacy in Tumor Models with MAPK Pathway Mutations. In Proceedings of the AACR Annual Meeting, Virtual meeting, 24–29 April 2020. [Google Scholar]
- Munck, J.M.; Berdini, V.; Bevan, L.; Brothwood, J.L.; Castro, J.; Courtin, A.; East, C.; Ferraldeschi, R.; Heightman, T.D.; Hindley, C.J.; et al. ASTX029, a Novel Dual-Mechanism ERK Inhibitor, Modulates Both the Phosphorylation and Catalytic Activity of ERK. Mol. Cancer Ther. 2021, 20, 1757–1768. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, J.; Zhong, K.; Tong, A.; Jia, D. Targeted Protein Degradation: Mechanisms, Strategies and Application. Signal Transduct. Target. Ther. 2022, 7, 113. [Google Scholar] [CrossRef]
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination and Degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef]
- Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted Intracellular Protein Degradation Induced by a Small Molecule: En Route to Chemical Proteomics. Bioorg. Med. Chem. Lett. 2008, 18, 5904–5908. [Google Scholar] [CrossRef]
- Lai, A.C.; Toure, M.; Hellerschmied, D.; Salami, J.; Jaime-Figueroa, S.; Ko, E.; Hines, J.; Crews, C.M. Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. Angew. Chem. Int. Ed. 2016, 55, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Gadd, M.S.; Testa, A.; Lucas, X.; Chan, K.H.; Chen, W.; Lamont, D.J.; Zengerle, M.; Ciulli, A. Structural Basis of PROTAC Cooperative Recognition for Selective Protein Degradation. Nat. Chem. Biol. 2017, 13, 514–521. [Google Scholar] [CrossRef]
- Nalawansha, D.A.; Crews, C.M. PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chem. Biol. 2020, 27, 998–1014. [Google Scholar] [CrossRef] [PubMed]
- Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted Protein Degradation by PROTACs. Pharmacol. Ther. 2017, 174, 138–144. [Google Scholar] [CrossRef]
- Gao, H.; Sun, X.; Rao, Y. PROTAC Technology: Opportunities and Challenges. ACS Med. Chem. Lett. 2020, 11, 237–240. [Google Scholar] [CrossRef]
- Martín-Acosta, P.; Xiao, X. PROTACs to Address the Challenges Facing Small Molecule Inhibitors Graphical Abstract HHS Public Access. Eur. J. Med. Chem. 2021, 210, 112993. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, S.; Han, S.; Zhao, Y.; Yu, C.; Liu, H.; Li, N. Targeted Protein Degrader Development for Cancer: Advances, Challenges, and Opportunities. Trends Pharmacol. Sci. 2023, 44, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. Arvinas’s PROTACs Pass First Safety and PK Analysis. Nat. Rev. Drug Discov. 2019, 18, 895. [Google Scholar] [CrossRef] [PubMed]
- Kelm, J.M.; Pandey, D.S.; Malin, E.; Kansou, H.; Arora, S.; Kumar, R.; Gavande, N.S. PROTAC’ing Oncoproteins: Targeted Protein Degradation for Cancer Therapy. Mol. Cancer 2023, 22, 62. [Google Scholar] [CrossRef]
- Zeng, M.; Xiong, Y.; Safaee, N.; Nowak, R.P.; Donovan, K.A.; Yuan, C.J.; Nabet, B.; Gero, T.W.; Feru, F.; Li, L.; et al. Exploring Targeted Degradation Strategy for Oncogenic KRASG12C. Cell Chem. Biol. 2020, 27, 19–31.e6. [Google Scholar] [CrossRef] [PubMed]
- Bond, M.J.; Chu, L.; Nalawansha, D.A.; Li, K.; Crews, C.M. Targeted Degradation of Oncogenic KRASG12Cby VHL-Recruiting PROTACs. ACS Cent. Sci. 2020, 6, 1367–1375. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, T.; Sun, M.; Li, P.; Lai, M.; Xie, L.; Chen, J.; Ding, J.; Xie, H.; Zhou, J.; et al. Design, Synthesis and Biological Evaluation of KRASG12C-PROTACs. Bioorg. Med. Chem. 2023, 78, 117153. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, F.; Pei, S.; Gou, S. Pomalidomide Hybrids Act as Proteolysis Targeting Chimeras: Synthesis, Anticancer Activity and B-Raf Degradation. Bioorg. Chem. 2019, 87, 191–199. [Google Scholar] [CrossRef]
- Posternak, G.; Tang, X.; Maisonneuve, P.; Jin, T.; Lavoie, H.; Daou, S.; Orlicky, S.; Goullet de Rugy, T.; Caldwell, L.; Chan, K.; et al. Functional Characterization of a PROTAC Directed against BRAF Mutant V600E. Nat. Chem. Biol. 2020, 16, 1170–1178. [Google Scholar] [CrossRef]
- Alabi, S.; Jaime-Figueroa, S.; Yao, Z.; Gao, Y.; Hines, J.; Samarasinghe, K.T.G.; Vogt, L.; Rosen, N.; Crews, C.M. Mutant-Selective Degradation by BRAF-Targeting PROTACs. Nat. Commun. 2021, 12, 920. [Google Scholar] [CrossRef]
- Ohoka, N.; Suzuki, M.; Uchida, T.; Tsukumo, Y.; Yoshida, M.; Inoue, T.; Ohki, H.; Naito, M. Development of a Potent Small-Molecule Degrader against Oncogenic BRAFV600E Protein That Evades Paradoxical MAPK Activation. Cancer Sci. 2022, 113, 2828–2838. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Marino, M.; Gionfriddo, G.; Maione, F.; Pandini, M.; Oddo, D.; Giorgis, M.; Rolando, B.; Blua, F.; Gastaldi, S.; et al. Investigation into the Use of Encorafenib to Develop Potential PROTACs Directed against BRAFV600E Protein. Molecules 2022, 27, 8513. [Google Scholar] [CrossRef]
- Wei, J.; Hu, J.; Wang, L.; Xie, L.; Jin, M.S.; Chen, X.; Liu, J.; Jin, J. Discovery of a First-in-Class Mitogen-Activated Protein Kinase Kinase 1/2 Degrader. J. Med. Chem. 2019, 62, 10897–10911. [Google Scholar] [CrossRef]
- Vollmer, S.; Cunoosamy, D.; Lv, H.; Feng, H.; Li, X.; Nan, Z.; Yang, W.; Perry, M.W.D. Design, Synthesis, and Biological Evaluation of MEK PROTACs. J. Med. Chem. 2020, 63, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wei, J.; Yim, H.; Wang, L.; Xie, L.; Jin, M.S.; Kabir, M.; Qin, L.; Chen, X.; Liu, J.; et al. Potent and Selective Mitogen-Activated Protein Kinase Kinase 1/2 (MEK1/2) Heterobifunctional Small-Molecule Degraders. J. Med. Chem. 2020, 63, 15883–15905. [Google Scholar] [CrossRef]
- Herrera-montávez, C.; Kurimchak, A.M.; Hu, X.; Hu, J.; Jin, J. MEK1/2-Targeting PROTACs Promote the Collateral Degradation of CRAF in KRAS Mutant Cells. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Xu, F.; Niu, Y.; Wu, Y.; Wang, X.; Peng, Y.; Sun, J.; Liang, L.; Xu, P. Substituted 3-Benzylcoumarins as Allosteric MEK1 Inhibitors: Design, Synthesis and Biological Evaluation as Antiviral Agents. Molecules 2013, 18, 6057–6091. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Zheng, C.; Li, B.; Liu, Z.; Zhang, L.; Yuan, L.; Xu, P. Discovery of Coumarin-Based MEK1/2 PROTAC Effective in Human Cancer Cells. ACS Med. Chem. Lett. 2023, 14, 92–102. [Google Scholar] [CrossRef]
- Lebraud, H.; Wright, D.J.; Johnson, C.N.; Heightman, T.D. Protein Degradation by In-Cell Self-Assembly of Proteolysis Targeting Chimeras. ACS Cent. Sci. 2016, 2, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Portnoff, A.D.; Stephens, E.A.; Varner, J.D.; DeLisa, M.P. Ubiquibodies, Synthetic E3 Ubiquitin Ligases Endowed with Unnatural Substrate Specificity for Targeted Protein Silencing. J. Biol. Chem. 2014, 289, 7844–7855. [Google Scholar] [CrossRef]
- Stephens, E.A.; Ludwicki, M.B.; Meksiriporn, B.; Li, M.; Ye, T.; Monticello, C.; Forsythe, K.J.; Kummer, L.; Zhou, P.; Plückthun, A.; et al. Engineering Single Pan-Specific Ubiquibodies for Targeted Degradation of All Forms of Endogenous ERK Protein Kinase. ACS Synth. Biol. 2021, 10, 2396–2408. [Google Scholar] [CrossRef] [PubMed]
- Simonetta, K.R.; Taygerly, J.; Boyle, K.; Basham, S.E.; Padovani, C.; Lou, Y.; Cummins, T.J.; Yung, S.L.; von Soly, S.K.; Kayser, F.; et al. Prospective Discovery of Small Molecule Enhancers of an E3 Ligase-Substrate Interaction. Nat. Commun. 2019, 10, 1402. [Google Scholar] [CrossRef]
- Mayor-Ruiz, C.; Bauer, S.; Brand, M.; Kozicka, Z.; Siklos, M.; Imrichova, H.; Kaltheuner, I.H.; Hahn, E.; Seiler, K.; Koren, A.; et al. Rational Discovery of Molecular Glue Degraders via Scalable Chemical Profiling. Nat. Chem. Biol. 2020, 16, 1199–1207. [Google Scholar] [CrossRef]
- Słabicki, M.; Kozicka, Z.; Petzold, G.; Li, Y.D.; Manojkumar, M.; Bunker, R.D.; Donovan, K.A.; Sievers, Q.L.; Koeppel, J.; Suchyta, D.; et al. The CDK Inhibitor CR8 Acts as a Molecular Glue Degrader That Depletes Cyclin K. Nature 2020, 585, 293–297. [Google Scholar] [CrossRef]
- Sasso, J.M.; Tenchov, R.; Wang, D.S.; Johnson, L.S.; Wang, X.; Zhou, Q.A. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2023, 62, 601–623. [Google Scholar] [CrossRef]
- Khan, Z.M.; Real, A.M.; Marsiglia, W.M.; Chow, A.; Duffy, M.E.; Yerabolu, J.R.; Scopton, A.P.; Dar, A.C. Structural Basis for the Action of the Drug Trametinib at KSR-Bound MEK. Nature 2020, 588, 509–514. [Google Scholar] [CrossRef]
- Chow, A.; Khan, Z.M.; Marsiglia, W.M.; Dar, A.C. Conformational Control and Regulation of the Pseudokinase KSR via Small Molecule Binding Interactions. Methods Enzymol. 2022, 667, 365–402. [Google Scholar] [CrossRef] [PubMed]
- Fuchter, M.J. On the Promise of Photopharmacology Using Photoswitches: A Medicinal Chemist’s Perspective. J. Med. Chem. 2020, 63, 11436–11447. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Li, X.; Wang, Z.; Liu, L.; He, F.; Pan, Z. Optically Activated MEK1/2 Inhibitors (Opti-MEKi) as Potential Antimelanoma Agents. Eur. J. Med. Chem. 2023, 251, 115236. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, P.; Samarasinghe, K.T.G.; Crews, C.M.; Carreira, E.M. Reversible Spatiotemporal Control of Induced Protein Degradation by Bistable PhotoPROTACs. ACS Cent. Sci. 2019, 5, 1682–1690. [Google Scholar] [CrossRef]
Interaction | Kd | Reference |
---|---|---|
HRAS (GDP and GTP-bound) dimer | [280] | |
in vitro (in solution) | NB | |
in vitro (membrane-associated) | 500 µM | |
KRAS (GTP-bound) dimer | ||
in vitro (in solution) | 0.77 µM | [281] |
in vitro (membrane-associated) | 530 µM | [282] |
BRAF L487G dimer in vitro (in solution) | 2 µM | [57] |
MEK1 homodimers | ||
in vitro (in solution) | 1.5 µM | [283] |
Computational prediction | 1.2 × 10−11 M−1 | [83] |
MEK2 homodimers Computational prediction | 3.7 × 10−9 M−1 | [83] |
MEK1-MEK2 dimers Computational prediction | 1.1 × 10−11 M−1 | [83] |
HRAS-GTP and ARAF-RBD | 76.6 nM | [284] |
HRAS-GTP and BRAF-RBD | 11.2 nM | |
HRAS-GTP and CRAF-RBD in vitro (in solution) | 21.2 nM | |
RAS-GTP and CRAF-RBD in vitro (in solution) (physiological ionic strength) | 130 nM | [285] |
KRAS-GTP and CRAF-RBDGRD in vitro (in solution) | 152 nM | [50] |
MEK1 and BRAF in vitro (in solution) | 43 nM | [286] |
55 nM | [287] | |
51 nM | [288] | |
MEK1 and CRAF in vitro (in solution) | 38 nM | [287] |
ppMEK1-ERK1 | 58 nM | [289] |
ppMEK1-ERK2 | 340 nM (Km) | [290] |
ERK2 and DUSP6 in vitro (in solution) | 1.1 µM | [163] |
ERK2 and RSK1 | 150 nM | [130] |
ppERK2 and RSK1 in vitro (in solution) | 120 nM | |
ERK2 and ELK1 | 250 nM | [130] |
ppERK2 and ELK1 in vitro (in solution) | >10 µM | |
ERK2 and cFos | 970 nM | [130] |
ppERK2 and cFos in vitro (in solution) | 1.3 µM | |
ERK dimer in vitro (in solution) | [291] | |
Phosphorylated | 7.5 nM | |
Unphosphorylated | 20 µM |
Name | IC50 | Type | Target | Reported | Reference |
---|---|---|---|---|---|
PD98059 | 2–7 µM 50 µM | non-ATP-competitive | MEK1/2 | 1995 | [446,447] |
U0126 | 72 nM 58 nM | non-ATP-competitive | MEK1/2 | 1998 | [448,449] |
CI-1040/ PD184352 | 17 nM | non-ATP-competitive | MEK1 | 1999 | [450,451] |
Mirdametinib/PD0325901 | 0.33 nM | non-ATP-competitive | MEK1/2 | 2004 | [451,452] |
PD184161 | 10–100 nM | non-ATP-competitive | MEK1/2 | 2006 | [453] |
Binimetinib/ MEK162 (MEKTOVI) | 12 nM | non-ATP-competitive | MEK1/2 | 2006 (FDA-approved: 2018) | [454] |
Selumetinib/AZD6244/ARRY-142886 (KOSELUGO) | 14 nM | non-ATP-competitive | MEK1 | 2007 (FDA-approved: 2020) | [455] |
Refametinib/RDEA-119/BAY 869766 | 19 nM 47 nM | non-ATP-competitive | MEK1/2 | 2009 | [456] |
RO4987655/CH4987655/ RG7167 | 5.2 nM | non-ATP-competitive | MEK1 | 2009 | [457,458] |
AZD8330/ARRY-704 | 7 nM | non-ATP-competitive | MEK1/2 | 2009 | [459] |
E6201 | 50 nM | ATP-competitive | MEK1 | 2009 | [460] |
Pimasertib/ AS703026/MSC1936369B | ND | non-ATP-competitive | MEK1/2 | 2010 | [461] |
WX-554/UCB1366554 | 4.7 nM 10.7 nM | non-ATP-competitive | MEK1/2 | 2010 | [462] |
RO5068760 | 25 nM | non-ATP-competitive | MEK1 | 2010 | [463] |
G-573 | 16 nM | non-ATP-competitive | MEK | 2010 | [464] |
TAK-733 | 3.2 nM | non-ATP-competitive | MEK1/2 | 2011 | [465] |
CIP-137401 | 21 nM | non-ATP-competitive | MEK1 | 2011 | [466] |
Trametinib/GSK1120212/JTP-74057 (MEKINIST) | 2 nM | non-ATP-competitive | MEK1/2 | 2011 (FDA-approved: 2013) | [467,468] |
Avutometinib/RO5126766/ RG-7304/ CH-5126766, CKI-27, R-7304/VS-6766 | 8.2 nM 56 nM 160 nM 190 nM | non-ATP-competitive | BRAFV600E CRAF MEK BRAF | 2012 | [469] |
Cobimetinib/ GDC-0973 (COTELLIC) | 4.2 nM | non-ATP-competitive | MEK1 | 2012 (FDA-approved: 2015) | [470] |
G-894 | 13 nM | non-ATP-competitive | MEK1/2 | 2012 | [471] |
GDC-0623/RG 7421 | 0.13 nM | non-ATP-competitive | MEK1 | 2013 | [472] |
Tunlametinib/HL-085 | 1.9–10 nM | non-ATP-competitive | MEK1 | 2013 | [473,474] |
CZ0775 | >10 μM | non-ATP-competitive | MEK1/2 | 2013 | [475] |
BI-847325 | 25/4 nM 25/15 nM | ATP-competitive | MEK1/2 Aurora kinase A/C | 2015 | [476] |
EBI-1051 | 3.9 nM | non-ATP-competitive | MEK | 2018 | [477] |
SC-1-151 | 26 nM | non-ATP-competitive | MEK1/2/5 | 2018 | [478] |
DPS-2 | <5 µM | non-ATP-competitive | MEK/ERK PI3K/AKT | 2019 | [479] |
KZ-001 | 7.4 nM | non-ATP-competitive | MEK1 | 2019 | [480] |
URML-3881 | 30 nM | non-ATP-competitive | MEK1/2 | 2019 | [481] |
FCN-159 | 8.8 nM | non-ATP-competitive | MEK1/2 | 2020 | [482,483] |
MAP855 | 3nM EC50 5 nM (pERK) | ATP-competitive | MEK1/2 | 2022 | [484] |
ABM-168 | <30 nM | non-ATP-competitive | MEK1/2 | 2023 | [485] |
DS03090629 | 74 nM | ATP-competitive | MEK1/2 | 2023 | [486] |
Name | IC50 | Type | Target | Reported | Reference |
---|---|---|---|---|---|
FR 180204 | 0.31 µM 0.14 µM | ATP-competitive | ERK1/2 | 2005 | [496] |
VTX-11e (Vertex-11e) | KI < 2 nM | ATP-competitive | ERK1/2 | 2009 | [497] |
AEZS-136 | 50 nM | ATP-competitive | ERK1/2 PI3K | 2012 | [498] |
SCH772984 | 4 nM 1 nM | ATP-competitive | ERK1/2 | 2013 | [499] |
Ravoxertinib (GDC-0994) | 1.1 nM 0.3 nM | ATP-competitive | ERK1/2 | 2014 | [500] |
Ulixertinib (BVD-523, VRT752271) | <0.3 nM (ERK2) | ATP-competitive | ERK1/2 | 2015 | [501,502] |
LTT462 | ND | ATP-competitive | ERK1/2 | 2016 | NA (ClinicalTrials.gov Identifier: NCT02711345) |
Temuterkib (LY3214996) | 5 nM | ATP-competitive | ERK1/2 | 2017 | [503,504] |
KO-947 | 10 nM | ATP-competitive | ERK1/2 | 2017 | [505] |
ASN007 (ERK-IN-3) | Low nM | ATP-competitive | ERK1/2 | 2018 | [506] |
MK-8353 (SCH900353) | 20 nM 7 nM | ATP-competitive | ERK1/2 | 2018 | [507,508] |
CC-90003 | 10–20 nM | ATP-competitive | ERK1/2 | 2019 | [509] |
AZD0364 | 6 nM | ATP-competitive | ERK1/2 | 2019 | [510] |
HH2710 | 4.5 nM 4.9 nM | ATP-competitive | ERK1/2 | 2020 | [511] |
JSI-1187 | KI < 1 nM | ATP-competitive | ERK1/2 | 2020 | [512] |
ASTX029 | 3 nM 2.7 nM | ATP-competitive | ERK1/2 | 2021 | [513] |
HMPL-295 | ND | ND | ERK1/2 | 2021 | NA (ClinicalTrials.gov Identifier: NCT04908046) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Vega, A.; Cobb, M.H. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023, 13, 1555. https://doi.org/10.3390/biom13101555
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules. 2023; 13(10):1555. https://doi.org/10.3390/biom13101555
Chicago/Turabian StyleMartin-Vega, Ana, and Melanie H. Cobb. 2023. "Navigating the ERK1/2 MAPK Cascade" Biomolecules 13, no. 10: 1555. https://doi.org/10.3390/biom13101555