Iturin: A Promising Cyclic Lipopeptide with Diverse Applications
Abstract
:1. Introduction
2. Structure and Characteristics
3. Production and Optimization of Iturin
3.1. Production of Iturin
3.2. Recombinant Gene Expression for Enhanced Iturin Production
3.3. Optimization of Iturin Production
4. Purification and Identification of Iturin
5. Biological Activities of Iturin
5.1. Antimicrobial Activity
5.2. Antiviral Activity
5.3. Antifungal Activity
5.4. Biocontrol Agents
5.5. In Vitro and In Vivo Studies
6. In Silico Studies of Iturin
7. Applications
7.1. Surfactants and Emulsifiers
7.2. Bioremediation
7.3. Agricultural Benefits
7.4. Cosmetics and Personal Care Products
7.5. Drug-Delivery Systems
7.6. Food and Beverage Industry
7.7. Wound Healing
7.8. Biocides and Disinfectants
7.9. Crop Protection and Disease Management
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Besson, F.; Peypoux, F.; Michel, G.; Delcambe, L. Mode of Action of Iturin A, an Antibiotic Isolated from Bacillus Subtilis, on Micrococcus Luteus. Biochem. Biophys. Res. Commun. 1978, 81, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological Control of Plant Pathogens by Bacillus Species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Geissler, M.; Oellig, C.; Moss, K.; Schwack, W.; Henkel, M.; Hausmann, R. High-Performance Thin-Layer Chromatography (HPTLC) for the Simultaneous Quantification of the Cyclic Lipopeptides Surfactin, Iturin A and Fengycin in Culture Samples of Bacillus Species. J. Chromatogr. B 2017, 1044–1045, 214–224. [Google Scholar] [CrossRef]
- Sabaté, D.C.; Audisio, M.C. Inhibitory Activity of Surfactin, Produced by Different Bacillus Subtilis Subsp. Subtilis Strains, against Listeria Monocytogenes Sensitive and Bacteriocin-Resistant Strains. Microbiol. Res. 2013, 168, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Ongena, M.; Jacques, P. Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Romero, D.; de Vicente, A.; Rakotoaly, R.H.; Dufour, S.E.; Veening, J.-W.; Arrebola, E.; Cazorla, F.M.; Kuipers, O.P.; Paquot, M.; Pérez-García, A. The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus Subtilis Toward Podosphaera Fusca. Mol. Plant-Microbe Interact. 2007, 20, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhang, X.; Li, K.; Niu, Y.; Guo, M.; Hu, C.; Wan, X.; Gong, Y.; Huang, F. Direct Bio-Utilization of Untreated Rapeseed Meal for Effective Iturin A Production by Bacillus Subtilis in Submerged Fermentation. PLoS ONE 2014, 9, e111171. [Google Scholar] [CrossRef] [PubMed]
- Mizumoto, S.; Shoda, M. Medium Optimization of Antifungal Lipopeptide, Iturin A, Production by Bacillus Subtilis in Solid-State Fermentation by Response Surface Methodology. Appl. Microbiol. Biotechnol. 2007, 76, 101–108. [Google Scholar] [CrossRef]
- Wan, C.; Fan, X.; Lou, Z.; Wang, H.; Olatunde, A.; Rengasamy, K.R.R. Iturin: Cyclic Lipopeptide with Multifunction Biological Potential. Crit. Rev. Food Sci. Nutr. 2022, 62, 7976–7988. [Google Scholar] [CrossRef]
- Eswari, J.S.; Dhagat, S.; Yadav, M. Computer-Aided Design of Antimicrobial Lipopeptides as Prospective Drug Candidates; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781351018302. [Google Scholar]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus Subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Kosaric, N. ChemInform Abstract: Biosurfactants. ChemInform 2010, 22, 12. [Google Scholar] [CrossRef]
- Varjani, S.; Pandey, A.; Upasani, V.N. Petroleum Sludge Polluted Soil Remediation: Integrated Approach Involving Novel Bacterial Consortium and Nutrient Application. Sci. Total Environ. 2021, 763, 142934. [Google Scholar] [CrossRef] [PubMed]
- Geetha, S.J.; Banat, I.M.; Joshi, S.J. Biosurfactants: Production and Potential Applications in Microbial Enhanced Oil Recovery (MEOR). Biocatal. Agric. Biotechnol. 2018, 14, 23–32. [Google Scholar] [CrossRef]
- Deleu, M.; Razafindralambo, H.; Popineau, Y.; Jacques, P.; Thonart, P.; Paquot, M. Interfacial and Emulsifying Properties of Lipopeptides from Bacillus Subtilis. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 152, 3–10. [Google Scholar] [CrossRef]
- Sun, L.; Lu, Z.; Bie, X.; Lu, F.; Yang, S. Isolation and Characterization of a Co-Producer of Fengycins and Surfactins, Endophytic Bacillus Amyloliquefaciens ES-2, from Scutellaria Baicalensis Georgi. World J. Microbiol. Biotechnol. 2006, 22, 1259–1266. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Potential of Bacterial Derived Biopesticides in Pest Management. Crop Prot. 2015, 77, 52–64. [Google Scholar] [CrossRef]
- Peng, W.; Zhong, J.; Yang, J.; Ren, Y.; Xu, T.; Xiao, S.; Zhou, J.; Tan, H. The Artificial Neural Network Approach Based on Uniform Design to Optimize the Fed-Batch Fermentation Condition: Application to the Production of Iturin A. Microb. Cell Fact. 2014, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, K.; Akiyama, T.; Shoda, M. Cloning, Sequencing, and Characterization of the Iturin A Operon. J. Bacteriol. 2001, 183, 6265–6273. [Google Scholar] [CrossRef]
- Bernat, P.; Paraszkiewicz, K.; Siewiera, P.; Moryl, M.; Płaza, G.; Chojniak, J. Lipid Composition in a Strain of Bacillus Subtilis, a Producer of Iturin A Lipopeptides That Are Active against Uropathogenic Bacteria. World J. Microbiol. Biotechnol. 2016, 32, 157. [Google Scholar] [CrossRef]
- Kalai-Grami, L.; Karkouch, I.; Naili, O.; Slimene, I.B.; Elkahoui, S.; Zekri, R.B.; Touati, I.; Mnari-Hattab, M.; Hajlaoui, M.R.; Limam, F. Production and Identification of Iturin A Lipopeptide from Bacillus Methyltrophicus TEB1 for Control of Phoma Tracheiphila. J. Basic Microbiol. 2016, 56, 864–871. [Google Scholar] [CrossRef]
- Kim, P.I.; Ryu, J.; Kim, Y.H.; Chi, Y.-T. Production of Biosurfactant Lipopeptides Iturin A, Fengycin and Surfactin A from Bacillus Subtilis CMB32 for Control of Colletotrichum Gloeosporioides. J. Microbiol. Biotechnol. 2010, 20, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.J.; Viana, J.d.S.; Lopes, F.C.; Pereira, J.Q.; dos Santos, D.M.; Oliveira, J.S.; Velho, R.V.; Crispim, S.M.; Nicoli, J.R.; Brandelli, A.; et al. Bacillus Spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides. Front. Microbiol. 2017, 8, 61. [Google Scholar] [CrossRef]
- Tsuge, K.; Inoue, S.; Ano, T.; Itaya, M.; Shoda, M. Horizontal Transfer of Iturin A Operon, Itu, to Bacillus Subtilis 168 and Conversion into an Iturin A Producer. Antimicrob. Agents Chemother. 2005, 49, 4641–4648. [Google Scholar] [CrossRef] [PubMed]
- Suthar, H.; Hingurao, K.; Desai, A.; Nerurkar, A. Selective Plugging Strategy-Based Microbial-Enhanced Oil Recovery Using Bacillus Licheniformis TT33. J. Microbiol. Biotechnol. 2009, 19, 1230–1237. [Google Scholar] [PubMed]
- Calabrese, I.; Gelardi, G.; Merli, M.; Liveri, M.L.T.; Sciascia, L. Clay-Biosurfactant Materials as Functional Drug Delivery Systems: Slowing down Effect in the in Vitro Release of Cinnamic Acid. Appl. Clay Sci. 2017, 135, 567–574. [Google Scholar] [CrossRef]
- Naughton, P.J.; Marchant, R.; Naughton, V.; Banat, I.M. Microbial Biosurfactants: Current Trends and Applications in Agricultural and Biomedical Industries. J. Appl. Microbiol. 2019, 127, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, Z.; Han, Y.; Wang, Z.; Fan, J.; Xiao, H. Isolation and Identification of Antifungal Peptides from Bacillus BH072, a Novel Bacterium Isolated from Honey. Microbiol. Res. 2013, 168, 598–606. [Google Scholar] [CrossRef]
- Besson, F.; Raimbault, C.; Hourdou, M.L.; Buchet, R. Solvent-Induced Conformational Modifications of Iturin A: An Infrared and Circular Dichroic Study of a l,d-Lipopeptide of Bacillus Subtilis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1996, 52, 793–803. [Google Scholar] [CrossRef]
- Isogai, A.; Takayama, S.; Murakoshi, S.; Suzuki, A. Structure of β-Amino Acids in Antibiotics Iturin A. Tetrahedron Lett. 1982, 23, 3065–3068. [Google Scholar] [CrossRef]
- Delcambe, L.; Peypoux, F.; Besson, F.; Guinand, M.; Michel, G. Structure of Iturin and Iturin-like Substances. Biochem. Soc. Trans. 1977, 5, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Marion, D.; Genest, M.; Caille, A.; Peypoux, F.; Michel, G.; Ptak, M. Conformational Study of Bacterial Lipopeptides: Refinement of the Structure of Iturin A in Solution by Two-Dimensional1H-Nmr and Energy Calculations. Biopolymers 1986, 25, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Xu, H.; Li, L.; Chen, R.; Gao, X.; Xu, Z. Antifungal Activity of Endophytic Bacillus Safensis B21 and Its Potential Application as a Biopesticide to Control Rice Blast. Pestic. Biochem. Physiol. 2020, 162, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Li, Q.; Fu, G.; Yuan, G.; Miao, J.; Lin, W. Identification of Antifungal Substance (Iturin A2) Produced by Bacillus Subtilis B47 and Its Effect on Southern Corn Leaf Blight. J. Integr. Agric. 2012, 11, 90–99. [Google Scholar] [CrossRef]
- Banat, I.M.; Carboué, Q.; Saucedo-Castañeda, G.; de Jesús Cázares-Marinero, J. Biosurfactants: The Green Generation of Speciality Chemicals and Potential Production Using Solid-State Fermentation (SSF) Technology. Bioresour. Technol. 2021, 320, 124222. [Google Scholar] [CrossRef] [PubMed]
- Ano, T.; Jin, G.Y.; Mizumoto, S.; Mohammad Shahedur, R.; Okuno, K.; Shoda, M. Solid State Fermentation of Lipopeptide Antibiotic Iturin A by Using a Novel Solid State Fermentation Reactor System. J. Environ. Sci. 2009, 21, S162–S165. [Google Scholar] [CrossRef] [PubMed]
- Branda, S.S.; González-Pastor, J.E.; Ben-Yehuda, S.; Losick, R.; Kolter, R. Fruiting Body Formation by Bacillus Subtilis. Proc. Natl. Acad. Sci. USA 2001, 98, 11621–11626. [Google Scholar] [CrossRef] [PubMed]
- Zohora, U.S.; Rahman, M.S.; Khan, A.W.; Okanami, M.; Ano, T. Improvement of Production of Lipopeptide Antibiotic Iturin A Using Fish Protein. J. Environ. Sci. 2013, 25, S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Yaraguppi, D.A.; Bagewadi, Z.K.; Mahanta, N.; Singh, S.P.; Khan, T.M.Y.; Deshpande, S.H.; Soratur, C.; Das, S.; Saikia, D. Gene Expression and Characterization of Iturin A Lipopeptide Biosurfactant from Bacillus Aryabhattai for Enhanced Oil Recovery. Gels 2022, 8, 403. [Google Scholar] [CrossRef] [PubMed]
- Petrila, L.-M.; Blaga, A.C.; Krier, F. A Review on the Optimization of Lipopeptides Production. Bul. Institutului Politeh. Din Iași 2020, 66, 31–49. [Google Scholar]
- Nagórska, K.; Bikowski, M.; Obuchowski, M. Multicellular Behaviour and Production of a Wide Variety of Toxic Substances Support Usage of Bacillus Subtilis as a Powerful Biocontrol Agent. Acta Biochim. Pol. 2007, 54, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Dhanarasu, S. (Ed.) Chromatography and Its Applications; InTech: Houston, TX, USA, 2012; ISBN 978-953-51-0357-8. [Google Scholar]
- Symmank, H.; Franke, P.; Saenger, W.; Bernhard, F. Modification of Biologically Active Peptides: Production of a Novel Lipohexapeptide after Engineering of Bacillus Subtilis Surfactin Synthetase. Protein Eng. Des. Sel. 2002, 15, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Chávez, J.L.; Juárez-Campusano, Y.S.; Delgado, G.; Pacheco Aguilar, J.R. Identification of Lipopeptides from Bacillus Strain Q11 with Ability to Inhibit the Germination of Penicillium Expansum, the Etiological Agent of Postharvest Blue Mold Disease. Postharvest Biol. Technol. 2019, 155, 72–79. [Google Scholar] [CrossRef]
- Zohora, U.S.; Ano, T.; Rahman, M.S. Biocontrol of Rhizoctonia solani K1 by iturin A producer Bacillus subtilis RB14 seed treatment in tomato plants. Adv. Microbiol. 2016, 6, 424–431. [Google Scholar] [CrossRef]
- Mandal, S.M.; Sharma, S.; Pinnaka, A.K.; Kumari, A.; Korpole, S. Isolation and Characterization of Diverse Antimicrobial Lipopeptides Produced by Citrobacter and Enterobacter. BMC Microbiol. 2013, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Nakhate, P.H.; Yadav, V.K.; Pathak, A.N. A Review on Daptomycin: The First US-FDA Approved Lipopeptide Antibiotics. J. Sci. Innov. Res. 2013, 2, 970–980. [Google Scholar]
- Lin, L.-Z.; Zheng, Q.-W.; Wei, T.; Zhang, Z.-Q.; Zhao, C.-F.; Zhong, H.; Xu, Q.-Y.; Lin, J.-F.; Guo, L.-Q. Isolation and Characterization of Fengycins Produced by Bacillus Amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Foodborne Pathogens. Front. Microbiol. 2020, 11, 579621. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Liang, J.; Wu, L.; Gao, W.; Jiang, J. Iturin A Extracted From Bacillus Subtilis WL-2 Affects Phytophthora Infestans via Cell Structure Disruption, Oxidative Stress, and Energy Supply Dysfunction. Front. Microbiol. 2020, 11, 536083. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef] [PubMed]
- Rasiya, K.T.; Sebastian, D. Iturin and Surfactin from the Endophyte Bacillus Amyloliquefaciens Strain RKEA3 Exhibits Antagonism against Staphylococcus Aureus. Biocatal. Agric. Biotechnol. 2021, 36, 102125. [Google Scholar] [CrossRef]
- Shekunov, E.V.; Zlodeeva, P.D.; Efimova, S.S.; Muryleva, A.A.; Zarubaev, V.V.; Slita, A.V.; Ostroumova, O.S. Cyclic Lipopeptides as Membrane Fusion Inhibitors against SARS-CoV-2: New Tricks for Old Dogs. Antiviral Res. 2023, 212, 105575. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, R.; Yang, J.; Zhao, J.; Li, H.; Liu, K.; Xue, X.; Zhao, H.; Han, S.; Zhao, H. Transcriptome Analysis Reveals That C17 Mycosubtilin Antagonizes Verticillium Dahliae by Interfering with Multiple Functional Pathways of Fungi. Biology 2023, 12, 513. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.; Kiesewalter, H.T.; Kovács, R.; Frisvad, J.C.; Weber, T.; Larsen, T.O.; Kovács, Á.T.; Ding, L. Depiction of Secondary Metabolites and Antifungal Activity of Bacillus Velezensis DTU001. Synth. Syst. Biotechnol. 2019, 4, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, L.; Du, F.; Sun, L.; Shi, J.; Long, M.; Chen, Z. Activity and Mechanism of Action of Antifungal Peptides from Microorganisms: A Review. Molecules 2021, 26, 3438. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, J.; Zhang, Z. Bacillus Metabolites: Compounds, Identification and Anti-Candida Albicans Mechanisms. Microbiol. Res. 2022, 13, 972–984. [Google Scholar] [CrossRef]
- Lei, S.; Zhao, H.; Pang, B.; Qu, R.; Lian, Z.; Jiang, C.; Shao, D.; Huang, Q.; Jin, M.; Shi, J. Capability of Iturin from Bacillus Subtilis to Inhibit Candida Albicans in Vitro and in Vivo. Appl. Microbiol. Biotechnol. 2019, 103, 4377–4392. [Google Scholar] [CrossRef] [PubMed]
- Mujumdar, S.; Bashetti, S.; Pardeshi, S.; Thombre, R.S. Industrial Applications of Biosurfactants. In Industrial Biotechnology; Apple Academic Press: Cambridge, MA, USA, 2016; p. 29. ISBN 9781315366562. [Google Scholar]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, Natural Alternatives to Synthetic Surfactants: Physicochemical Properties and Applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef]
- Arrebola, E.; Jacobs, R.; Korsten, L. Iturin A Is the Principal Inhibitor in the Biocontrol Activity of Bacillus Amyloliquefaciens PPCB004 against Postharvest Fungal Pathogens. J. Appl. Microbiol. 2010, 108, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Gong, A.-D.; Li, H.-P.; Yuan, Q.-S.; Song, X.-S.; Yao, W.; He, W.-J.; Zhang, J.-B.; Liao, Y.-C. Antagonistic Mechanism of Iturin A and Plipastatin A from Bacillus Amyloliquefaciens S76-3 from Wheat Spikes against Fusarium Graminearum. PLoS ONE 2015, 10, e0116871. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, X.; Qiao, X.; Zhang, X.; Chen, X.; Zhang, D. Activity of Fengycin and Iturin A Isolated From Bacillus Subtilis Z-14 on Gaeumannomyces Graminis Var. Tritici and Soil Microbial Diversity. Front. Microbiol. 2021, 12, 682437. [Google Scholar] [CrossRef]
- Park, J.S.; Ryu, G.R.; Kang, B.R. Target Mechanism of Iturinic Lipopeptide on Differential Expression Patterns of Defense-Related Genes against Colletotrichum Acutatum in Pepper. Plants 2022, 11, 1267. [Google Scholar] [CrossRef] [PubMed]
- Heydari, A.; Pessarakli, M. A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. J. Biol. Sci. 2010, 10, 273–290. [Google Scholar] [CrossRef]
- Dame, Z.T.; Rahman, M.; Islam, T. Bacilli as Sources of Agrobiotechnology: Recent Advances and Future Directions. Green Chem. Lett. Rev. 2021, 14, 246–271. [Google Scholar] [CrossRef]
- Pérez-García, A.; Romero, D.; de Vicente, A. Plant Protection and Growth Stimulation by Microorganisms: Biotechnological Applications of Bacilli in Agriculture. Curr. Opin. Biotechnol. 2011, 22, 187–193. [Google Scholar] [CrossRef]
- Syed Ab Rahman, S.F.; Singh, E.; Pieterse, C.M.J.; Schenk, P.M. Emerging Microbial Biocontrol Strategies for Plant Pathogens. Plant Sci. 2018, 267, 102–111. [Google Scholar] [CrossRef]
- Dimkić, I.; Janakiev, T.; Petrović, M.; Degrassi, G.; Fira, D. Plant-Associated Bacillus and Pseudomonas Antimicrobial Activities in Plant Disease Suppression via Biological Control Mechanisms—A Review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Malviya, D.; Sahu, P.K.; Singh, U.B.; Paul, S.; Gupta, A.; Gupta, A.R.; Singh, S.; Kumar, M.; Paul, D.; Rai, J.P.; et al. Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. Int. J. Environ. Res. Public Health 2020, 17, 1434. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, L.; Guo, L.; Sun, H.; Huang, Q.; Shao, D.; Jiang, C.; Shi, J. Effects of Bacillus Subtilis Iturin A on HepG2 Cells in Vitro and Vivo. AMB Express 2021, 11, 67. [Google Scholar] [CrossRef]
- Dey, G.; Bharti, R.; Ojha, P.K.; Pal, I.; Rajesh, Y.; Banerjee, I.; Banik, P.; Parida, S.; Parekh, A.; Sen, R.; et al. Therapeutic Implication of ‘Iturin A’ for Targeting MD-2/TLR4 Complex to Overcome Angiogenesis and Invasion. Cell Signal. 2017, 35, 24–36. [Google Scholar] [CrossRef]
- Dey, G.; Bharti, R.; Dhanarajan, G.; Das, S.; Dey, K.K.; Kumar, B.N.P.; Sen, R.; Mandal, M. Marine Lipopeptide Iturin A Inhibits Akt Mediated GSK3β and FoxO3a Signaling and Triggers Apoptosis in Breast Cancer. Sci. Rep. 2015, 5, 10316. [Google Scholar] [CrossRef]
- Pal, I.; Mandal, M. PI3K and Akt as Molecular Targets for Cancer Therapy: Current Clinical Outcomes. Acta Pharmacol. Sin. 2012, 33, 1441–1458. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xu, X.; Lei, S.; Shao, D.; Jiang, C.; Shi, J.; Zhang, Y.; Liu, L.; Lei, S.; Sun, H.; et al. Iturin A-like Lipopeptides from Bacillus Subtilis Trigger Apoptosis, Paraptosis, and Autophagy in Caco-2 Cells. J. Cell Physiol. 2019, 234, 6414–6427. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, L.; Xu, X.; Jiang, C.; Shi, J.; Zhang, Y.; Liu, L.; Lei, S.; Shao, D.; Huang, Q. Potential of Bacillus Subtilis Lipopeptides in Anti-Cancer I: Induction of Apoptosis and Paraptosis and Inhibition of Autophagy in K562 Cells. AMB Express 2018, 8, 78. [Google Scholar] [CrossRef]
- Kowall, M.; Vater, J.; Kluge, B.; Stein, T.; Franke, P.; Ziessow, D. Separation and Characterization of Surfactin Isoforms Produced ByBacillus SubtilisOKB 105. J. Colloid Interface Sci. 1998, 204, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef]
- Lionta, E.; Spyrou, G.; Vassilatis, D.; Cournia, Z. Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances. Curr. Top. Med. Chem. 2014, 14, 1923–1938. [Google Scholar] [CrossRef]
- Lavecchia, A.; Giovanni, C. Virtual Screening Strategies in Drug Discovery: A Critical Review. Curr. Med. Chem. 2013, 20, 2839–2860. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.L.; Dunn, M.K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef]
- Farhadi, T.; Hashemian, S.M. Computer-Aided Design of Amino Acid-Based Therapeutics: A Review. Drug Des. Devel. Ther. 2018, 12, 1239–1254. [Google Scholar] [CrossRef]
- Lee, A.C.-L.; Harris, J.L.; Khanna, K.K.; Hong, J.-H. A Comprehensive Review on Current Advances in Peptide Drug Development and Design. Int. J. Mol. Sci. 2019, 20, 2383. [Google Scholar] [CrossRef]
- Yaraguppi, D.A.; Deshpande, S.H.; Bagewadi, Z.K.; Kumar, S.; Muddapur, U.M. Genome Analysis of Bacillus Aryabhattai to Identify Biosynthetic Gene Clusters and In Silico Methods to Elucidate Its Antimicrobial Nature. Int. J. Pept. Res. Ther. 2021, 27, 1331–1342. [Google Scholar] [CrossRef]
- Yaraguppi, D.A.; Bagewadi, Z.K.; Deshpande, S.H.; Chandramohan, V. In Silico Study on the Inhibition of UDP-N-Acetylglucosamine 1-Carboxy Vinyl Transferase from Salmonella Typhimurium by the Lipopeptide Produced from Bacillus Aryabhattai. Int. J. Pept. Res. Ther. 2022, 28, 80. [Google Scholar] [CrossRef]
- Ahimou, F.; Jacques, P.; Deleu, M. Surfactin and Iturin A Effects on Bacillus Subtilis Surface Hydrophobicity. Enzyme Microb. Technol. 2000, 27, 749–754. [Google Scholar] [CrossRef]
- Yadav, M.; Eswari, J.S. Opportunistic Challenges of Computer-Aided Drug Discovery of Lipopeptides: New Insights for Large Molecule Therapeutics. Avicenna J. Med. Biotechnol. 2022, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.N.; Swapna, T.H.; Khan, M.Y.; Daddam, J.R.; Hameeda, B. Molecular Dynamics and Protein Interaction Studies of Lipopeptide (Iturin A) on α- Amylase of Spodoptera Litura. J. Theor. Biol. 2017, 415, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Balleza, D.; Alessandrini, A.; Beltrán García, M.J. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J. Membr. Biol. 2019, 252, 131–157. [Google Scholar] [CrossRef] [PubMed]
- Niode, N.J.; Adji, A.; Rimbing, J.; Tulung, M.; Alorabi, M.; El-Shehawi, A.M.; Idroes, R.; Celik, I.; Fatimawali; Adam,, A.A.; et al. In Silico and In Vitro Evaluation of the Antimicrobial Potential of Bacillus Cereus Isolated from Apis Dorsata Gut against Neisseria Gonorrhoeae. Antibiotics 2021, 10, 1401. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Mao, J.; Zhao, Y.; Quan, C.; Zhong, M.; Fan, S. Coarse-Grained Molecular Dynamics Simulation of Interactions between Cyclic Lipopeptide Bacillomycin D and Cell Membranes. Mol. Simul. 2018, 44, 364–376. [Google Scholar] [CrossRef]
- Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The Multifaceted Nature of Antimicrobial Peptides: Current Synthetic Chemistry Approaches and Future Directions. Chem. Soc. Rev. 2021, 50, 7820–7880. [Google Scholar] [CrossRef]
- Shai, Y.; Makovitzky, A.; Avrahami, D.; Makovitzki, A. Host Defense Peptides and Lipopeptides: Modes of Action and Potential Candidates for the Treatment of Bacterial and Fungal Infections. Curr. Protein Pept. Sci. 2006, 7, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Qi, G.; Wang, W.; Sun, X.S. Advances in 3D Peptide Hydrogel Models in Cancer Research. npj Sci. Food 2021, 5, 14. [Google Scholar] [CrossRef]
- Greber, K.E.; Zielińska, J.; Nierzwicki, Ł.; Ciura, K.; Kawczak, P.; Nowakowska, J.; Bączek, T.; Sawicki, W. Are the Short Cationic Lipopeptides Bacterial Membrane Disruptors? Structure-Activity Relationship and Molecular Dynamic Evaluation. Biochim. Biophys. Acta Biomembr. 2019, 1861, 93–99. [Google Scholar] [CrossRef]
- Araujo, J.; Monteiro, J.; Silva, D.; Alencar, A.; Silva, K.; Coelho, L.; Pacheco, W.; Silva, D.; Silva, M.; Silva, L.; et al. Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics 2022, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Mallik, T.; Banerjee, D. Biosurfactants: The Potential Green Surfactants In The 21st Century. J. Adv. Sci. Res. 2022, 13, 97–106. [Google Scholar] [CrossRef]
- Zobaer, M.; Ali, F.; Anwar, M.N.; Bappi, M.S.H.; Bakar, T.B.; Hossain, T.J. Isolation of Biosurfactant Producing Bacteria from Oil-Spilled Soil and Characterization of Their Secreted Biosurfactants in Pathogen-Inhibition and Oil-Emulsification. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Zaidel, D.N.A.; Gavlighi, H.A.; Khairuddin, N.; Zainol, N.; Hashim, Z.; Mohammad, N.A.; Lazim, N.A.M. Functional Properties and Potential Application of Biosurfactants as a Natural Ingredient in the Food Industry. In Microbial Surfactants; CRC Press: Boca Raton, FL, USA, 2022; p. 35. ISBN 9781003247739. [Google Scholar]
- Thakur, S.; Singh, A.; Sharma, R.; Aurora, R.; Jain, S.K. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications. Curr. Drug Metab. 2020, 21, 885–901. [Google Scholar] [CrossRef] [PubMed]
- Mnif, I.; Ghribi, D. Review Lipopeptides Biosurfactants: Mean Classes and New Insights for Industrial, Biomedical, and Environmental Applications. Pept. Sci. 2015, 104, 129–147. [Google Scholar] [CrossRef]
- Rathankumar, A.K.; Saikia, K.; Kumar, P.S.; Varjani, S.; Kalita, S.; Bharadwaj, N.; George, J.; Vaidyanathan, V.K. Surfactant-aided Mycoremediation of Soil Contaminated with Polycyclic Aromatic Hydrocarbon (PAHs): Progress, Limitation, and Countermeasures. J. Chem. Technol. Biotechnol. 2022, 97, 391–408. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L. The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics. Corros. Mater. Degrad. 2021, 2, 531–553. [Google Scholar] [CrossRef]
- Santos, D.; Rufino, R.; Luna, J.; Santos, V.; Sarubbo, L. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ding, M.; Yuan, Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering 2023, 10, 347. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. The Role of Beneficial Microorganisms in Soil Quality and Plant Health. Sustainability 2022, 14, 5358. [Google Scholar] [CrossRef]
- Hashem, A.; Tabassum, B.; Fathi Abd Allah, E. Bacillus Subtilis: A Plant-Growth Promoting Rhizobacterium That Also Impacts Biotic Stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhao, C.; Wang, E.; Raza, A.; Yin, C. Bacillus Amyloliquefaciens as an Excellent Agent for Biofertilizer and Biocontrol in Agriculture: An Overview for Its Mechanisms. Microbiol. Res. 2022, 259, 127016. [Google Scholar] [CrossRef] [PubMed]
- Ben Mrid, R.; Benmrid, B.; Hafsa, J.; Boukcim, H.; Sobeh, M.; Yasri, A. Secondary Metabolites as Biostimulant and Bioprotectant Agents: A Review. Sci. Total Environ. 2021, 777, 146204. [Google Scholar] [CrossRef]
- El-Khordagui, L.; Badawey, S.E.; Heikal, L.A. Application of Biosurfactants in the Production of Personal Care Products, and Household Detergents and Industrial and Institutional Cleaners. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 49–96. [Google Scholar]
- Vecino, X.; Rodríguez-López, L.; Ferreira, D.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Bioactivity of Glycolipopeptide Cell-Bound Biosurfactants against Skin Pathogens. Int. J. Biol. Macromol. 2018, 109, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Karnwal, A.; Shrivastava, S.; Al-Tawaha, A.R.M.S.; Kumar, G.; Singh, R.; Kumar, A.; Mohan, A.; Yogita; Malik, T. Microbial Biosurfactant as an Alternate to Chemical Surfactants for Application in Cosmetics Industries in Personal and Skin Care Products: A Critical Review. Biomed Res. Int. 2023, 2023, 2375223. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, T.; Bhimani, A.; Detroja, A.; Gevariya, D.; Sanghvi, G. Cosmetic Application of Surfactants from Marine Microbes. In Marine Surfactants; CRC Press: Boca Raton, FL, USA, 2022; p. 23. ISBN 9781003307464. [Google Scholar]
- Fracchia, L.; Ceresa, C.; Banat, I.M. Biosurfactants in Cosmetic, Biomedical and Pharmaceutical Industry. In Microbial Biosurfactants and Their Environmental and Industrial Applications; CRC Press: Boca Raton, FL, USA, 2018; p. 30. [Google Scholar]
- Bhattacharya, B.; Ghosh, T.K.; Das, N. Application of Bio-Surfactants in Cosmetics and Pharmaceutical Industry. Sch. Acad. J. Pharm. 2017, 6, 320–329. [Google Scholar] [CrossRef]
- Sen, S.; Borah, S.N.; Deka, S. Biotechnologically Derived Bioactive Molecules for Skin and Hair-Care Application. In Biosurfactants for a Sustainable Future; Wiley: Hoboken, NJ, USA, 2021; pp. 443–463. [Google Scholar]
- Bjerk, T.R.; Severino, P.; Jain, S.; Marques, C.; Silva, A.M.; Pashirova, T.; Souto, E.B. Biosurfactants: Properties and Applications in Drug Delivery, Biotechnology and Ecotoxicology. Bioengineering 2021, 8, 115. [Google Scholar] [CrossRef]
- Kondapi, A.K. Surfactant- and Biosurfactant-Based Therapeutics. In Biosurfactants for a Sustainable Future; Wiley: Hoboken, NJ, USA, 2021; pp. 373–395. [Google Scholar]
- Chauhan, V.; Dhiman, V.K.; Mahajan, G.; Pandey, A.; Kanwar, S.S. Synthesis and Characterization of Silver Nanoparticles Developed Using a Novel Lipopeptide(s) Biosurfactant and Evaluating Its Antimicrobial and Cytotoxic Efficacy. Process Biochem. 2023, 124, 51–62. [Google Scholar] [CrossRef]
- Kourmentza, K.; Gromada, X.; Michael, N.; Degraeve, C.; Vanier, G.; Ravallec, R.; Coutte, F.; Karatzas, K.A.; Jauregi, P. Antimicrobial Activity of Lipopeptide Biosurfactants Against Foodborne Pathogen and Food Spoilage Microorganisms and Their Cytotoxicity. Front. Microbiol. 2021, 11, 561060. [Google Scholar] [CrossRef]
- Ruiz Sella, S.R.B.; Bueno, T.; de Oliveira, A.A.B.; Karp, S.G.; Soccol, C.R. Bacillus Subtilis Natto as a Potential Probiotic in Animal Nutrition. Crit. Rev. Biotechnol. 2021, 41, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Kawayasakul, S. Antibacterial Activity of Genus Bacillus Isolated from Fresh Fruits and Vegetables against Some Foodborne Pathogens. Sci. Technol. Asia 2020, 25, 163–173. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Chakraborty, R. Formation and Development of Biofilm- an Alarming Concern in Food Safety Perspectives. Biocatal. Agric. Biotechnol. 2021, 38, 102210. [Google Scholar] [CrossRef]
- Ancuța, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, X.; Li, M.; Yan, L.; Lu, Y.; Jiang, C.; Liu, Y.; Pan, Z.; Shi, J. Antibacterial and Wound Healing–Promoting Effect of Sponge-like Chitosan-Loaded Silver Nanoparticles Biosynthesized by Iturin. Int. J. Biol. Macromol. 2021, 181, 1183–1195. [Google Scholar] [CrossRef]
- Ohadi, M.; Forootanfar, H.; Dehghannoudeh, N.; Banat, I.M.; Dehghannoudeh, G. The Role of Surfactants and Biosurfactants in the Wound Healing Process: A Review. J. Wound Care 2023, 32, xxxix–xlvi. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qu, L.; Lin, S.; Yang, Q.; Zhang, X.; Jin, L.; Dong, H.; Sun, D. Biological Functions and Applications of Antimicrobial Peptides. Curr. Protein Pept. Sci. 2022, 23, 226–247. [Google Scholar] [CrossRef]
- Yan, L.; Liu, G.; Zhao, B.; Pang, B.; Wu, W.; Ai, C.; Zhao, X.; Wang, X.; Jiang, C.; Shao, D.; et al. Novel Biomedical Functions of Surfactin A from Bacillus Subtilis in Wound Healing Promotion and Scar Inhibition. J. Agric. Food Chem. 2020, 68, 6987–6997. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Li, Y.; Dong, J.; Liu, X.; Li, C. Biocontrol of Rhizoctonia Solani via Induction of the Defense Mechanism and Antimicrobial Compounds Produced by Bacillus Subtilis SL-44 on Pepper (Capsicum Annuum L.). Front. Microbiol. 2019, 10, 2676. [Google Scholar] [CrossRef] [PubMed]
- Siah, A.; Magnin-Robert, M.; Randoux, B.; Choma, C.; Rivière, C.; Halama, P.; Reignault, P. Natural Agents Inducing Plant Resistance Against Pests and Diseases. In Sustainable Development and Biodiversity; Mérillon, J.M., Riviere, C., Eds.; Springer: Cham, Switzerland, 2018; pp. 121–159. [Google Scholar]
- Rautenbach, M.; Swart, P.; van der Merwe, M.J. Sequence Specific Stabilization of a Linear Analog of the Antifungal Lipopeptide Iturin A 2 by Sodium during Low Energy Electrospray Ionization Mass Spectrometry Conditions. J. Am. Soc. Mass Spectrom. 2001, 12, 505–516. [Google Scholar] [CrossRef]
Strategy Used | Factors Evaluated | Strain | Biosurfactant Nature |
---|---|---|---|
RSM, OFAT one factor at a time | Carbon source (glucose, fructose, sucrose, xylose, rhamnose, and soluble starch), nitrogen source (NH4Cl, C6H17N3O7, urea, peptone, and soybean meal), and metal ions (ZN2+, Fe3+, Mg2+, Mn2+, Ca2+, and K+). | Bacillus sp. BH072 | Iturin A [28] |
Solid-state fermentation (SSF) | Rice bran husk, sunflower oil, coconut oil cake, cotton oil cake, corn cob, orange peel, jackfruit peel, sugarcane leaf, pineapple peel, banana leaf, cheese whey, dry yeast cells, pongamia seed cake, jatropha seed cake ground oil cake, and glucose with MSM. | B. amyloliquefaciens | Iturin A [36] |
Mutagenesis-induced enhanced yield | Random mutagenesis using gamma irradiation. | B. subtilis UTB1 | Iturin A [9] |
Genome shuffling | Genome shuffling and gene (fenA) expression. Mutagenesis (UV, nitrosoguanidine, atmospheric, and room-temperature plasma). | B. amyloliquefaciens LZ-5 | Iturin A [27] |
Producing Microorganism | Carbon Source | Nitrogen Source | Lipopeptide Yield |
---|---|---|---|
B. subtilis MO-01 | Sucrose (22.431 g/L) | Ammonium chloride (2.781 g/L) | 1712 mg/L [40] |
B. subtilis MTCC 2423 | Glucose (1.098 g/L) | Yeast extract (0.426 g/L) | 1501 mg/L [40] |
B. subtilis SPB1 | Glucose (40 g/L) | Urea (5 g/L) | 720 mg/L [40] |
Bacillus natto NT-6 | Glucose (10 g/L) | L-monosodium glutamate (5 g/L) | 563.20 mg/L [40] |
Bacillus circulans MTCC 8281 | Glucose (32 g/L) | Urea (1 g/L) | 4350 mg/L [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaraguppi, D.A.; Bagewadi, Z.K.; Patil, N.R.; Mantri, N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules 2023, 13, 1515. https://doi.org/10.3390/biom13101515
Yaraguppi DA, Bagewadi ZK, Patil NR, Mantri N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules. 2023; 13(10):1515. https://doi.org/10.3390/biom13101515
Chicago/Turabian StyleYaraguppi, Deepak A., Zabin K. Bagewadi, Ninganagouda R. Patil, and Nitin Mantri. 2023. "Iturin: A Promising Cyclic Lipopeptide with Diverse Applications" Biomolecules 13, no. 10: 1515. https://doi.org/10.3390/biom13101515
APA StyleYaraguppi, D. A., Bagewadi, Z. K., Patil, N. R., & Mantri, N. (2023). Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules, 13(10), 1515. https://doi.org/10.3390/biom13101515